Auditory Steady-State Responses for Detecting Mild Hearing Loss in Babies, Infants, and Children: Literature Review
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethics Considerations
2.2. Study Design
2.3. Search Strategy
2.4. Eligibility Criteria
- (i)
- Original research articles;
- (ii)
- Participants aged 0–12 years (covering newborns, infants, and children);
- (iii)
- Evaluation of steady-state auditory evoked potential (ASSR) via air conduction;
- (iv)
- Published in English between 2014 and 2024;
- (v)
- Peer-reviewed publication.
- (i)
- Studies involving only adults;
- (ii)
- Animal studies;
- (iii)
- Gray literature (dissertations, theses, conference abstracts, or non-peer-reviewed publications;
- (iv)
- Studies that evaluated ASSR exclusively via bone conduction.
2.5. Study Selection Process
2.6. Data Extraction and Analysis
3. Results
3.1. Study Selection
3.2. Sample Characteristics
3.3. Use of Control Groups
3.4. Complementary Evaluations
4. ASSR Assessments
4.1. Equipment
4.2. Sound Stimuli
4.3. Clinical Applicability of ASSR
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ABR | auditory brainstem response |
AC | air conduction |
ASSR | Auditory Steady-State Response |
BA | behavioral audiometry |
BC | bone conduction |
CE | Chirp-Evoked |
CE-Chirp | Chirp-Evoked Stimulus |
CG | control group |
CPR | cochleopalpebral reflex |
d | days |
dB | decibel |
dB eHL | decibel estimated hearing level |
dB HL | decibel hearing level |
DPOAE | distortion product otoacoustic emissions |
EG | experimental group |
Equip | equipment |
F | female |
Freq | frequency |
FS | frequency-specific |
FS-ABR (ND) | Frequency-Specific Auditory Brainstem Response (with type of stimulus not detailed) |
HL | hearing loss |
Hz | hertz |
ICU | intensive care unit |
Intens | intensity |
LE | left Ear |
M | male |
MeSH | Medical Subject Headings |
mo | months |
Mod Rate | modulation rate |
NB | narrowband |
NH | normal hearing |
OAE | otoacoustic emissions |
OAE-ND | otoacoustic emissions—not detailed |
PDOAE | distortion product otoacoustic emission |
PRISMA | Preferred Reporting Items for Systematic Reviews and Meta-Analyses |
RE | right ear |
SF-ABR | Specific Frequency Auditory Brainstem Response |
Stim | stimulation |
TOAE | transient otoacoustic emissions |
Tymp | tympanometry |
Tymp ND | tympanometry–type of probe not detailed |
VRA | visual reinforcement audiometry |
y | years |
References
- Sharma, A.; Nash, A.A.; Dorman, M. Cortical development, plasticity and re-organization in children with cochlear implants. J. Commun. Disord. 2009, 42, 272–279. [Google Scholar] [CrossRef] [PubMed]
- Kral, A.; Sharma, A. Developmental neuroplasticity after cochlear implantation. Trends Neurosci. 2012, 35, 111–122. [Google Scholar] [CrossRef]
- Gilley, P.M.; Sharma, A.; Dorman, M.F. Cortical reorganization in children with cochlear implants. Brain Res. 2008, 6, 56–65. [Google Scholar] [CrossRef] [PubMed]
- Monshizadeh, L.; Vameghi, R.; Rahimi, M.; Sajedi, F.; Hashemi, S.B.; Yadegari, F.; Kasbi, F. Is There Any Association Between Language Acquisition and Cognitive Development in Cochlear-Implanted Children? J. Int. Adv. Otol. 2021, 17, 195–199. [Google Scholar] [CrossRef]
- Northern, J.L.; Downs, M.P. Hearing in Children; Plural Publishing: San Diego, CA, USA, 2014; Volume 6, pp. 10–702. ISBN 978-1-59756-392-5. [Google Scholar]
- Brennan, S.; Lightfoot, G.; Ferm, I.; Fritzgerald, J. Practice Guidance Guidelines for the Early Audiological Assessment and Management of Babies Referred from the Newborn Hearing Screening Programme. Br. Soc. Audiol. 2021, 15, 860. [Google Scholar]
- The Joint Committee on Infant Hearing. Year 2019 Position Statement: Principles and Guidelines for Early Hearing Detection and Intervention Programs. JEHDI 2019, 4, 1–44. [Google Scholar]
- Andrade, A.N.; Soares, A.; Skarzyinski, P.H.; Sanfins, M.D. Childhood audiological assessment (part II): Recommended procedures in the first two years of life. Mendincus Bull. 2024, 14, 1–12. [Google Scholar]
- Bower, C.; Reilly, B.K.; Richerson, J.; Hecht, J.L.; Committee on Practice & Ambulatory Medicine; Section on Otolaryngology–Head and Neck Surgery. Hearing assessment in infants, children, and adolescents: Recommendations beyond neonatal screening. Pediatrics 2023, 152, e2023063288. [Google Scholar] [CrossRef] [PubMed]
- Sanfins, M.D.; Andrade, A.N.; Skarzynski, P.H.; Matas, C.G.; Colella-Santos, M.F. Use of auditory brainstem potentials to measure auditory thresholds: Type of stimulus and use of sedation. Medincus 2023, 9. [Google Scholar] [CrossRef]
- Stapells, D.R. Threshold Estimation by the Tone-Evoked Auditory Brainstem Response: A Literature Meta-Analysis. J. Speech-Lang. Pathol. Audiol. 2000, 24, 74–83. [Google Scholar] [CrossRef]
- Elberling, C.; Don, M. Auditory brainstem responses to a chirp stimulus designed from derived-band latencies in normal-hearing subjects. J. Acoust. Soc. Am. 2008, 124, 3022–3037. [Google Scholar] [CrossRef]
- Findlen, U.M.; Hounam, G.M.; Alexy, E.; Adunka, O.F. Early Hearing Detection and Intervention: Timely Diagnosis, Timely Management. Ear Hear. 2019, 40, 651–658. [Google Scholar] [CrossRef] [PubMed]
- Biagio-de Jager, L.; van Dyk, Z.; Vinck, B.H. Diagnostic accuracy of CE Chirp. Int. J. Pediatr. Otorhinolaryngol. 2020, 135, 110071. [Google Scholar] [CrossRef] [PubMed]
- Ehrmann-Müller, D.; Shehata-Dieler, W.; Alzoubi, A.; Hagen, R.; Cebulla, M. Using ASSR with narrow-band chirps to evaluate hearing in children and adults. Eur. Arch. Otorhinolaryngol. 2021, 278, 49–56. [Google Scholar] [CrossRef] [PubMed]
- Rance, G.; Briggs, R.J. Assessment of hearing in infants with moderate to profound impairment: The Melbourne experience with auditory steady-state evoked potential testing. Ann. Otol. Rhinol. Laryngol. Suppl. 2002, 189, 22–28. [Google Scholar] [CrossRef]
- Beck, R.M.; Ramos, B.F.; Grasel, S.S.; Ramos, H.F.; Moraes, M.F.; Almeida, E.R.; Bento, R.F. Comparative study between pure tone audiometry and auditory steady-state responses in normal hearing subjects. Braz. J. Otorhinolaryngol. 2014, 80, 35–40. [Google Scholar] [CrossRef]
- Lopes, M.B.; Bueno, C.D.; Dinodé, D.D.; Sleifer, P. Comparison between click and CE-CHIRP® stimuli in neonatal hearing screening. J. Hum. Growth Dev. 2020, 30, 260–265. [Google Scholar] [CrossRef]
- British Society of Audiology. Auditory Steady State Response (ASSR) Testing. 2023. Available online: https://www.thebsa.org.uk/resources/ (accessed on 12 June 2025).
- Sininger, Y.S.; Hunter, L.L.; Hayes, D.; Roush, P.A.; Uhler, K.M. Evaluation of Speed and Accuracy of Next-Generation Auditory Steady State Response and Auditory Brainstem Response Audiometry in Children with Normal Hearing and Hearing Loss. Ear Hear. 2018, 39, 1207–1223. [Google Scholar] [CrossRef]
- Sideri, K.P.; Chiriboga, L.F.; Skarzynski, P.H.; Skarzynska, M.B.; Sanfins, M.D.; Colella-Santos, M.F. Correlations Between ASSR Based on Narrow-Band CE® Chirp, Click ABR, and Tone-Burst ABR in Audiological Evaluation of Children Under Anesthesia. Life 2025, 15, 860. [Google Scholar] [CrossRef]
- Valeriote, H.; Small, S.A. Comparisons of Auditory Steady State and Auditory Brainstem Response Thresholds in Infants with Normal Hearing and Conductive Hearing Loss. MedRxiv 2023. [Google Scholar] [CrossRef]
- Lu, P.; Huang, Y.; Chen, W.X.; Jiang, W.; Hua, N.Y.; Wang, Y.; Wang, B.; Xu, Z.M. Measurement of Thresholds Using Auditory Steady-State Response and Cochlear Microphonics in Children with Auditory Neuropathy. J. Am. Acad. Audiol. 2019, 30, 672–676. [Google Scholar] [CrossRef]
- Sousa, A.C.; Didoné, D.D.; Sleifer, P. Longitudinal Comparison of Auditory Steady-State Evoked Potentials in Preterm and Term Infants: The Maturation Process. Int. Arch. Otorhinolaryngol. 2017, 21, 200–205. [Google Scholar] [CrossRef]
- Torres-Fortuny, A.; Hernández-Pérez, H.; Ramírez, B.; Alonso, I.; Eimil, E.; Guerrero-Aranda, A.; Mijares, E. Comparing auditory steady-state responses amplitude evoked by simultaneous air- and bone-conducted stimulation in newborns. Int. J. Audiol. 2016, 55, 375–379. [Google Scholar] [CrossRef]
- François, M.; Dehan, E.; Carlevan, M.; Dumont, H. Use of auditory steady-state responses in children and comparison with other electrophysiological and behavioral tests. Eur. Ann. Otorhinolaryngol. Head Neck Dis. 2016, 133, 331–335. [Google Scholar] [CrossRef] [PubMed]
- Venail, F.; Artaud, J.P.; Blanchet, C.; Uziel, A.; Mondain, M. Refining the audiological assessment in children using narrow-band CE-Chirp-evoked auditory steady state responses. Int. J. Audiol. 2015, 54, 106–113. [Google Scholar] [CrossRef] [PubMed]
- Casey, K.A.; Small, S.A. Comparisons of auditory steady state response and behavioral air conduction and bone conduction thresholds for infants and adults with normal hearing. Ear Hear. 2014, 35, 423–439. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, G.R.; Lewis, D.R. Establishing auditory steady-state response thresholds to narrow band CE-chirps in full-term neonates. Int. J. Pediatr. Otorhinolaryngol. 2014, 78, 238–243. [Google Scholar] [CrossRef]
- Panahi, R.; Jafari, Z.; Hasani, S. Relationship between behavioral hearing thresholds and estimated auditory steady-state response thresholds in children with a history of neonatal hyperbilirubinemia. Eur. Arch. Otorhinolaryngol. 2014, 271, 2385–2392. [Google Scholar] [CrossRef]
- Ribeiro, F.M.; Carvallo, R.M.; Marcoux, A.M. Auditory steady-state evoked responses for preterm and term neonates. Audiol. Neurootol. 2010, 15, 97–110. [Google Scholar] [CrossRef]
- Choi, J.M.; Purcell, D.W.; John, M.S. Phase stability of auditory steady-state responses in newborn infants. Ear Hear. 2011, 32, 593–604. [Google Scholar] [CrossRef]
- Nodarse, M.M.E.; Alonso, H.D.; Vázquez, G.J.; Febles, S.E.; Abalo, P.M.C.; Alarcón, M.L.; Terry, R.R. Cribado auditivo neonatal con potenciales evocados auditivos de estado estable a múltiples frecuencias. Acta Otorrinolaringol. Esp. 2011, 62, 87–94. [Google Scholar] [CrossRef]
- Porto, M.A.A.; Azevedo, M.F.; Gil, D. Auditory evoked potentials in premature and full-term infants. Braz. J. Otorhinolaryngol. 2011, 77, 622–627. [Google Scholar] [CrossRef]
- Alaerts, J.; Luts, H.; Van Dun, B.; Desloovere, C.; Wouters, J. Latencies of auditory steady-state responses recorded in early infancy. Audiol. Neurootol. 2010, 15, 116–127. [Google Scholar] [CrossRef] [PubMed]
- Van Maanen, A.; Stapells, D.R. Normal multiple auditory steady-state response thresholds to air-conducted stimuli in infants. J. Am. Acad. Audiol. 2009, 20, 196–207. [Google Scholar] [CrossRef]
- Van Maanen, A.; Stapells, D.R. Comparison of multiple auditory steady-state responses (80 versus 40 Hz) and slow cortical potentials for threshold estimation in hearing-impaired adults. Int. J. Audiol. 2005, 44, 613–624. [Google Scholar] [CrossRef] [PubMed]
- Ding, L.; Zheng, Z.; Wang, M.; Zhang, Y.; Tang, M.; Yang, Y.; Liu, Y. Comparison of ASSR and frequency specificity ABR induced by NB CE-Chirp for prediction of behavioral hearing thresholds in children with conductive hearing loss. Int. J. Pediatr. Otorhinolaryngol. 2024, 176, 111826. [Google Scholar] [CrossRef]
- Hatzopoulos, S.; Petruccelli, J.; Śliwa, L.; Jędrzejczak, W.W.; Kochanek, K.; Skarżyński, H. Hearing threshold prediction with Auditory Steady State Responses and estimation of correction functions to compensate for differences with behavioral data, in adult subjects. Part 1: Audera and CHARTR EP devices. Med. Sci. Monit. 2012, 18, MT47–MT53. [Google Scholar] [CrossRef] [PubMed]
- Cebulla, M.; Lurz, H.; Shehata-Dieler, W. Evaluation of waveform, latency and amplitude values of chirp ABR in newborns. Int. J. Pediatr. Otorhinolaryngol. 2014, 78, 631–636. [Google Scholar] [CrossRef]
- Tomlin, D.; Rance, G. Maturation of the Central Auditory Nervous System in Children with Auditory Processing Disorder. Semin. Hear. 2016, 37, 74–83. [Google Scholar] [CrossRef]
- Cho, S.W.; Han, K.H.; Jang, H.K.; Chang, S.O.; Jung, H.; Lee, J.H. Auditory brainstem responses to CE-Chirp® stimuli for normal ears and those with sensorineural hearing loss. Int. J. Audiol. 2015, 54, 700–704. [Google Scholar] [CrossRef]
- Swanepoel, D.; Ebrahim, S. Auditory steady-state response and auditory brainstem response thresholds in children. Eur. Arch. Otorhinolaryngol. 2009, 266, 213–219. [Google Scholar] [CrossRef] [PubMed]
- Stürzebecher, E.; Cebulla, M.; Elberling, C. Automated auditory response detection: Statistical problems with repeated testing. Int. J. Audiol. 2005, 44, 110–117. [Google Scholar] [CrossRef]
- Cone, B.; Garinis, A. Auditory steady state responses and speech feature discrimination in infants. J. Am. Acad. Audiol. 2009, 20, 629–643. [Google Scholar] [CrossRef]
- Kurtzberg, D.; Hilpert, P.L.; Kreuzer, J.A.; Vaughan, H.G., Jr. Differential maturation of cortical auditory evoked potentials to speech sounds in normal full-term and very low-birth weight infants. Dev. Med. Child Neurol. 1984, 26, 466–475. [Google Scholar] [CrossRef]
- Novak, G.P.; Kurtzberg, D.; Kreuzer, J.A.; Vaughan, H.F., Jr. Cortical responses to speech sounds and their formants in normal infants: Maturational sequence and spatiotemporal analysis. Electroencephalogr. Clin. Neurophysiol. 1989, 73, 295–305. [Google Scholar] [CrossRef]
- Choudhury, N.; Benasich, A.A. Maturation of auditory evoked potentials from 6 to 48 months: Prediction to 3- and 4-year language and cognitive abilities. Clin. Neurophysiol. 2011, 122, 320–338. [Google Scholar] [CrossRef] [PubMed]
- Rance, G.; Rickards, F.W.; Cohen, L.T.; Vidi, S.; Clark, G.M. The automated prediction of hearing thresholds in sleeping subjects using auditory steady-state evoked potentials. Ear Hear. 1995, 16, 499–507. [Google Scholar] [CrossRef] [PubMed]
- Jalaei, B.; Shaabani, M.; Zakaria, M.N. Mode of recording and modulation frequency effects of auditory steady state response thresholds. Braz. J. Otorhinolaryngol. 2017, 83, 10–15. [Google Scholar] [CrossRef]
- Picton, T.W.; John, M.S.; Dimitrijevic, A.; Purcell, D. Human auditory steady-state responses. Int. J. Audiol. 2003, 42, 177–219. [Google Scholar] [CrossRef]
- Picton, T.W.; Skinner, C.R.; Champagne, S.C.; Kellett, A.J.; Maiste, A.C. Potentials evoked by the sinusoidal modulation of the amplitude or frequency of a tone. J. Acoust. Soc. Am. 1987, 82, 165–178. [Google Scholar] [CrossRef]
- Mathew, R.; Bajo, F.R.; Hatton, N.; Buttfield, L.; Gowrishankar, S.; Vickers, D.; Donnelly, N.; Tysome, J.; Bance, M.; Axon, P. Assessment of the cochlear implant pathway for newborn hearing screening referrals. Cochlear Implant. Int. 2021, 22, 345–352. [Google Scholar] [CrossRef] [PubMed]
- Lightfoot, G.; Cairns, A.; Stevens, J. Noise Levels Required to Mask Stimuli Used in Auditory Brainstem Response Testing. Int. J. Audiol. 2010, 49, 794–798. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Gao, N.; Yin, Y.; Yang, L.; Xie, Y.; Chen, Y.; Dai, P.; Zhang, T. Bone conduction hearing in congenital aural atresia. Eur. Arch. Otorhinolaryngol. 2016, 273, 1697–1703. [Google Scholar] [CrossRef]
- Small, S.A.; Stapells, D.R. Multiple auditory steady-state responses to bone-conduction stimuli in adults with normal hearing. J. Am. Acad. Audiol. 2005, 16, 172–183. [Google Scholar] [CrossRef]
- Hatton, J.L.; Janssen, R.M.; Stapells, D.R. Auditory brainstem response to bone-conducted brief tones in young children with conductive or sensorineural hearing loss. Int. J. Otolaryngol. 2012, 2012, 284864. [Google Scholar] [CrossRef]
- Hulecki, L.R.; Small, S.A. Behavioral bone-conduction thresholds for infants with normal hearing. J. Am. Acad. Audiol. 2011, 22, 81–92. [Google Scholar] [CrossRef]
- Hunter, L.L.; Sanford, C.A. Tympanometry and Wideband Acoustic Immittance. In Handbook of Clinical Audiology, 7th ed.; Katz, J., Ed.; Wolters Kluwer: Philadelphia, PA, USA, 2015. [Google Scholar]
- British Society of Audiology (BSA). Recommended Procedure: Tympanometry and Acoustic Reflex Thresholds; Minor Amendment February 2025; The British Society of Audiology: Seafield, UK, 2025. [Google Scholar]
- Sanford, C.A.; Keefe, D.H.; Liu, Y.W.; Fitzpatrick, D.; McCreery, R.W.; Lewis, D.E.; Gorga, M.P. Sound-conduction effects on distortion-product otoacoustic emission screening outcomes in newborn infants: Test performance of wideband acoustic trans-fer functions and 1-kHz tympanometry. Ear Hear. 2009, 30, 635–652. [Google Scholar] [CrossRef]
- Aithal, S.; Aithal, V.; Kei, J. Effect of ear canal pressure and age on wideband absorbance in young infants. Int. J. Audiol. 2017, 56, 346–355. [Google Scholar] [CrossRef]
- Hunter, L.L.; Keefe, D.H.; Feeney, M.P.; Fitzpatrick, D.F.; Lin, L. Longitudinal development of wideband reflectance tympanometry in normal and at-risk infants. Hear. Res. 2016, 340, 3–14. [Google Scholar] [CrossRef]
- Zimatore, G.; Skarzynski, P.H.; Di Berardino, F.; Filipponi, E.; Hatzopoulos, S. Differences between pressurized and non-pres-surized transient-evoked otoacoustic emissions in neonatal subjects. Audiol. Neuro-Otol. 2021, 26, 346–352. [Google Scholar] [CrossRef] [PubMed]
- Wadhera, R.; Hernot, S.; Gulati, S.P.; Kalra, V. A controlled comparison of auditory steady-state responses and pure-tone audiometry in patients with hearing loss. Ear Nose Throat J. 2017, 96, E47–E52. [Google Scholar] [CrossRef]
- Erdem, M.Z.; Garça, M.F. Comparison of the Efficacy of Auditory Steady-State Response (ASSR) and Otoacoustic Emission (OAE) in Neonatal Hearing Screening. East. J. Med. 2024, 29, 467–477. [Google Scholar] [CrossRef]
- Mahmoudian, S.; Farhadi, M.; Kadivar, M.; Ghalehbaghi, B.; Rahimi, F.; Hemami, M.R.; Kamrava, S.K.; Asghari, A.; Amintehran, E.; Mohagheghi, P. Prognostic validity of dichotic multiple frequencies auditory steadystate responses versus distortion product otoacoustic emissions in hearing screening of high risk neonates. Int. J. Pediatr. Otorhinolaryngol. 2011, 75, 1109–1116. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, L.; Sanfins, M.D.; Pinto, J.D.; Skarzynski, P.H.; Skarzyńska, M.B.; Vieira Biaggio, E.P. Congenital toxoplasmosis and auditory disorders: A literature review. Front. Psychol. 2024, 14, 1286211. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, L.; Valadão, M.; Skarzynski, P.; Sanfins, M.; Biaggio, E. Effect of congenital toxoplasmosis on the encoding of speech in infants. Int. J. Pediatr. Otorhinolaryngol. 2020, 129, 109767. [Google Scholar] [CrossRef]
- Lightfoot, G.; Norman, G. ASSR Results in Auditory Neuropathy: A Case of Unexpectedly Good ASSR Thresholds. In Proceedings of the XXVI IERASG Biennial Symposium, Sydney, Australia, 30 June–4 July 2019. [Google Scholar]
- Eder, K.; Polterauer, D.; Semmelbauer, S.; Schuster, M.; Rader, T.; Hoster, E.; Flatz, W. Comparison of ABR and ASSR using narrow-band-chirp-stimuli in children with cochlear malformation and/or cochlear nerve hypoplasia suffering from severe/profound hearing loss. Eur. Arch. Otorhinolaryngol. 2022, 279, 2845–2855. [Google Scholar] [CrossRef]
- Rodrigues, G.R.I.; Lewis, D.R.; Fichino, S.N. Steady-state auditory evoked responses in audiological diagnosis in children: A comparison with brainstem evoked auditory responses. Braz. J. Otorhinolaryngol. 2010, 76, 96–101. [Google Scholar] [CrossRef]
- Polonenko, M.J.; Maddox, R.K. Optimizing Parameters for Using the Parallel Auditory Brainstem Response to Quickly Estimate Hearing Thresholds. Ear Hear. 2022, 43, 646–658. [Google Scholar] [CrossRef]
Search ID | Combination Search Terms (MeSH) | Database | ||
---|---|---|---|---|
PubMed | Web of Science | Scopus | ||
1 | (“Auditory Steady State Response” AND “Objective Audiometry”) OR (“Hearing Normative” AND “Infant”) | 311 | 250 | 22 |
2 | (“Auditory Steady State Response” AND “Objective Audiometry”) OR (“Hearing Normative” AND “Neonatal”) | 151 | 150 | 5 |
3 | “Auditory Steady State Response” AND “Objective Audiometry” AND “Diagnostic” AND “Infant” | 59 | 6 | 14 |
4 | “Auditory Steady State Response” AND “Auditory Evoked Potential” AND “Neonatal” AND “Infant” | 68 | 8 | 43 |
5 | “Auditory Steady State Response” AND “Frequency-specific Hearing Threshold” AND “Neonatal” AND “Infant” | 10 | 8 | 2 |
6 | “Auditory Steady State Response” AND “Auditory Threshold” AND “Neonatal” AND “Infant” | 55 | 14 | 11 |
Total number of articles | 654 | 436 | 97 |
Author/Ref. | Participants | ASSR Parameters | Complementary Audiological Tests | Objective | Main Findings | Author’s Conclusions |
---|---|---|---|---|---|---|
Valeriote et al. [22] | EG: 64 infants (0–6 mo) CG:—none | Type: Multiple Freq 500–4000 Hz Stim: AC and BC Equip: IHS Mod rate: 78–101 Hz Stimulus:—not provided Intens: 30 dB | TOAE, Tymp (1 kHz), Click-ABR | To compare ASSR (AC/BC) with Click-ABR in detecting conductive HL in infants | BC thresholds were similar between groups. Greater AC–BC gap at 500 Hz in conductive HL. ASSR thresholds showed more variability | ASSR showed greater variability and exaggerated the AC–BC gap. Click-ABR (AC) had better sensitivity/ specificity for detecting conductive HL |
Lu et al. [23] | EG: 15 children with HL (1–6 y; 11 F) CG: 10 children with NH (1–8 y) | Type: Multiple Freq 250–4000 Hz Stim: AC Equip:—not provided Mod rate: 67–95 Hz Stimulus:—not provided Intens:—not provided | VRA, TOAE, Click-ABR | To compare thresholds using ASSR, CM, and VRA in children with HL and NH | ASSR thresholds slightly higher than VRA in NH. VRA outperformed ASSR in HL | ASSR thresholds slightly higher than VRA. No significant difference in ASSR/VRA threshold gap between groups. |
Sininger et al. [20] | EG: 102 children (7–80 mo; 58 F) CG:—none | Type: Multiple Freq 500–4000 Hz Stim: AC Equip: Eclipse Mod rate: 90 Hz Stimulus: CE-Chirp Intens: 20 dB | Tymp (226 Hz and 1 kHz), DPOAE, Click-ABR | To compare ASSR and Click-ABR thresholds using optimized stimuli and detection algorithms | ASSR thresholds were lower than Click-ABR | ASSR effective for NH detection; faster audiogram predictor |
Sousa et al. [24] | EG: 33 preterm CG: 30 full terms | Type: Multiple and Single Freq 500–4000 Hz Stim: AC and BC Equip:—not provided Mod rate: 111.41 Hz (LE), 115 Hz (RE) Stimulus:—not provided Intens:—not provided | Tymp (1 kHz), TOAE | Comparing ASSR thresholds in preterm and term infants at two time points | Higher thresholds initially in preterm. No difference at 18 mo | ASSR responses stabilize by 18 mo; useful for neonatal diagnostics |
Torres-Fortuny et al. [25] | EG: 69 newborns (1–16 d) CG:—none | Type: Multiple and Single Freq 500–4000 Hz Stim: AC and BC Equip:—not provided Mod rate: 111.41 Hz (LE), 115 Hz (RE) Stimulus:—not provided Intens:—not provided | TOAE, Click-ABR | To evaluate ASSR amplitude responses using single or simultaneous AC and BC stimulation in newborns | No ASSR amplitude differences between single and simultaneous AC and BC stim | Both stim types yield stable ASSR amplitudes in newborns |
François et al. [26] | EG: 175 children (0–6 y) CG: -none | Type: Multiple Freq 500–4000 Hz Stim: AC Equip: Eclipse Mod rate: 80 Hz Stimulus: CE-Chirp Intens: 75 dB | Tymp (ND), VRA, Click-ABR | To assess whether ASSR responses are dependable compared with Click-ABR and behavioral field audiometry | ASSR correlated with behavioral and ABR thresholds. ASSR thresholds were better (8–15 dB difference) | ASSR is as dependable as click-ABR for 2–4 kHz in children <6 y. Valuable when behavioral thresholds are not feasible |
Venail et al. [27] | EG: 32 infants (5.2–7.4 mo) CG:—none | Type: Multiple Freq 500–4000 Hz Stim: AC Equip: Eclipse Mod rate:—not provided Stimulus: CE-Chirp Inten:—not provided | VRA, Click-ABR | To access bilateral simultaneous ASSR using NB CE-Chirps in infants | ASSR correlated well with Click-ABR and VRA. No difference between VRA and ASSR mean thresholds | NB CE-Chirps offer reliable rapid threshold estimates, especially at low frequencies |
Casey and Small [28] | EG: 23 infants NH (6.5–19 mo; 12 F) CG: 12 adults NH (17–50 y; 10 F) | Type: Multiple Freq 500–4000 Hz Stim: AC and BC Equip:—not provided Mod: 78–101 Hz Stimulus:—not provided Intens:—not provided | Tymp (ND), VRA, TOAE, ABR-SF (ND) | To compare AC/BC thresholds via ASSR and behavioral methods in infants and adults | BC ASSR thresholds were worse than VRA thresholds. Hearing thresholds in infants and adults for AC and BC were similar at all frequencies. | Differences in infant–adult and AC–BC thresholds are greater in the ASSR assessment compared with the behavioral auditory assessments. |
Rodrigues et al. [29] | EG: 30 full-term infants NH (6.5–19 mo; 16 M) CG: 10 young adults (23–30 y; 5 F) | Type: Multiple Freq 500–4000 Hz Stim: AC Equip: Eclipse Mod rate:—not provided Stimulus: CE-Chirp Intens: 50 dB | TOAE, ABR-Chirp | To estimate AC thresholds via ASSR to NB CE-Chirp and compare across age groups | Normal thresholds in both groups, except at 500 Hz (infants > adults). | ASSR is useful for estimating thresholds, with age-related effects at 500 Hz. |
Panahi [30] | EG: 26 children (2.4–11 y; 13 F) CG:—none | Type: Multiple Freq 500–4000 Hz Stim: AC Equip: Eclipse Mod rate: 90 Hz Stimulus:—not provided Intens: 20 dB | VRA, TOAE, ABR-SF (ND) | To compare ASSR and VRA thresholds in children with a history of neonatal hyperbilirubinemia | The mean difference between VRA and ASSR thresholds was 1.5–8.48 dB in children with HL and 7.29–13.95 dB in children with NH. | 90 Hz ASSR provides reliable threshold estimates in this population. |
Ribeiro et al. [31] | EG: 21 NH premature infants (<37 weeks; 11 F) CG: 56 NH full-term infants (>38 weeks; 13 F) | Type: Multiple Freq 500–4000 Hz Stim: AC Equip: Biologic Mod rate: 91.406–96.094 Hz (LE); 99.094 Hz (RE) Stimulus:—not provided Intens:—not provided | OAE, ABR-SF (ND) | To estimate hearing thresholds using ASSR in term and premature infants with NH | Higher thresholds and variability at 500 and 4000 Hz in preterm. | ASSR effective in both groups; preterm showed more variability. |
Choi et al. [32] | EG: 44 infants (3d) CG: 15 infants (3–15 weeks) | Type: Multiple Freq 500–4000 Hz Stim: AC Equip: Biologic Mod rate: 80.08–94.73 Hz (LE); 78.13–91.80 Hz (RE) Stimulus:—not provided Intens: 50 dB | Click-ABR | To examine ASSR phase stability in newborns using different modulation rates | No phase differences by age. Phase polarization methods can improve detection rates and test speed. | ABR phase responses evoked by exponentially amplitude-modulated tones are stable. |
Nodarse et al. [33] | EG: 50 infants (7–18 d; 22 F) CG: —none | Type: Multiple Freq 500 and 2000 Hz Stim: AC Equip:—not provided Mod rate: 81 Hz (LE); 97 Hz (RE) Stimulus:—not provided Intens: 60 dB | Click-ABR | To evaluate a semi-automatic hearing screening test using ASSR | Hearing thresholds reaching 100% detectability for 45 and 50 dB. The screening test achieved 100% sensitivity and 96% specificity. | ASSR is a feasible screening tool in healthy newborns. |
Porto et al. [34] | EG: 17 premature infants (<37 weeks; 12 F) GC: 19 full-term infants (>37 weeks; 11 M) | Type: Multiple Freq 500–4000 Hz Stim: AC Equip: IHS Mod rate: 93 Hz (LE); 97 Hz (RE) Stimulus: TB Intens: 80 dB | CPR, OAE-ND, ABR-TB | To compare ABR-TB and ASSR responses in preterm vs. term infants | The responses of preterm and full-term infants were similar. ASSR was slightly longer (test time) in preterm. | Both approaches are applicable in clinical practice. Premature infants require more time for ASSR. |
Alaerts et al. [35] | EG: 70 infants at risk for HL (4–19 weeks; 40 M) CG: 16 NH adults (20–29 y; 13 F) | Type: Multiple Freq 500–4000 Hz Stim: AC Equip: IHS Mod rate: 82–106 Hz (LE); 86–110 Hz (RE) Stimulus:—not provided Intens: 20 to 100 dB | Tymp (ND), TOAE, BA | To compare ASSR thresholds between infants and adults with NH | Normal ASSR thresholds were higher in infants compared with adults. Strong correlation between ASSR and BA. | The thresholds of normal infants were higher than those of adults with NH when comparing ASSR. ASSR thresholds by AC showed good correlations in infants with varying degrees of HL. |
Van Maanen et al. [36] | EG: 22 babies (<6 mo) CG: 32 babies (>6 mo) | Type: Multiple Freq 500–4000 Hz Stim: AC Equip: IHS Mod rate: 81–105 Hz (LE); 77–100 Hz (RE) Stimulus:—not provided Intens: 70 dB | FS-ABR (ND) | To evaluate use of 80 Hz ASSR for threshold estimation in infants | Consistent thresholds at 49, 45, 36, and 32 dB HL across the frequencies. No differences in results for younger v. older infants. | ASSR effective for confirming NH in both ears at multiple frequencies. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martins, M.F.P.; Donadon, C.; Skarzynski, P.H.; de Souza, A.J.T.; de Andrade, A.N.; Gil, D.; Sanfins, M.D. Auditory Steady-State Responses for Detecting Mild Hearing Loss in Babies, Infants, and Children: Literature Review. Life 2025, 15, 1105. https://doi.org/10.3390/life15071105
Martins MFP, Donadon C, Skarzynski PH, de Souza AJT, de Andrade AN, Gil D, Sanfins MD. Auditory Steady-State Responses for Detecting Mild Hearing Loss in Babies, Infants, and Children: Literature Review. Life. 2025; 15(7):1105. https://doi.org/10.3390/life15071105
Chicago/Turabian StyleMartins, Mariana Ferreira Pires, Caroline Donadon, Piotr Henryk Skarzynski, Ana Júlia Tashiro de Souza, Adriana Neves de Andrade, Daniela Gil, and Milaine Dominici Sanfins. 2025. "Auditory Steady-State Responses for Detecting Mild Hearing Loss in Babies, Infants, and Children: Literature Review" Life 15, no. 7: 1105. https://doi.org/10.3390/life15071105
APA StyleMartins, M. F. P., Donadon, C., Skarzynski, P. H., de Souza, A. J. T., de Andrade, A. N., Gil, D., & Sanfins, M. D. (2025). Auditory Steady-State Responses for Detecting Mild Hearing Loss in Babies, Infants, and Children: Literature Review. Life, 15(7), 1105. https://doi.org/10.3390/life15071105