Role of OCT1 and MAP3K5 Genetic Polymorphisms in Hydroxyurea Pharmacokinetics
Abstract
1. Introduction
2. Materials and Methods
- -
- Negative control: To ensure that the fluorescent signal is not the result of contamination or background noise, a negative control sample is one that does not contain the target DNA.
- -
- Positive controls: A sample with a known genotype that is used to confirm the assay functionality and guarantee reliable results.
- -
- Duplicate samples: To evaluate the overall experimental process variability, encompassing both sampling and analysis.
3. Results
3.1. Study Population
3.2. Hardy–Weinberg and Linkage
3.3. Effect of Pharmacogenetic on HU Pharmacokinetics
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Charache, S.; Terrin, M.L.; Moore, R.D.; Dover, G.J.; Barton, F.B.; Eckert, S.V.; McMahon, R.P.; Bonds, D.R. Effect of hydroxyurea on the frequency of painful crises in sickle cell anemia. Investigators of the Multicenter Study of Hydroxyurea in Sickle Cell Anemia. N. Engl. J. Med. 1995, 332, 1317–1322. [Google Scholar] [CrossRef]
- Pavan, A.R.; Lopes, J.R.; Dos Santos, J.L. The state of the art of fetal hemoglobin-inducing agents. Expert. Opin. Drug Discov. 2022, 17, 1279–1293. [Google Scholar] [CrossRef]
- King, S.B. The nitric oxide producing reactions of hydroxyurea. Curr. Med. Chem. 2003, 10, 437–452. [Google Scholar] [CrossRef]
- Ma, Q.; Wyszynski, D.F.; Farrell, J.J.; Kutlar, A.; Farrer, L.A.; Baldwin, C.T.; Steinberg, M.H. Fetal hemoglobin in sickle cell anemia: Genetic determinants of response to hydroxyurea. Pharmacogenomics J. 2007, 7, 386–394. [Google Scholar] [CrossRef]
- Musallam, K.M.; Bou-Fakhredin, R.; Cappellini, M.D.; Taher, A.T. 2021 update on clinical trials in β-thalassemia. Am. J. Hematol. 2021, 96, 1518–1531. [Google Scholar] [CrossRef]
- Karamperis, K.; Tsoumpeli, M.T.; Kounelis, F.; Koromina, M.; Mitropoulou, C.; Moutinho, C.; Patrinos, G.P. Genome-based therapeutic interventions for β-type hemoglobinopathies. Hum. Genom. 2021, 15, 32. [Google Scholar] [CrossRef]
- Ali, M.A.; Ahmad, A.; Chaudry, H.; Aiman, W.; Aamir, S.; Anwar, M.Y.; Khan, A. Efficacy and safety of recently approved drugs for sickle cell disease: A review of clinical trials. Exp. Hematol. 2020, 92, 11–18.e1. [Google Scholar] [CrossRef]
- Husain, M.; Hartman, A.D.; Desai, P. Pharmacogenomics of sickle cell disease: Steps toward personalized medicine. Pharmgenomics Pers. Med. 2017, 10, 261–265. [Google Scholar] [CrossRef]
- Gravia, A.; Chondrou, V.; Sgourou, A.; Papantoni, I.; Borg, J.; Katsila, T.; Papachatzopoulou, A.; Patrinos, G.P. Individualizing fetal hemoglobin augmenting therapy for β-type hemoglobinopathies patients. Pharmacogenomics 2014, 15, 1355–1364. [Google Scholar] [CrossRef]
- Pace, B.S.; Zein, S. Understanding mechanisms of gamma-globin gene regulation to develop strategies for pharmacological fetal hemoglobin induction. Dev. Dyn. 2006, 235, 1727–1737. [Google Scholar] [CrossRef]
- Kolliopoulou, A.; Siamoglou, S.; John, A.; Sgourou, A.; Kourakli, A.; Symeonidis, A.; Vlachaki, E.; Chalkia, P.; Theodoridou, S.; Ali, B.R.; et al. Role of Genomic Biomarkers in Increasing Fetal Hemoglobin Levels Upon Hydroxyurea Therapy and in β-Thalassemia Intermedia: A Validation Cohort Study. Hemoglobin 2019, 43, 27–33. [Google Scholar] [CrossRef]
- Kolliopoulou, A.; Stratopoulos, A.; Siamoglou, S.; Sgourou, A.; Ali, B.R.; Papachatzopoulou, A.; Katsila, T.; Patrinos, G.P. Key Pharmacogenomic Considerations for Sickle Cell Disease Patients. OMICS 2017, 21, 314–322. [Google Scholar] [CrossRef]
- Andrae, U. Evidence for the involvement of cytochrome P-450-dependent monooxygenase(s) in the formation of genotoxic metabolites from N-hydroxyurea. Biochem. Biophys. Res. Commun. 1984, 118, 409–415. [Google Scholar] [CrossRef] [PubMed]
- Ichijo, H.; Nishida, E.; Irie, K.; ten Dijke, P.; Saitoh, M.; Moriguchi, T.; Takagi, M.; Matsumoto, K.; Miyazono, K.; Gotoh, Y. Induction of apoptosis by ASK1, a mammalian MAPKKK that activates SAPK/JNK and p38 signaling pathways. Science 1997, 275, 90–94. [Google Scholar] [CrossRef]
- Kyriakis, J.M.; Avruch, J. Mammalian MAPK signal transduction pathways activated by stress and inflammation: A 10-year update. Physiol. Rev. 2012, 92, 689–737. [Google Scholar] [CrossRef]
- Miller, M.R.; Koch, S.R.; Choi, H.; Lamb, F.S.; Stark, R.J. Apoptosis signal-regulating kinase 1 (ASK1) inhibition reduces endothelial cytokine production without improving permeability after toll-like receptor 4 (TLR4) challenge. Transl. Res. 2021, 235, 115–128. [Google Scholar] [CrossRef]
- Obsilova, V.; Honzejkova, K.; Obsil, T. Structural Insights Support Targeting ASK1 Kinase for Therapeutic Interventions. Int. J. Mol. Sci. 2021, 22, 13395. [Google Scholar] [CrossRef]
- Tafrali, C.; Paizi, A.; Borg, J.; Radmilovic, M.; Bartsakoulia, M.; Giannopoulou, E.; Giannakopoulou, O.; Stojiljkovic-Petrovic, M.; Zukic, B.; Poulas, K.; et al. Genomic variation in the MAP3K5 gene is associated with β-thalassemia disease severity and hydroxyurea treatment efficacy. Pharmacogenomics 2013, 14, 469–483. [Google Scholar] [CrossRef]
- Oostendorp, R.L.; Beijnen, J.H.; Schellens, J.H. The biological and clinical role of drug transporters at the intestinal barrier. Cancer Treat. Rev. 2009, 35, 137–147. [Google Scholar] [CrossRef]
- Kitamura, S.; Maeda, K.; Sugiyama, Y. Recent progresses in the experimental methods and evaluation strategies of transporter functions for the prediction of the pharmacokinetics in humans. Naunyn Schmiedebergs Arch. Pharmacol. 2008, 377, 617–628. [Google Scholar] [CrossRef]
- Grover, A.; Benet, L.Z. Effects of drug transporters on volume of distribution. AAPS J. 2009, 11, 250–261. [Google Scholar] [CrossRef] [PubMed]
- Kerb, R. Implications of genetic polymorphisms in drug transporters for pharmacotherapy. Cancer Lett. 2006, 234, 4–33. [Google Scholar] [CrossRef]
- Brahm, J. Urea permeability of human red cells. J. Gen. Physiol. 1983, 82, 1–23. [Google Scholar] [CrossRef]
- Tan, G.; Meier-Abt, F. Differential expression of hydroxyurea transporters in normal and polycythemia vera hematopoietic stem and progenitor cell subpopulations. Exp. Hematol. 2021, 97, 47–56.e5. [Google Scholar] [CrossRef]
- Walker, A.L.; Franke, R.M.; Sparreboom, A.; Ware, R.E. Transcellular movement of hydroxyurea is mediated by specific solute carrier transporters. Exp. Hematol. 2011, 39, 446–456. [Google Scholar] [CrossRef]
- Pelis, R.M.; Wright, S.H. SLC22, SLC44, and SLC47 transporters--organic anion and cation transporters: Molecular and cellular properties. Curr. Top. Membr. 2014, 73, 233–261. [Google Scholar]
- Cargnin, S.; Ravegnini, G.; Soverini, S.; Angelini, S.; Terrazzino, S. Impact of SLC22A1 and CYP3A5 genotypes on imatinib response in chronic myeloid leukemia: A systematic review and meta-analysis. Pharmacol. Res. 2018, 131, 244–254. [Google Scholar] [CrossRef]
- Thuy, V.T.; Viet, N.L.; Nghia, N.T.; Cangelosi, G.; Petrelli, F.; Nguyen, C.T.T. The impact of the solute carrier gene superfamily polymorphisms on tyrosine kinase inhibitors responses among chronic myeloid leukemia: A meta-analysis. Leuk. Res. 2025, 151, 107673. [Google Scholar] [CrossRef]
- Di Grazia, D.; Mirabella, C.; Chiara, F.; Caudana, M.; Shelton Agar, F.M.A.; Zanatta, M.; Allegra, S.; Bertello, J.; Voi, V.; Ferrero, G.B.; et al. Hydroxyurea Pharmacokinetic Evaluation in Patients with Sickle Cell Disease. Pharmaceuticals 2024, 17, 1386. [Google Scholar] [CrossRef]
- Ingram, V.M. Abnormal human haemoglobins. I. The comparison of normal human and sickle-cell haemoglobins by “fingerprinting”. Biochim. Biophys. Acta 1958, 28, 539–545. [Google Scholar] [CrossRef]
- Sundd, P.; Gladwin, M.T.; Novelli, E.M. Pathophysiology of Sickle Cell Disease. Annu. Rev. Pathol. 2019, 14, 263–292. [Google Scholar] [CrossRef]
- Collaborators, G.S.C.D. Global, regional, and national prevalence and mortality burden of sickle cell disease, 2000–2021: A systematic analysis from the Global Burden of Disease Study 2021. Lancet Haematol. 2023, 10, e585–e599. [Google Scholar] [CrossRef] [PubMed]
- McGann, P.T.; Niss, O.; Dong, M.; Marahatta, A.; Howard, T.A.; Mizuno, T.; Lane, A.; Kalfa, T.A.; Malik, P.; Quinn, C.T.; et al. Robust clinical and laboratory response to hydroxyurea using pharmacokinetically guided dosing for young children with sickle cell anemia. Am. J. Hematol. 2019, 94, 871–879. [Google Scholar] [CrossRef]
- Ginete, C.; Delgadinho, M.; Santos, B.; Pinto, V.; Silva, C.; Miranda, A.; Brito, M. Are Genetic Modifiers the Answer to Different Responses to Hydroxyurea Treatment?-A Pharmacogenetic Study in Sickle Cell Anemia Angolan Children. Int. J. Mol. Sci. 2023, 24, 8792. [Google Scholar] [CrossRef]
- Green, N.S.; Barral, S. Emerging science of hydroxyurea therapy for pediatric sickle cell disease. Pediatr. Res. 2014, 75, 196–204. [Google Scholar] [CrossRef]
- Sheehan, V.A.; Crosby, J.R.; Sabo, A.; Mortier, N.A.; Howard, T.A.; Muzny, D.M.; Dugan-Perez, S.; Aygun, B.; Nottage, K.A.; Boerwinkle, E.; et al. Whole exome sequencing identifies novel genes for fetal hemoglobin response to hydroxyurea in children with sickle cell anemia. PLoS ONE 2014, 9, e110740. [Google Scholar] [CrossRef]
- Nkya, S.; Nzunda, C.; Saukiwa, E.; Kaywanga, F.; Buchard, E.; Solomon, D.; Christopher, H.; Ngowi, D.; Johansen, J.; Urio, F.; et al. Exploring pharmacogenetic factors influencing hydroxyurea response in tanzanian sickle cell disease patients: A genomic medicine approach. Pharmacogenomics J. 2025, 25, 11. [Google Scholar] [CrossRef]
- Drazen, J.M.; Yandava, C.N.; Dubé, L.; Szczerback, N.; Hippensteel, R.; Pillari, A.; Israel, E.; Schork, N.; Silverman, E.S.; Katz, D.A.; et al. Pharmacogenetic association between ALOX5 promoter genotype and the response to anti-asthma treatment. Nat. Genet. 1999, 22, 168–170. [Google Scholar] [CrossRef]
- Patrinos, G.P.; Chui, D.H.K.; Hardison, R.C.; Steinberg, M.H. Strategies to improve pharmacogenomic-guided treatment options for patients with β-hemoglobinopathies. Expert. Rev. Hematol. 2021, 14, 883–885. [Google Scholar] [CrossRef]
- Chondrou, V.; Kolovos, P.; Sgourou, A.; Kourakli, A.; Pavlidaki, A.; Kastrinou, V.; John, A.; Symeonidis, A.; Ali, B.R.; Papachatzopoulou, A.; et al. Whole transcriptome analysis of human erythropoietic cells during ontogenesis suggests a role of VEGFA gene as modulator of fetal hemoglobin and pharmacogenomic biomarker of treatment response to hydroxyurea in β-type hemoglobinopathy patients. Hum. Genom. 2017, 11, 24. [Google Scholar] [CrossRef]
- Elalfy, M.S.; El Sherif, N.H.; Kamal, T.M.; Aly, N.H. Klf10 Gene, a Secondary Modifier and a Pharmacogenomic Biomarker of Hydroxyurea Treatment Among Patients with Hemoglobinopathies. J. Pediatr. Hematol. Oncol. 2017, 39, e155–e162. [Google Scholar] [CrossRef] [PubMed]
- Phan, V.; Park, J.A.; Dulman, R.; Lewis, A.; Briere, N.; Notarangelo, B.; Yang, E. High hydroxyurea usage in sickle cell anemia regardless of patient demographics. Pediatr. Blood Cancer 2024, 71, e30728. [Google Scholar] [CrossRef] [PubMed]
- Reeves, S.L.; Peng, H.K.; Wing, J.J.; Cogan, L.W.; Goel, A.; Anders, D.; Green, N.S.; Lisabeth, L.D.; Dombkowski, K.J. Changes in Hydroxyurea Use Among Youths Enrolled in Medicaid with Sickle Cell Anemia After 2014 Revision of Clinical Guidelines. JAMA Netw. Open 2023, 6, e234584. [Google Scholar] [CrossRef] [PubMed]
- Treadwell, M.J.; Du, L.; Bhasin, N.; Marsh, A.M.; Wun, T.; Bender, M.A.; Wong, T.E.; Crook, N.; Chung, J.H.; Norman, S.; et al. Barriers to hydroxyurea use from the perspectives of providers, individuals with sickle cell disease, and families: Report from a U.S. regional collaborative. Front. Genet. 2022, 13, 921432. [Google Scholar] [CrossRef]
- Silva, D.G.; Belini Junior, E.; Carrocini, G.C.; Torres, L.e.S.; Ricci Júnior, O.; Lobo, C.L.; Bonini-Domingos, C.R.; de Almeida, E.A. Genetic and biochemical markers of hydroxyurea therapeutic response in sickle cell anemia. BMC Med. Genet. 2013, 14, 108. [Google Scholar] [CrossRef]
- Power-Hays, A.; McElhinney, K.E.; Latham, T.S.; Williams, T.N.; Mochamah, G.; Olupot-Olupot, P.; Paasi, G.; Ellsworth Reid, M.; Rankine-Mullings, A.; Opoka, R.; et al. Hydroxyurea Pharmacokinetics in Children with Sickle Cell Anemia: Comparison of Global Cohorts. Blood 2024, 144, 542. [Google Scholar] [CrossRef]
- Paule, I.; Sassi, H.; Habibi, A.; Pham, K.P.; Bachir, D.; Galactéros, F.; Girard, P.; Hulin, A.; Tod, M. Population pharmacokinetics and pharmacodynamics of hydroxyurea in sickle cell anemia patients, a basis for optimizing the dosing regimen. Orphanet J. Rare Dis. 2011, 6, 30. [Google Scholar] [CrossRef]
- Estepp, J.H.; Wiczling, P.; Moen, J.; Kang, G.; Mack, J.M.; Liem, R.; Panepinto, J.A.; Garg, U.; Kearns, G.; Neville, K.A. Hydroxycarbamide in children with sickle cell anaemia after first-dose vs. chronic therapy: Pharmacokinetics and predictive models for drug exposure. Br. J. Clin. Pharmacol. 2018, 84, 1478–1485. [Google Scholar] [CrossRef]
- Wiczling, P.; Liem, R.I.; Panepinto, J.A.; Garg, U.; Abdel-Rahman, S.M.; Kearns, G.L.; Neville, K.A. Population pharmacokinetics of hydroxyurea for children and adolescents with sickle cell disease. J. Clin. Pharmacol. 2014, 54, 1016–1022. [Google Scholar] [CrossRef]
- Karkoska, K.; Todd, K.; Niss, O.; Clapp, K.; Fenchel, L.; Kalfa, T.A.; Malik, P.; Quinn, C.T.; Ware, R.E.; McGann, P.T. Implementation of near-universal hydroxyurea uptake among children with sickle cell anemia: A single-center experience. Pediatr. Blood Cancer 2021, 68, e29008. [Google Scholar] [CrossRef]
- Dong, M.; McGann, P.T.; Mizuno, T.; Ware, R.E.; Vinks, A.A. Development of a pharmacokinetic-guided dose individualization strategy for hydroxyurea treatment in children with sickle cell anaemia. Br. J. Clin. Pharmacol. 2016, 81, 742–752. [Google Scholar] [CrossRef]
- Rankine-Mullings, A.; Keenan, R.; Chakravorty, S.; Inusa, B.; Telfer, P.; Velangi, M.; Ware, R.E.; Moss, J.J.; Lloyd, A.L.; Edwards, S.; et al. Efficacy, safety, and pharmacokinetics of a new, ready-to-use, liquid hydroxyurea in children with sickle cell anemia. Blood Adv. 2023, 7, 4319–4322. [Google Scholar] [CrossRef] [PubMed]
- Franconi, F.; Brunelleschi, S.; Steardo, L.; Cuomo, V. Gender differences in drug responses. Pharmacol. Res. 2007, 55, 81–95. [Google Scholar] [CrossRef] [PubMed]
- Franconi, F.; Carru, C.; Malorni, W.; Vella, S.; Mercuro, G. The effect of sex/gender on cardiovascular pharmacology. Curr. Pharm. Des. 2011, 17, 1095–1107. [Google Scholar] [CrossRef]
- Franconi, F.; Carru, C.; Spoletini, I.; Malorni, W.; Vella, S.; Mercuro, G.; Deidda, M.; Rosano, G. A GENS-based approach to cardiovascular pharmacology: Impact on metabolism, pharmacokinetics and pharmacodynamics. Ther. Deliv. 2011, 2, 1437–1453. [Google Scholar] [CrossRef]
- Anderson, G.D. Pregnancy-induced changes in pharmacokinetics: A mechanistic-based approach. Clin. Pharmacokinet. 2005, 44, 989–1008. [Google Scholar] [CrossRef]
- Gandhi, M.; Aweeka, F.; Greenblatt, R.M.; Blaschke, T.F. Sex differences in pharmacokinetics and pharmacodynamics. Annu. Rev. Pharmacol. Toxicol. 2004, 44, 499–523. [Google Scholar] [CrossRef]
- Mangoni, A.A.; Jackson, S.H. Age-related changes in pharmacokinetics and pharmacodynamics: Basic principles and practical applications. Br. J. Clin. Pharmacol. 2004, 57, 6–14. [Google Scholar] [CrossRef]
- Shayakul, C.; Hediger, M.A. The SLC14 gene family of urea transporters. Pflugers Arch. 2004, 447, 603–609. [Google Scholar] [CrossRef]
- Zhao, D.; Sonawane, N.D.; Levin, M.H.; Yang, B. Comparative transport efficiencies of urea analogues through urea transporter UT-B. Biochim. Biophys. Acta 2007, 1768, 1815–1821. [Google Scholar] [CrossRef]
- Stewart, G.S.; O’Brien, J.H.; Smith, C.P. Ubiquitination regulates the plasma membrane expression of renal UT-A urea transporters. Am. J. Physiol. Cell Physiol. 2008, 295, C121–C129. [Google Scholar] [CrossRef]
- Koehler, M.R.; Wissinger, B.; Gorboulev, V.; Koepsell, H.; Schmid, M. The two human organic cation transporter genes SLC22A1 and SLC22A2 are located on chromosome 6q26. Cytogenet. Cell Genet. 1997, 79, 198–200. [Google Scholar] [CrossRef] [PubMed]
- Koepsell, H.; Lips, K.; Volk, C. Polyspecific organic cation transporters: Structure, function, physiological roles, and biopharmaceutical implications. Pharm. Res. 2007, 24, 1227–1251. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Dresser, M.J.; Gray, A.T.; Yost, S.C.; Terashita, S.; Giacomini, K.M. Cloning and functional expression of a human liver organic cation transporter. Mol. Pharmacol. 1997, 51, 913–921. [Google Scholar] [CrossRef] [PubMed]
- Shu, Y.; Leabman, M.K.; Feng, B.; Mangravite, L.M.; Huang, C.C.; Stryke, D.; Kawamoto, M.; Johns, S.J.; DeYoung, J.; Carlson, E.; et al. Evolutionary conservation predicts function of variants of the human organic cation transporter, OCT1. Proc. Natl. Acad. Sci. USA 2003, 100, 5902–5907. [Google Scholar] [CrossRef]
- Sakata, T.; Anzai, N.; Shin, H.J.; Noshiro, R.; Hirata, T.; Yokoyama, H.; Kanai, Y.; Endou, H. Novel single nucleotide polymorphisms of organic cation transporter 1 (SLC22A1) affecting transport functions. Biochem. Biophys. Res. Commun. 2004, 313, 789–793. [Google Scholar] [CrossRef]
- Ikediobi, O.; Aouizerat, B.; Xiao, Y.; Gandhi, M.; Gebhardt, S.; Warnich, L. Analysis of pharmacogenetic traits in two distinct South African populations. Hum. Genom. 2011, 5, 265–282. [Google Scholar] [CrossRef]
- Hardy, B.J.; Séguin, B.; Ramesar, R.; Singer, P.A.; Daar, A.S. South Africa: From species cradle to genomic applications. Nat. Rev. Genet. 2008, 9 (Suppl. 1), S19–S23. [Google Scholar] [CrossRef]
- Jacobs, C.; Pearce, B.; Du Plessis, M.; Hoosain, N.; Benjeddou, M. Genetic polymorphisms and haplotypes of the organic cation transporter 1 gene (SLC22A1) in the Xhosa population of South Africa. Genet. Mol. Biol. 2014, 37, 350–359. [Google Scholar] [CrossRef]
- Fukuda, T.; Chidambaran, V.; Mizuno, T.; Venkatasubramanian, R.; Ngamprasertwong, P.; Olbrecht, V.; Esslinger, H.R.; Vinks, A.A.; Sadhasivam, S. OCT1 genetic variants influence the pharmacokinetics of morphine in children. Pharmacogenomics 2013, 14, 1141–1151. [Google Scholar] [CrossRef]
- Seitz, T.; Stalmann, R.; Dalila, N.; Chen, J.; Pojar, S.; Dos Santos Pereira, J.N.; Krätzner, R.; Brockmöller, J.; Tzvetkov, M.V. Global genetic analyses reveal strong inter-ethnic variability in the loss of activity of the organic cation transporter OCT1. Genome Med. 2015, 7, 56. [Google Scholar] [CrossRef]
- Li, J.Z.; Absher, D.M.; Tang, H.; Southwick, A.M.; Casto, A.M.; Ramachandran, S.; Cann, H.M.; Barsh, G.S.; Feldman, M.; Cavalli-Sforza, L.L.; et al. Worldwide human relationships inferred from genome-wide patterns of variation. Science 2008, 319, 1100–1104. [Google Scholar] [CrossRef]
ALL | PAEDIATRICS | ADULTS | |
---|---|---|---|
Variable | N = 79 | N = 54 | N = 25 |
Gender | |||
Male, N (%) | 37 (46.8) | 20 (37) | 17 (68) |
Female, N (%) | 42 (53.2) | 34 (63) | 8 (32) |
Age (years) | |||
Median (IQR) | 15.00 (8.1–21.3) | 11.6 (6.65–14.8) | 24.6 (20.78–48.15) |
Ethnicity | |||
Caucasian, N (%) | 18 (22.8) | 4 (7.4) | 14 (58.3) |
Sub-Saharan, N (%) | 61 (77.2) | 50 (92.6) | 11 (41.7) |
HU dose mg/day | |||
Median (IQR) | 750 (500–1000) | 750 (500–1000) | 750 (500–1000) |
HU AUC (mg/L/h) | |||
Median (IQR) | 97.36 (67.86–148.17) | 77.33 (61.46–140.56) | 120.92 (93.58–179.78) |
HU t1/2 (h) | |||
Median (IQR) | 2.69 (2.01–6.01) | 2.41 (1.92–5.29) | 5.08 (2.34–6.8) |
HU Cmax (mg/L) | |||
Median (IQR) | 16.35 (11.25–25.24) | 14.59 (10.31–22.78) | 19.64 (15.03–27.81) |
HU Tmax (h) | |||
Median (IQR) | 2 (2–2) | 2 (2–2) | 2 (2–2) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Allegra, S.; Abbadessa, G.; Chiara, F.; Di Grazia, D.; Mirabella, C.; Caudana, M.; Zanatta, M.; Bertello, J.; Voi, V.; De Francia, S. Role of OCT1 and MAP3K5 Genetic Polymorphisms in Hydroxyurea Pharmacokinetics. Life 2025, 15, 1284. https://doi.org/10.3390/life15081284
Allegra S, Abbadessa G, Chiara F, Di Grazia D, Mirabella C, Caudana M, Zanatta M, Bertello J, Voi V, De Francia S. Role of OCT1 and MAP3K5 Genetic Polymorphisms in Hydroxyurea Pharmacokinetics. Life. 2025; 15(8):1284. https://doi.org/10.3390/life15081284
Chicago/Turabian StyleAllegra, Sarah, Giuliana Abbadessa, Francesco Chiara, Daniela Di Grazia, Cristina Mirabella, Maura Caudana, Marina Zanatta, Jenni Bertello, Vincenzo Voi, and Silvia De Francia. 2025. "Role of OCT1 and MAP3K5 Genetic Polymorphisms in Hydroxyurea Pharmacokinetics" Life 15, no. 8: 1284. https://doi.org/10.3390/life15081284
APA StyleAllegra, S., Abbadessa, G., Chiara, F., Di Grazia, D., Mirabella, C., Caudana, M., Zanatta, M., Bertello, J., Voi, V., & De Francia, S. (2025). Role of OCT1 and MAP3K5 Genetic Polymorphisms in Hydroxyurea Pharmacokinetics. Life, 15(8), 1284. https://doi.org/10.3390/life15081284