Seasonal Dynamics of Macroinvertebrate Communities in Offshore Mussel Aquaculture in the Southern Black Sea: Implications for Diversity
Abstract
1. Introduction
2. Materials and Methods
2.1. Longline System
2.2. Environmental Parameters
2.3. Mussel Sample Collection
2.4. Statistical Analyses and Diversity Indices
- H′ = Shannon–Wiener Diversity Index
- Pi = Proportion of individuals in taxon i
- Ni = Number of individuals in taxon i
- N = Total number of individuals in the sample
- S = Total number of taxa in the sample (taxon richness)
- S = Total number of taxa in the sample (taxon richness)
- H′ = Shannon–Wiener Diversity Index
- D = Simpson’s Diversity Index (measures the probability that two individuals randomly selected from a sample will belong to the same taxon)
- S = Total number of taxa in the sample (taxon richness)
- ni = Number of individuals in taxon i
- N = Total number of individuals in the sample
- ni/N = Proportional abundance of taxon i
3. Results
3.1. Physicochemical Parameters and Seasonal Variations
3.2. Macroinvertebrate Community
3.3. Taxon Distribution and Seasonal Variations
3.4. Abundance and Taxon Richness
4. Discussion
4.1. Abundance and Dominance Patterns of Macroinvertebrates
4.2. Environmental Drivers of Community Structure
4.3. Management Implications for Mussel Aquaculture
5. Conclusions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Murray, J.W.; Top, Z.; Özsoy, E. Hydrographic properties and ventilation of the Black Sea. Deep. Sea Res. Part A Oceanogr. Res. Pap. 1991, 38, S663–S689. [Google Scholar] [CrossRef]
- Özsoy, E.; Ünlüata, Ü. Oceanography of the Black Sea: A review of some recent results. Earth-Sci. Rev. 1997, 42, 231–272. [Google Scholar] [CrossRef]
- Zaitsev, Y.P.; Mamaev, V. Marine Biological Diversity in the Black Sea: A Study of Change and Decline; United Nations Publications: New York, NY, USA, 1997. [Google Scholar]
- Mee, L.D. The Black Sea in crisis: A need for concerted international action. Ambio 1992, 21, 278–286. [Google Scholar]
- Ivanov, L.; Bulatov, O. Mytilus galloprovincialis populations in the Black Sea. Hydrobiologia 1990, 187, 25–33. [Google Scholar]
- Aydemir-Çil, E.; Birinci-Özdemir, Z.; Özdemir, S. First find of the starfish Asterias rubens Linnaeus 1758 off the Anatolian coast of the Black Sea (Sinop). Mar. Biol. J. 2023, 8, 97–101. [Google Scholar]
- Birinci-Özdemir, Z.; Aydemir-Çil, E.; Özdemir, S.; Duyar, H.A. An important taxon for Black Sea diversity: Some population characteristics of invasive sea vase (Ciona intestinalis Linnaeus, 1767) distributed on the Sinop shores. Turk. J. Zool. 2024, 48, 630–639. [Google Scholar] [CrossRef]
- Altuğ, G.; Aktan, Y.; Oral, M.; Topaloğlu, B.; Dede, A.; Keskin, Ç.; Işinibilir, M.; Çardak, M.; Çiftçi, P.S. Biodiversity of the northern Aegean Sea and southern part of the Sea of Marmara, Turkey. Mar. Biodivers. Rec. 2011, 4, e65. [Google Scholar] [CrossRef]
- Çinar, M.E.; Bakir, K.; Öztürk, B.; Doğan, A.; Açik, Ş.; Kirkim, F.; Dağli, E.; Kurt, G.; Evcen, A.; Koçak, F.; et al. Spatial distribution pattern of macroinvertebrates associated with the black mussel Mytilus galloprovincialis (Mollusca: Bivalvia) in the Sea of Marmara. J. Mar. Syst. 2020, 211, 103402. [Google Scholar] [CrossRef]
- Sala, E.; Knowlton, N. Global marine biodiversity trends. Annu. Rev. Environ. Resour. 2006, 31, 93–122. [Google Scholar] [CrossRef]
- Boudouresque, C.-F.; Blanfuné, A.; Pergent, G.; Pergent-Martini, C.; Perret-Boudouresque, M.; Thibaut, T. Impacts of marine and lagoon aquaculture on macrophytes in Mediterranean benthic ecosystems. Front. Mar. Sci. 2020, 7, 218. [Google Scholar] [CrossRef]
- Boudouresque, C.-F.; Blanfuné, A.; Fernandez, C.; Pérez, T.; Ruitton, S.; Thibault, D.; Thibaut, T.; Verlaque, M. Marine biodiversity-warming vs. biological invasions and overfishing in the Mediterranean Sea: Take care, ‘One Train can hide another’. MOJ Ecol. Environ. Sci. 2017, 2, 1–13. [Google Scholar] [CrossRef]
- Callier, M.D.; McKindsey, C.W.; Desrosiers, G. Multi-scale spatial variations in benthic sediment geochemistry and macrofaunal communities under a suspended mussel culture. Mar. Ecol. Prog. Ser. 2007, 348, 103–115. [Google Scholar] [CrossRef]
- Fabi, G.; Manoukian, S.; Spagnolo, A. Impact of an open-sea suspended mussel culture on macrobenthic community (Western Adriatic Sea). Aquaculture 2009, 289, 54–63. [Google Scholar] [CrossRef]
- Borja, A.; Franco, J.; Pérez, V. A marine biotic index to establish the ecological quality of soft-bottom benthos within European estuarine and coastal environments. Mar. Pollut. Bull. 2000, 40, 1100–1114. [Google Scholar] [CrossRef]
- Reiss, H.; Kröncke, I. Seasonal variability of benthic indices: An approach to test the applicability of different indices for ecosystem quality assessment. Mar. Pollut. Bull. 2005, 50, 1490–1499. [Google Scholar] [CrossRef] [PubMed]
- Ross, A.H.; Nisbet, R.M. Dynamic models of growth and reproduction of the mussel Mytilus edulis L. Funct. Ecol. 1990, 4, 777–787. [Google Scholar]
- Seed, R. The ecology of Mytilus edulis L. (Lamellibranchiata) on exposed rocky shores: I. Breeding and settlement. Oecologia 1969, 3, 277–316. [Google Scholar] [CrossRef]
- Thompson, R.J. The reproductive cycle and physiological ecology of the mussel Mytilus edulis in a subarctic, non-estuarine environment. Mar. Biol. 1984, 79, 277–288. [Google Scholar] [CrossRef]
- Koehn, R.K.; Bayne, B.L. Towards a physiological and genetical understanding of the energetics of the stress response. Biol. J. Linn. Soc. 1989, 37, 157–171. [Google Scholar] [CrossRef]
- Jones, S.J.; Mieszkowska, N.; Wethey, D.S. Linking thermal tolerances and biogeography: Mytilus edulis (L.) at its southern limit on the east coast of the United States. Biol. Bull. 2009, 217, 73–85. [Google Scholar] [CrossRef]
- Navarrete, S.; Castilla, J. Predation by Norway rats in the intertidal zone of central Chile. Mar. Ecol. Prog. Ser. 1993, 92, 187–199. [Google Scholar] [CrossRef]
- Bellan-Santini, D. Contribution à l’étude des peuplement infralittoraux sur substrat rocheux (Etude qualitative et quantitative de la frange Supérieure). Rech. Trav. Stn. Mar. Endoume 1969, 63, 9–294. [Google Scholar]
- Tsuchiya, M. Faunal structures associated with patches of mussels on East Asian coasts. Helgol. Mar. Res. 2002, 56, 31–36. [Google Scholar] [CrossRef]
- Dittmann, S. Mussel beds: A unique habitat for intertidal fauna. Helgoländer Meeresunters 1990, 44, 229–243. [Google Scholar] [CrossRef]
- Karayücel, H.; Doğan, H.; Aydın, M. The potential for mussel aquaculture in the Black Sea: A preliminary assessment. Turk. J. Fish. Aquat. Sci. 2002, 12, 95–103. [Google Scholar]
- Çelik, M.Y. Türkiye’de midye yetiştiriciliği: Potansiyel ve uygulamalar. Ege J. Fish. Aquat. Sci. 2006, 23, 387–394. [Google Scholar]
- Çınar, M.E.; Katağan, T.; Öztürk, B.; Egemen, Ö.; Ergen, Z.; Kocataş, A.; Önen, M. Karadeniz bentik makroomurgasızları. Turk. J. Mar. Sci. 2020, 26, 165–182. [Google Scholar]
- Öztürk, B.; Doğan, A.; Katağan, T.; Salman, A. Marine Molluscs of the Türkiye Coasts: A Checklist; Türkiye Marine Research Foundation (TUDAV): Istanbul, Türkiye, 2014. [Google Scholar]
- Robichaud, L.; Archambault, P.; Desrosiers, G.; McKindsey, C.W. Influence of suspended mussel aquaculture and an associated invasive ascidian on benthic macroinvertebrate communities. Water 2022, 14, 2751. [Google Scholar] [CrossRef]
- Fauchald, K. The Polychaete Worms: Definitions and Keys to the Orders, Families and Genera; Smithsonian Institution Press: Washington, DC, USA, 1977. [Google Scholar]
- Çınar, M.E.; Ergen, Z.; Dağlı, E. Checklist and zoogeographic affinities of polychaetes from the coasts of Türkiye. Zootaxa 2006, 1168, 1–22. [Google Scholar]
- Poppe, G.T.; Goto, Y. European Seashells; Verlag Christa Hemmen: Wiesbaden, Germany, 1991. [Google Scholar]
- Holthuis, L.B. FAO taxon catalogue Vol. 1: Shrimps and prawns of the world. In FAO Fisheries Synopsis; FAO: Rome, Italy, 1980; No. 125; Volume 1. [Google Scholar]
- Ruffo, S. The Amphipoda of the Mediterranean; Mémoires de l’Institut Océanographique: Av. Saint-Martin, Monaco, 1982; pp. 1982–1989. [Google Scholar]
- WoRMS. World Register of Marine Taxon. 2024. Available online: https://www.marinetaxon.org/ (accessed on 9 August 2025).
- OBIS. Ocean Diversity Information System. 2024. Available online: https://obis.org/ (accessed on 9 August 2025).
- Shannon, C.E.; Weaver, W. The Mathematical Theory of Communication; University of Illinois Press: Urbana, IL, USA, 1948. [Google Scholar]
- Pielou, E.C. Ecological Diversity; Wiley-Interscience: New York, NY, USA, 1975. [Google Scholar]
- Zenkevitch, L. Biology of the Seas of the U.S.S.R.; George Allen and Unwin: London, UK, 1963. [Google Scholar]
- Bakan, G.; Büyükgüngör, H. The Black Sea. Mar. Pollut. Bull. 2000, 41, 24–43. [Google Scholar] [CrossRef]
- Çulha, M. Türomical and Ecological Characteristics of Prosobranchia (Mollusca-Gastropoda) Taxon Distributed Around Sinop. Ph.D. Thesis, Ege University, İzmir, Türkiye, 2004; p. 150. [Google Scholar]
- Çulha, M.; Bat, L.; Çulha, S.T.; Çelik, M.Y. Benthic mollusk composition of some facies in the upper-infralittoral zone of the southern Black Sea, Türkiye. Turk. J. Zool. 2010, 34, 523–532. [Google Scholar]
- Anistratenko, V.V.; Anistratenko, O.Y. Fauna of Ukraine. Vestn. Zool. 2001, 29, 1–240. [Google Scholar]
- Archambault, P.; Grant, J.; Brosseau, C. Secondary productivity of fish and macroinvertebrates in mussel aquaculture sites. In Proceedings of the International Council for the Exploration of the Sea, Halifax, NS, Canada, 15–19 September 2008. [Google Scholar] [CrossRef]
- Mutlu, E.; Ünsal, M.; Bingel, F. Faunal community of softbottom molluscs along the Turkish Black Sea. Turk. J. Zool. 1993, 17, 189–206. [Google Scholar]
- Bat, L.; Kurt, G.; Mülayim, A.; Çağlar, S.; Öztekin, A. Long-term changes and causes of biota assemblages in the southern Black Sea coasts. Mar. Biol. Res. 2024, 20, 251–265. [Google Scholar] [CrossRef]
- Bat, L.; Sezgin, M.; Satilmis, H.H.; Sahin, F.; Üstün, F.; Birinci-özdemir, Z.; Baki, O.G. Biological diversity of the Turkish Black Sea coast. Turk. J. Fish. Aquat. Sci. 2011, 11, 683–692. [Google Scholar]
- Sezgin, M.; Çil Aydemir, E. Crustacean fauna of a mussel cultivated raft system in the Black Sea. Arthropods 2013, 2, 89–97. [Google Scholar]
- Johnson, R.D.; Tietge, J.E.; Jensen, K.M.; Fernandez, J.D.; Linnum, A.L.; Lothenbach, D.B.; Holcombe, G.W.; Cook, P.M.; Christ, S.A.; Lattier, D.L.; et al. ëToxicity of 2,3,7,8-tetrachlorodibenzo-p-dioxin to early life stage brook trout (Salvelinus fontinalis) following dietary exposureí. Environ. Toxicol. Chem. 1998, 17, 2408–2421. [Google Scholar]
- Franz, D.R.; Mohamed, Y. Short-distance dispersal in a fouling community amphipod crustacean, Jassa marmorata Holmes. J. Exp. Mar. Biol. Ecol. 1989, 133, 1–13. [Google Scholar] [CrossRef]
- Caine, E.A. Potential effect of floating dock communities on a South Carolina estuary. J. Exp. Mar. Biol. Ecol. 1989, 108, 83–91. [Google Scholar] [CrossRef]
- Kamenskaya, O.E. Ecological characteristics of amphipods in the Black Sea. Hydrobiol. J. 1979, 15, 38–44. [Google Scholar]
- Osman, R.W. The establishment and development of a marine epifaunal community. Ecol. Monogr. 1977, 47, 37–63. [Google Scholar] [CrossRef]
- Stoner, A.W. The role of feeding biology and competitor interactions in the dynamics of bivalve populations. J. Exp. Mar. Biol. Ecol. 1980, 45, 65–92. [Google Scholar]
- Callier, M.D.; McKindsey, C.W.; Desrosiers, G. Influence of suspended mussel lines on the biogeochemical fluxes in the benthic boundary layer. Mar. Environ. Res. 2013, 83, 10–18. [Google Scholar]
- Beadman, H.A.; Kaiser, M.J.; Galanidi, M.; Shucksmith, R.; Willows, R.I. Changes in species richness with stocking density of marine bivalves. J. Appl. Ecol. 2004, 41, 464–475. [Google Scholar] [CrossRef]
- D’Amours, O.; Archambault, P.; McKindsey, C.W.; Johnson, L.E. Local enhancement of epibenthic macrofauna by aquaculture activities. Mar. Ecol. Prog. Ser. 2008, 371, 73–84. [Google Scholar] [CrossRef]
- Mann, R.; Harding, J.M. Salinity tolerance of larval Rapana venosa: Implications for dispersal and establishment of an invading predatory gastropod on the North American Atlantic coast. Biol. Bull. 2003, 204, 96–103. [Google Scholar] [CrossRef] [PubMed]
- Keeley, N.B.; Forrest, B.M.; Crawford, C. Exploiting salmon farm benthic enrichment gradients to evaluate the regional performance of biotic indices and environmental indicators. Ecol. Indic. 2002, 23, 453–466. [Google Scholar] [CrossRef]
- Govorin, I.A. The predatory marine gastropod Rapana venosa (Valenciennes, 1846) in Northwestern Black Sea: Morphometric variations, imposex appearance and biphallia phenomenon. In Molluscs; IntechOpen: London, UK, 2018. [Google Scholar]
- Callier, M.D.; McKindsey, C.W.; Desrosiers, G. Evaluation of indicators used to detect mussel farm influence on the benthos: Two case studies in the Magdalen Islands, Eastern Canada. Aquaculture 2008, 278, 77–88. [Google Scholar] [CrossRef]
- Forrest, B.M.; Keeley, N.B.; Hopkins, G.A.; Webb, S.C.; Clement, D.M. Bivalve aquaculture in estuaries: Review and synthesis of oyster cultivation effects. Aquaculture 2009, 298, 1–15. [Google Scholar] [CrossRef]
- Karayücel, S.; Karayücel, İ.; Erdem, M.; Saygın, S. Growth and production of raft-cultured mussels (Mytilus galloprovincialis) in Sinop, Black Sea. Turk. J. Fish. Aquat. Sci. 2002, 2, 19–24. [Google Scholar]
- Grintsov, V.A. Taxaomic diversity of Amphipoda (Crustacea) from the Black Sea and the Sea of Azov. Mar. Biol. J. 2022, 7, 34–45. [Google Scholar] [CrossRef]
- McKindsey, C.W.; Thetmeyer, H.; Landry, T.; Silvert, W. Review of recent carrying capacity models for bivalve culture and recommendations for research and management. Aquaculture 2006, 261, 451–462. [Google Scholar] [CrossRef]
- Kaiser, M.J.; Laing, I.; Utting, S.D.; Burnell, G.M. Environmental impacts of bivalve mariculture. J. Shellfish Res. 1998, 17, 59–66. [Google Scholar]
- Norling, P.; Kautsky, N. Patches of the mussel Mytilus sp. are islands of high diversity in subtidal sediment habitats in the Baltic Sea. Aquat. Biol. 2008, 4, 75–87. [Google Scholar] [CrossRef]
- Kolyuchkina, G.A.; Syomin, V.L.; Grigorenko, K.S.; Basin, A.B.; Lyubimov, I.V. The role of abiotic environmental factors in the vertical distribution of macrozoobenthos at the northeastern Black Sea coast. Biol. Bull. 2020, 47, 1126–1141. [Google Scholar] [CrossRef]
- Crawford, C.M.; Macleod, C.K.; Mitchell, I.M. Effects of shellfish farming on the benthic environment. Aquaculture 2003, 224, 117–140. [Google Scholar] [CrossRef]
- McKindsey, C.W.; Archambault, P.; Callier, M.D.; Olivier, F. Influence of suspended and off-bottom mussel culture on the sea bottom and benthic habitats: A review. Can. J. Zool. 2011, 89, 622–646. [Google Scholar] [CrossRef]
- Bustos-Baez, S.; Frid, C.L.J. Indicator taxon to assess the state of macrobenthic communities. Hydrobiologia 2003, 496, 299–309. [Google Scholar] [CrossRef]
Taxon | Mean Relative Abundance (%) | Ecological Role |
---|---|---|
Jassa marmorata | 71% | Opportunist, habitat forming |
Stenothoe monoculoides | 28% | Detritivore, inhabits sticky substrates |
Nereis zonata | 0.37% | Omnivore, sediment bioturbator |
Nematoda (general) | 0.12% | Microscopic, sensitive to organic matter |
Hyale crassipes | 0.10% | Detritivore, shows seasonal abundance trend |
September-2023 | October | November | December | January | February | March | April | May | June | July | August-2024 | SUM | % D | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
S1 | S2 | S3 | S4 | S5 | S6 | S7 | S8 | S9 | S10 | S11 | S12 | |||
CRUSTACEA | ||||||||||||||
Decapoda | ||||||||||||||
Pachygrapsus marmoratus (Fabricius, 1787) | 6 | 0 | 2 | 0 | 0 | 0 | 4 | 0 | 0 | 0 | 0 | 0 | 12 | 0.0120 |
Palaemon longirostris H. Milne Edwards, 1837 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 4 | 0 | 0 | 4 | 0.0040 |
Pilumnus hirtellus (Linnaeus, 1761) | 0 | 0 | 9 | 0 | 0 | 4 | 2 | 0 | 0 | 7 | 0 | 0 | 22 | 0.0221 |
Pisidia longicornis (Linnaeus, 1767) | 0 | 0 | 4 | 0 | 4 | 5 | 1 | 0 | 0 | 1 | 0 | 1 | 16 | 0.0160 |
Amphipoda | ||||||||||||||
Stenothoe monoculoides (Montagu, 1813) | 1.900 | 5.000 | 5.290 | 1.040 | 500 | 2.000 | 2.000 | 2.000 | 4.520 | 1.000 | 1.006 | 1.470 | 27.726 | 278.041 |
Echinogammarus olivi (H. Milne Edwards, 1830) | 0 | 0 | 0 | 0 | 0 | 4 | 0 | 0 | 4 | 0 | 0 | 5 | 13 | 0.0130 |
Hyale crassipes (Heller, 1866) | 0 | 0 | 0 | 0 | 10 | 30 | 2 | 0 | 30 | 0 | 10 | 20 | 102 | 0.1023 |
Jassa marmorata Holmes, 1905 | 5.800 | 13.250 | 8.160 | 5.530 | 2.100 | 4.000 | 6.000 | 10.000 | 6.600 | 2.500 | 2.024 | 5.200 | 71.164 | 713.645 |
CIRRIPEDIA | ||||||||||||||
Balanus improvises Darwin, 1854 | 7 | 0 | 16 | 2 | 1 | 0 | 0 | 1 | 0 | 0 | 2 | 0 | 29 | 0.0291 |
MOLLUSCA | ||||||||||||||
Striarca lacteal (Linnaeus, 1758) | 0 | 0 | 2 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 4 | 0.0040 |
Rapana venosa (Valenciennes, 1846) | 0 | 0 | 2 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 3 | 0.0030 |
ANNELIDAE | ||||||||||||||
Polychaetes | ||||||||||||||
Nereis zonata Malmgren, 1867 | 6 | 2 | 57 | 16 | 47 | 0 | 20 | 13 | 53 | 41 | 12 | 100 | 367 | 0.3680 |
Perinereis cultrifera (Grube, 1840) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3 | 3 | 0.0030 |
Platynereis dumerilii (Audouin & Milne Edwards, 1834/1833) | 0 | 5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 5 | 0.0050 |
Sigambra tentaculate (Treadwell, 1941) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 15 | 17 | 0.0170 |
Polyophthalmus pictus (Dujardin, 1839) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 6 | 0 | 0 | 1 | 7 | 0.0070 |
Nemertea | ||||||||||||||
Lineus sp. | 0 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3 | 0.0030 |
Platyhelminthes | ||||||||||||||
Cryptocelis sinopae Bulnes & Kurt, 2021 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 11 | 5 | 3 | 0 | 19 | 0.0191 |
CHINIDARIA | ||||||||||||||
Anemone | ||||||||||||||
Diadumene leucolena (Verrill, 1866) | 0 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 13 | 45 | 14 | 3 | 78 | 0.0782 |
NEMATODA | ||||||||||||||
Nematod sp. | 0 | 15 | 0 | 0 | 0 | 0 | 0 | 0 | 68 | 0 | 0 | 42 | 125 | 0.1254 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Çil, E.A. Seasonal Dynamics of Macroinvertebrate Communities in Offshore Mussel Aquaculture in the Southern Black Sea: Implications for Diversity. Life 2025, 15, 1471. https://doi.org/10.3390/life15091471
Çil EA. Seasonal Dynamics of Macroinvertebrate Communities in Offshore Mussel Aquaculture in the Southern Black Sea: Implications for Diversity. Life. 2025; 15(9):1471. https://doi.org/10.3390/life15091471
Chicago/Turabian StyleÇil, Eylem Aydemir. 2025. "Seasonal Dynamics of Macroinvertebrate Communities in Offshore Mussel Aquaculture in the Southern Black Sea: Implications for Diversity" Life 15, no. 9: 1471. https://doi.org/10.3390/life15091471
APA StyleÇil, E. A. (2025). Seasonal Dynamics of Macroinvertebrate Communities in Offshore Mussel Aquaculture in the Southern Black Sea: Implications for Diversity. Life, 15(9), 1471. https://doi.org/10.3390/life15091471