The Effects of Group Fitness Programs Zumba and MoFit on Body Composition Parameters in Women
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample of Participants
- Healthy female individuals without acute or chronic diseases or injuries;
- Not engaged in any other form of organised exercise or participating in other structured physical or sports activities;
- Voluntarily agreed to participate in the experiment and attend group fitness training sessions regularly for a duration of 10 weeks;
- Not pregnant and not in the postpartum recovery period;
- Have not used medications or supplements that may affect metabolism.
- Women who were involved in another organised form of exercise;
- Women with cardiovascular and respiratory diseases;
- Women in the process of recovery from any acute or chronic illnesses;
- Women undergoing rehabilitation from injuries;
- Women who use medications or supplements that may affect the results;
- Women with uncontrolled menstrual irregularities, metabolic or hormonal disorders.
2.2. Measurement Procedures
- -
- Measurements were taken in the morning between 8:00 and 10:00 a.m.;
- -
- Participants were asked to abstain from large meals after 9 p.m. the day before testing;
- -
- Participants were asked to abstain from eating and drinking prior to testing on the measuring day;
- -
- Participants were asked to refrain from extreme physical exertion 24 h prior to measuring, and the last training should have been performed at least 12 h prior to measuring;
- -
- Participants were asked to abstain from consuming any alcoholic drinks 48 h before measuring;
- -
- Participants were asked to urinate and defecate at least 30 min prior to measuring,
- -
- Participants were in the standing position at least 5 min prior to measuring due to normal fluid distribution in the body;
- -
- Measuring was taken in the standing position, as was suggested by the manufacturer (hands aside, placed 15 cm laterally from the body).
2.3. Zumba and MoFit Interventions
2.4. Statistical Analysis
3. Results
3.1. Differences in Body Composition Between Initial and Final Measurements of Experimental and Control Groups
3.2. Differences Between Zumba and MoFit Programs’ Effects on Body Composition
4. Discussion
Strengths, Limitations, Future Directions, and Practical Applications
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Le Roux, E.; De Jong, N.P.; Blanc, S.; Simon, C.; Bessesen, D.H.; Bergouignan, A. Physiology of Physical Inactivity, Sedentary Behaviours and Non-Exercise Activity: Insights from the Space Bedrest Model. J. Physiol. 2022, 600, 1037–1051. [Google Scholar] [CrossRef]
- Lee, I.M.; Shiroma, E.J.; Lobelo, F.; Puska, P.; Blair, S.N.; Katzmarzyk, P.T. Effect of physical inactivity on major non-communicable diseases worldwide: An analysis of burden of disease and life expectancy. Lancet 2012, 380, 219–229. [Google Scholar] [CrossRef]
- Figueira, H.A.; Figueira, O.A.; Figueira, A.A.; Figueira, J.A.; Polo-Ledesma, R.E.; Lyra da Silva, C.R.; Dantas, E.H.M. Impact of Physical Activity on Anxiety, Depression, Stress and Quality of Life of the Older People in Brazil. Int. J. Environ. Res. Public Health 2023, 20, 1127. [Google Scholar] [CrossRef] [PubMed]
- Ouyang, A.; Zhang, C.; Adra, N.; Tesh, R.A.; Sun, H.; Lei, D.; Jing, J.; Fan, P.; Paixao, L.; Ganglberger, W.; et al. Effects of Aerobic Exercise on Brain Age and Health in Middle-Aged and Older Adults: A Single-Arm Pilot Clinical Trial. Life 2024, 14, 855. [Google Scholar] [CrossRef] [PubMed]
- Bjelica, B.; Aksović, N.; Bubanj, S.; Zelenović, M.; Stanković, M.; Pajović, L.; Čaprić, I.; Radenković, O.; Kahrović, I.; Murić, B.; et al. Effects of Physical Activity on Patients With Diabetes Type 2: A Systematic Review. Balneo PRM Res. J. 2024, 15, 719–742. [Google Scholar] [CrossRef]
- Bucciarelli, V.; Mattioli, A.V.; Sciomer, S.; Moscucci, F.; Renda, G.; Gallina, S. The Impact of Physical Activity and Inactivity on Cardiovascular Risk across Women’s Lifespan: An Updated Review. J. Clin. Med. 2023, 12, 4347. [Google Scholar] [CrossRef]
- Silveira, E.A.; Mendonça, C.R.; Delpino, F.M.; Elias Souza, G.V.; Pereira de Souza Rosa, L.; de Oliveira, C.; Noll, M. Sedentary Behavior, Physical Inactivity, Abdominal Obesity and Obesity in Adults and Older Adults: A Systematic Review and Meta-Analysis. Clin. Nutr. ESPEN 2022, 50, 63–73. [Google Scholar] [CrossRef]
- Xu, T.; Tao, Y.; Chen, R.; Strachan, G.; Cai, X.; Liu, C. Effects of a Physical Activity Promotion Programme on Body Composition in Emerging Adults with Physical Inactivity: A Study Protocol of a Randomised Controlled Trial. BMJ Open 2023, 13, e076123. [Google Scholar] [CrossRef]
- de Castro, R.; Antunes, R.; Mendes, D.; Szumilewicz, A.; Santos-Rocha, R. Can Group Exercise Programs Improve Health Outcomes in Pregnant Women? An Updated Systematic Review. Int. J. Environ. Res. Public Health 2022, 19, 4875. [Google Scholar] [CrossRef]
- Guerendiain, M.; Villa-González, E.; Barranco-Ruiz, Y. Body Composition and Dairy Intake in Sedentary Employees Who Participated in a Healthy Program Based on Nutrition Education and Zumba. Clin. Nutr. 2019, 38, 2277–2286. [Google Scholar] [CrossRef]
- Fernández-Rodríguez, R.; Álvarez-Bueno, C.; Ferri-Morales, A.; Torres-Costoso, A.I.; Cavero-Redondo, I.; Martínez-Vizcaíno, V. Pilates Method Improves Cardiorespiratory Fitness: A Systematic Review and Meta-Analysis. J. Clin. Med. 2019, 8, 1761. [Google Scholar] [CrossRef]
- Wong, S.S.S.; Liu, T.W.; Ng, S.S.M. Health Status of Aged Women with or without the Experience of Practicing Yoga. BMC Womens Health 2023, 23, 524. [Google Scholar] [CrossRef]
- de Oliveira, R.G.; Anami, G.E.U.; Coelho, E.A.; de Oliveira, L.C. Effects of Pilates Exercise on Bone Mineral Density in Postmenopausal Women: A Systematic Review and Meta-Analysis. J. Geriatr. Phys. Ther. 2022, 45, 107–114. [Google Scholar] [CrossRef]
- Yorks, D.M.; Frothingham, C.A.; Schuenke, M.D. Effects of Group Fitness Classes on Stress and Quality of Life of Medical Students. J. Osteopath. Med. 2017, 117, e17–e25. [Google Scholar] [CrossRef] [PubMed]
- Barranco-Ruiz, Y.; Villa-González, E. Health-Related Physical Fitness Benefits in Sedentary Women Employees after an Exercise Intervention with Zumba Fitness®. Int. J. Environ. Res. Public Health 2020, 17, 2632. [Google Scholar] [CrossRef] [PubMed]
- Brown, T.C.; Miller, B.M.; Adams, B.M. What’s in a Name? Group Fitness Class Names and Women’s Reasons for Exercising. Health Mark. Q. 2017, 34, 142–155. [Google Scholar] [CrossRef] [PubMed]
- Cugusi, L.; Manca, A.; Bergamin, M.; Di Blasio, A.; Yeo, T.J.; Crisafulli, A.; Mercuro, G. Zumba fitness and women’s cardiovascular health: A systematic review. J. Cardiopulm. Rehabil. Prev. 2019, 39, 153–160. [Google Scholar] [CrossRef]
- Barranco-Ruiz, Y.; Ramírez-Vélez, R.; Martínez-Amat, A.; Villa-González, E. Effect of Two Choreographed Fitness Group-Workouts on the Body Composition, Cardiovascular and Metabolic Health of Sedentary Female Workers. Int. J. Environ. Res. Public Health 2019, 16, 4986. [Google Scholar] [CrossRef]
- Bjelica, B. Effects of group fitness programs on the body composition of women. Facta Univ. Phys. Educ. Sport 2020, 18, 345–354. [Google Scholar]
- Chavarrias, M.; Carlos-Vivas, J.; Barrantes-Martín, B.; Pérez-Gómez, J. Effects of 8-week of fitness classes on blood pressure, body composition, and physical fitness. J. Sports Med. Phys. Fitness 2019, 59, 2066–2074. [Google Scholar] [CrossRef]
- Ljubojevic, A.; Jakovljevic, V.; Bijelic, S.; Sârbu, I.; Tohănean, D.I.; Albină, C.; Alexe, D.I. The Effects of Zumba Fitness® on Respiratory Function and Body Composition Parameters: An Eight-Week Intervention in Healthy Inactive Women. Int. J. Environ. Res. Public Health 2023, 20, 314. [Google Scholar] [CrossRef] [PubMed]
- Delextrat, A.A.; Warner, S.; Graham, S.; Neupert, E. An 8-Week Exercise Intervention Based on Zumba Improves Aerobic Fitness and Psychological Well-Being in Healthy Women. J. Phys. Act. Health 2016, 13, 131–139. [Google Scholar] [CrossRef] [PubMed]
- Toskic, L.; Markovic, M.; Simenko, J.; Vidic, V.; Cikiriz, N.; Dopsaj, M. Analysis of body composition in men and women with diverse training profiles: A cross-sectional study. Int. J. Morphol. 2024, 42, 1278–1287. [Google Scholar] [CrossRef]
- Esco, M.R.; Snarr, R.L.; Leatherwood, M.D.; Chamberlain, N.A.; Redding, M.L.; Flatt, A.A.; Williford, H.N. Comparison of total and segmental body composition using DXA and multifrequency bioimpedance in collegiate female athletes. J. Strength Cond. Res. 2015, 29, 918–925. [Google Scholar] [CrossRef]
- Czartoryski, P.; Garcia, J.; Manimaleth, R.; Napolitano, P.; Watters, H.; Weber, C.; Antonio, J. Body composition assessment: A comparison of the DXA, InBody 270, and Omron. J. Exerc. Nutr. 2020, 3, 1. [Google Scholar]
- Pallant, J. SPSS Survival Manual: A Step by Step Guide to Data Analysis Using the SPSS Program, 4th ed.; Allen & Unwin: Berkshire, UK, 2011. [Google Scholar]
- West, D.J.; Cook, C.J.; Beaven, M.C.; Kilduff, L.P. The influence of the time of day on core temperature and lower body power output in elite rugby union sevens players. J. Strength Cond. Res. 2014, 28, 1524–1528. [Google Scholar] [CrossRef] [PubMed]
- Chtourou, H.; Chaouachi, A.; Driss, T.; Dogui, M.; Behm, D.G.; Chamari, K.; Souissi, N. The effect of training at the same time of day and tapering period on the diurnal variation of short exercise performances. J. Strength Cond. Res. 2012, 26, 697–708. [Google Scholar] [CrossRef]
- Rodríguez, G.; Moreno, L.A.; Sarría, A.; Fleta, J.; Bueno, M. Assessment of nutritional status and body composition in children using physical anthropometry and bioelectrical impedance: Influence of diurnal variations. J. Pediatr. Gastroenterol. Nutr. 2000, 30, 305–319. [Google Scholar] [CrossRef]
- Mhenni, T.; Michalsik, L.B.; Mejri, M.A.; Yousfi, N.; Chaouachi, A.; Souissi, N.; Chamari, K. Morning–evening difference of team-handball-related short-term maximal physical performances in female team handball players. J. Sport Sci. 2017, 35, 912–920. [Google Scholar] [CrossRef]
- Pavlović, L.; Stojiljković, N.; Aksović, N.; Stojanović, E.; Valdevit, Z.; Scanlan, A.T.; Milanović, Z. Diurnal variations in physical performance: Are there morning-to-evening differences in elite male handball players? J. Hum. Kinet. 2018, 63, 117–126. [Google Scholar] [CrossRef]
- Cugusi, L.; Wilson, B.; Serpe, R.; Medda, A.; Deidda, M.; Gabba, S.; Satta, G.; Chiappori, P.; Mercuro, G. Cardiovascular effects, body composition, quality of life and pain after a Zumba fitness program in Italian overweight women. J. Sports Med. Phys. Fitness 2016, 56, 328–335. [Google Scholar] [PubMed]
- Evangelou, C.; Sakkas, G.K.; Hadjicharalambous, M.; Aphamis, G.; Petrou, P.; Giannaki, C.D. The effect of a three month, low-load- high-repetitions group-based exercise program versus pilates on physical fitness and body composition in inactive women. J. Bodyw. Mov. Ther. 2021, 26, 18–23. [Google Scholar] [CrossRef]
- Ben Waer, F.; Lahiani, M.; Alexe, C.I.; Badau, D.; Onoi, M.P.; Alexe, D.I.; Sahli, S. The Effects of Pilates vs. Zumba Dancing on Functional Performance, Mood and Health-Related Quality of Life in Postmenopausal Women. Appl. Sci. 2024, 14, 2886. [Google Scholar] [CrossRef]
- Wang, Z.; Ma, H.; Zhang, W.; Zhang, Y.; Youssef, L.; Carneiro, M.A.S.; Chen, C.; Wang, D.; Wang, D. Effects of Functional Strength Training Combined with Aerobic Training on Body Composition, Physical Fitness, and Movement Quality in Obese Adolescents. Nutrients 2024, 16, 1434. [Google Scholar] [CrossRef]
- Donges, C.E.; Duffield, R.; Drinkwater, E.J. Effects of resistance or aerobic exercise training on interleukin-6, C-reactive protein, and body composition. Med. Sci. Sports Exerc. 2010, 42, 304–313. [Google Scholar] [CrossRef]
- Stasiulis, A.; Mockiene, A.; Vizbaraite, D.; Mockus, P. Aerobic exercise-induced changes in body composition and blood lipids in young women. Medicina 2010, 46, 129–134. [Google Scholar] [CrossRef]
- Pereira, M.J.; Dias, G.; Mendes, R.; Mendes, R.S.; Martins, F.; Gomes, R.; Gama, J.; Castro, M.A.; Vaz, V. Efficacy of Pilates in Functional Body Composition: A Systematic Review. Appl. Sci. 2022, 12, 7523. [Google Scholar] [CrossRef]
- Chavarrias, M.; Villafaina, S.; Lavín-Pérez, A.M.; Carlos-Vivas, J.; Merellano-Navarro, E.; Pérez-Gómez, J. Zumba®, Fat Mass and Maximum Oxygen Consumption: A Systematic Review and Meta-Analysis. Int. J. Environ. Res. Public Health 2021, 18, 105. [Google Scholar] [CrossRef]
- Børsheim, E.; Bahr, R. Effect of exercise intensity, duration and mode on post-exercise oxygen consumption. Sports Med. 2003, 33, 1037–1060. [Google Scholar] [CrossRef]
- Śliwicka, E.; Popierz-Rydlewska, N.; Straburzyńska-Lupa, A.; Nikolov, J.; Pilaczyńska-Szcześniak, Ł.; Gogojewicz, A. Prevention Is Better than Cure—Body Composition and Glycolipid Metabolism after a 24-Week Physical Activity Program without Nutritional Intervention in Healthy Sedentary Women. Nutrients 2024, 16, 2536. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, A.S.; Avelar, A.; Schoenfeld, B.J.; Ritti Dias, R.M.; Altimari, L.R.; Cyrino, E.S. Resistance Training Promotes Increase in Intracellular Hydration in Men and Women. Eur. J. Sport Sci. 2014, 14, 578–585. [Google Scholar] [CrossRef] [PubMed]
- Ubago-Guisado, E.; Sánchez-Sánchez, J.; Vila-Maldonado, S.; Gallardo, L. Effects of Zumba® and Aquagym on Bone Mass in Inactive Middle-Aged Women. Medicina 2019, 55, 23. [Google Scholar] [CrossRef] [PubMed]
- Judelson, D.A.; Maresh, C.M.; Anderson, J.M.; Armstrong, L.E.; Casa, D.J.; Kraemer, W.J.; Volek, J.S. Hydration and Muscular Performance. Sports Med. 2007, 37, 907–921. [Google Scholar] [CrossRef] [PubMed]
- Rossmeissl, A.; Lenk, S.; Hanssen, H.; Donath, L.; Schmidt-Trucksäss, A.; Schäfer, J. ZumBeat: Evaluation of a Zumba Dance Intervention in Postmenopausal Overweight Women. Sports 2016, 4, 5. [Google Scholar] [CrossRef]
- Barene, S.; Krustrup, P.; Jackman, S.R.; Brekke, O.L.; Holtermann, A. Do Soccer and Zumba Exercise Improve Fitness and Indicators of Health among Female Hospital Employees? A 12-Week RCT. Scand. J. Med. Sci. Sports 2014, 24, 990–999. [Google Scholar] [CrossRef]
- Kuikman, M.A.; McKay, A.K.A.; Minahan, C.; Harris, R.; Elliott-Sale, K.J.; Stellingwerff, T.; Smith, E.S.; McCormick, R.; Tee, N.; Skinner, J.; et al. Effect of Menstrual Cycle Phase and Hormonal Contraceptives on Resting Metabolic Rate and Body Composition. Int. J. Sport Nutr. Exerc. Metab. 2024, 34, 207–217. [Google Scholar] [CrossRef]
- Rickenlund, A.; Carlström, K.; Ekblom, B.; Brismar, T.B.; Von Schoultz, B.; Hirschberg, A.L. Effects of oral contraceptives on body composition and physical performance in female athletes. J. Clin. Endocrinol. Metab. 2004, 89, 4364–4370. [Google Scholar] [CrossRef]
- Paoli, A.; Cenci, L.; Pompei, P.; Sahin, N.; Bianco, A.; Neri, M.; Caprio, M.; Moro, T. Effects of Two Months of Very Low Carbohydrate Ketogenic Diet on Body Composition, Muscle Strength, Muscle Area, and Blood Parameters in Competitive Natural Body Builders. Nutrients 2021, 13, 374. [Google Scholar] [CrossRef] [PubMed]
No. | Variable | Measurement | Abbreviation |
---|---|---|---|
1. | Total body fat | % | TBF % |
2. | Right arm fat | % | RHF % |
3. | Left arm fat | % | LHF % |
4. | Trunk fat | % | TRF % |
5. | Right leg fat | % | RLF % |
6. | Left leg fat | % | LLF % |
7. | Total muscle weight | kg | TMW kg |
8. | Total weight of right arm | kg | RHW kg |
9. | Total weight of left arm | kg | LHW kg |
10. | Total weight of trunk | kg | TTW kg |
11. | Total weight of right leg | kg | RLW kg |
12. | Total weight of left leg | kg | LLW kg |
13. | Total body water | % | TBW % |
14. | Minerals | kg | MIN kg |
Groups | E1 Group Zumba | E2 Group MoFit | Control Group |
---|---|---|---|
Frequency | 3× times per week | 3× times per week | - - - - |
Duration of the training | 65–70 min | 55–60 min | - - - - |
Duration of the program | 10 weeks | 10 weeks | - - - - |
Number of trainings | 30× | 30× | - - - - |
Intensity | 75–85% HRmax | 60–75% HRmax | - - - - |
Variable | Mean I | Mean F | Mean Diff | SD | t | p | Cohen’s d |
---|---|---|---|---|---|---|---|
TBF % | 32.46 | 29.71 | 2.74 | 2.34 | 6.735 | 0.000 ** | 0.58 *** |
RHF % | 29.79 | 27.20 | 2.59 | 2.38 | 6.254 | 0.000 ** | 0.55 *** |
LHF % | 30.74 | 28.09 | 2.64 | 2.41 | 6.312 | 0.000 ** | 0.55 *** |
TRF % | 31.79 | 29.98 | 1.81 | 3.11 | 3.335 | 0.000 ** | 0.25 *** |
RLF % | 33.17 | 30.72 | 2.45 | 2.24 | 6.287 | 0.000 ** | 0.55 *** |
LLF % | 34.50 | 32.15 | 2.35 | 2.97 | 4.552 | 0.000 ** | 0.39 *** |
TMW kg | 43.59 | 44.70 | −1.11 | 0.55 | −11.526 | 0.000 ** | 0.80 *** |
RHW kg | 2.21 | 2.37 | −0.15 | 0.09 | −9.460 | 0.000 ** | 0.73 *** |
LHW kg | 2.23 | 2.37 | −0.13 | 0.09 | −8.023 | 0.000 ** | 0.66 *** |
TTW kg | 24.08 | 24.50 | −0.41 | 0.39 | −6.158 | 0.000 ** | 0.54 *** |
RLW kg | 7.67 | 7.85 | −0.17 | 0.09 | −11.078 | 0.000 ** | 0.79 *** |
LLW kg | 7.42 | 7.65 | −0.23 | 0.11 | −12.862 | 0.000 ** | 0.83 *** |
TBW % | 50.08 | 53.38 | −3.30 | 3.04 | −6.233 | 0.000 ** | 0.55 *** |
MIN kg | 2.38 | 2.40 | −0.02 | 0.04 | −3.200 | 0.003 ** | 0.24 *** |
Variable | Mean I | Mean F | Mean Diff | SD | t | p | Cohen’s d |
---|---|---|---|---|---|---|---|
TBF % | 33.68 | 32.07 | 1.60 | 1.37 | 6.503 | 0.000 ** | 0.58 *** |
RHF % | 29.22 | 28.11 | 1.11 | 1.72 | 3.610 | 0.001 ** | 0.30 *** |
LHF % | 30.14 | 28.81 | 1.32 | 1.24 | 5.94 | 0.000 ** | 0.80 *** |
TRF % | 34.27 | 32.77 | 1.49 | 1.37 | 6.053 | 0.000 ** | 0.53 *** |
RLF % | 34.32 | 33.14 | 1.17 | 1.00 | 6.503 | 0.000 ** | 0.58 *** |
LLF % | 35.36 | 34.05 | 1.31 | 1.42 | 5.098 | 0.000 ** | 0.46 *** |
TMW kg | 40.10 | 41.59 | −1.48 | 0.52 | −15.634 | 0.000 ** | 0.89 *** |
RHW kg | 2.12 | 2.12 | 0.00 | 0.09 | −0.183 | 0.856 | 0.01 * |
LHW kg | 2.13 | 2.15 | −0.2 | 0.09 | −1.076 | 0.290 | 0.03 * |
TTW kg | 21.48 | 21.64 | −0.16 | 0.42 | −2.138 | 0.041 * | 0.13 ** |
RLW kg | 7.31 | 7.46 | −0.14 | 0.08 | −10.185 | 0.000 ** | 0.77 *** |
LLW kg | 6.99 | 7.14 | −0.15 | 0.08 | −9.704 | 0.000 ** | 0.75 *** |
TBW % | 48.01 | 49.50 | −1.49 | 1.35 | −6.121 | 0.000 ** | 0.55 *** |
MIN kg | 2.20 | 2.22 | −0.02 | 0.04 | −3.503 | 0.001 ** | 0.29 *** |
Variable | Mean I | Mean F | Mean Diff | SD | t | p | Cohen’s d |
---|---|---|---|---|---|---|---|
TBF % | 30.86 | 31.64 | −0.78 | 1.22 | −3.745 | 0.001 ** | 0.27 *** |
RHF % | 24.68 | 24.88 | −0.2 | 0.47 | −2.518 | 0.017 * | 0.16 *** |
LHF % | 26.00 | 26.24 | −0.23 | 0.59 | −2.343 | 0.025 * | 0.14 *** |
TRF % | 32.09 | 32.37 | −0.28 | 0.38 | −4.313 | 0.000 ** | 0.35 *** |
RLF % | 29.55 | 29.78 | −0.22 | 0.54 | −2.469 | 0.019 * | 0.15 *** |
LLF % | 30.23 | 30.40 | −0.16 | 0.43 | −2.249 | 0.031 * | 0.12 ** |
TMW kg | 40.83 | 40.98 | −0.14 | 0.35 | −2.425 | 0.021 * | 0.14 *** |
RHW kg | 2.14 | 2.15 | −0.01 | 0.07 | −0.442 | 0.661 | 0 |
LHW kg | 2.12 | 2.13 | −0.01 | 0.07 | −1.094 | 0.282 | 0.03 * |
TTW kg | 21.67 | 21.75 | −0.07 | 0.21 | −2.020 | 0.052 | 0.11 ** |
RLW kg | 7.42 | 7.42 | 0.00 | 0.08 | 0 | 1.000 | 0 |
LLW kg | 7.32 | 7.35 | −0.02 | 0.08 | −1.605 | 0.118 | 0.07 ** |
TBW % | 51.39 | 50.75 | 0.63 | 1.07 | 3.450 | 0.002 ** | 0.26 *** |
MIN kg | 2.15 | 2.15 | −0.00 | 0.01 | −1.000 | 0.325 | 0.02 * |
Wilks’ Lambda | F | df1 | df2 | p | Partial Eta Squared |
---|---|---|---|---|---|
0.087 | 11.590 | 210 | 235 | 0.000 ** | 0.79 *** |
Variable | Adj. Mean E1 | Adj. Mean E2 | Adj. Mean C | F | p | Bonferroni | Partial Eta Squared |
---|---|---|---|---|---|---|---|
TBF % | 29.56 | 30.78 | 32.97 | 37.626 | 0.000 ** | E1 > C **; E1 > E2 **; E2 > C ** | 0.44 *** |
RHF % | 25.44 | 26.86 | 27.72 | 20.290 | 0.000 ** | E1 > C **; E1 > E2 ** | 0.30 *** |
LHF % | 26.45 | 27.71 | 28.84 | 26.426 | 0.000 ** | E1 > C **; E1 > E2 **; E2 > C ** | 0.36 *** |
TRF % | 30.84 | 31.24 | 32.94 | 11.016 | 0.000 ** | E1 > C **; E2 > C ** | 0.19 *** |
RLF % | 29.91 | 31.30 | 32.25 | 28.654 | 0.000 ** | E1 > C **; E1 > E2 **; E2 > C * | 0.37 *** |
LLF % | 31.04 | 32.17 | 33.19 | 11.067 | 0.000 ** | E1 > C **; E1 > E2 * | 0.19 *** |
TMW kg | 42.66 | 43.00 | 41.67 | 67.794 | 0.000 ** | E1 > C **; E2 > C **; E2 > E1 * | 0.59 *** |
RHW kg | 2.31 | 2.16 | 2.16 | 30.129 | 0.000 ** | E1 > C **; E1 > E2 ** | 0.39 *** |
LHW kg | 2.30 | 2.18 | 2.17 | 19.759 | 0.000 ** | E1 > C **; E1 > E2 ** | 0.29 *** |
TTW kg | 22.83 | 22.59 | 22.50 | 7.810 | 0.001 ** | E1 > C **; E1 > E2 *; E2 > C * | 0.14 *** |
RLW kg | 7.65 | 7.62 | 7.47 | 40.782 | 0.000 ** | E1 > C **; E2 > C ** | 0.46 *** |
LLW kg | 7.49 | 7.40 | 7.27 | 43.644 | 0.000 ** | E1 > C **; E1 > E2 **; E2 > C ** | 0.48 *** |
TBW % | 53.21 | 51.13 | 49.44 | 34.086 | 0.000 ** | E1 > C **; E1 > E2 **; E2 > C ** | 0.42 *** |
MIN kg | 2.27 | 2.27 | 2.24 | 5.030 | 0.008 ** | E1 > C *; E2 > C * | 0.09 ** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zećirović, A.; Ćeremidžić, D.; Joksimović, A.; Ćeremidžić, T.; Joksimović, D.; Aksović, N.; Toskić, L.; Dragoi, C.-C.; Ciocan, V.C.; Mihaela, A.; et al. The Effects of Group Fitness Programs Zumba and MoFit on Body Composition Parameters in Women. Life 2025, 15, 1225. https://doi.org/10.3390/life15081225
Zećirović A, Ćeremidžić D, Joksimović A, Ćeremidžić T, Joksimović D, Aksović N, Toskić L, Dragoi C-C, Ciocan VC, Mihaela A, et al. The Effects of Group Fitness Programs Zumba and MoFit on Body Composition Parameters in Women. Life. 2025; 15(8):1225. https://doi.org/10.3390/life15081225
Chicago/Turabian StyleZećirović, Armin, Dejan Ćeremidžić, Aleksandar Joksimović, Tatjana Ćeremidžić, Dina Joksimović, Nikola Aksović, Lazar Toskić, Cristian-Corneliu Dragoi, Vasile Cătălin Ciocan, Anghel Mihaela, and et al. 2025. "The Effects of Group Fitness Programs Zumba and MoFit on Body Composition Parameters in Women" Life 15, no. 8: 1225. https://doi.org/10.3390/life15081225
APA StyleZećirović, A., Ćeremidžić, D., Joksimović, A., Ćeremidžić, T., Joksimović, D., Aksović, N., Toskić, L., Dragoi, C.-C., Ciocan, V. C., Mihaela, A., Dobrescu, T., & Dobreci, D.-L. (2025). The Effects of Group Fitness Programs Zumba and MoFit on Body Composition Parameters in Women. Life, 15(8), 1225. https://doi.org/10.3390/life15081225