Repurposed Antipsychotics as Potential Anticancer Agents: Clozapine Efficacy and Dopaminergic Pathways in Neuroblastoma and Glioblastoma
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Cell Culture
2.3. Cell Treatment
2.4. Cell Viability Assay
2.5. Cell Morphology Assessments
2.6. Synergism Studies
2.7. Ultra-High-Performance Liquid Chromatography (uHPLC) Analysis
2.8. Data and Statistical Analysis
3. Results
3.1. Repurposed Dopaminergic Drugs Have Cytotoxic Effects on SH-SY5Y and A172 Cell Lines
3.2. Evaluation of the Effect of the Presence of Dopamine Precursors and Stress Oxidative Inductors on the Cytotoxicity Effect of Repurposed Drugs on SH-SY5Y and A172 Cells
3.2.1. Tyrosine Did Not Induce Cytotoxicity in Cell Lines but Enhances the Cytotoxicity of CLZ on SH-SY5Y and A172 Cells
3.2.2. Anticancer Activity of Repurposed Drugs Is Potentiated in the Presence of an Oxidative Stress Inducer in SH-SY5Y
3.2.3. The Presence of DA Precursor and Oxidative Stress Induces Synergism on SH-SY5Y and A172 Cell Lines
3.3. Impacts of Clozapine and Its Combinations with Tyrosine and H2O2 on Extracellular Tyrosine and Dopamine Levels in SH-SY5Y and A172 Cell Lines
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Barbaro, M.; Fine, H.A.; Magge, R.S. Foundations of Neuro-Oncology: A Multidisciplinary Approach. World Neurosurg. 2021, 151, 392–401. [Google Scholar] [CrossRef] [PubMed]
- Vaillant, B.; Kuo, S.-H.; De Groot, J. Emerging subspecialties in neurology: Neuro-oncology: A developing subspecialty with many opportunities. Neurology 2009, 72, e51–e53. [Google Scholar] [CrossRef]
- Rodríguez-Camacho, A.; Flores-Vázquez, J.G.; Moscardini-Martelli, J.; Torres-Ríos, J.A.; Olmos-Guzmán, A.; Ortiz-Arce, C.S.; Cid-Sánchez, D.R.; Pérez, S.R.; Macías-González, M.D.S.; Hernández-Sánchez, L.C.; et al. Glioblastoma Treatment: State-of-the-Art and Future Perspectives. Int. J. Mol. Sci. 2022, 23, 7207. [Google Scholar] [CrossRef] [PubMed]
- Esposito, M.R.; Aveic, S.; Seydel, A.; Tonini, G.P. Neuroblastoma treatment in the post-genomic era. J. Biomed. Sci. 2017, 24, 14. [Google Scholar] [CrossRef] [PubMed]
- Grochans, S.; Cybulska, A.M.; Simińska, D.; Korbecki, J.; Kojder, K.; Chlubek, D.; Baranowska-Bosiacka, I. Epidemiology of Glioblastoma Multiforme–Literature Review. Cancers 2022, 14, 2412. [Google Scholar] [CrossRef]
- Le Rhun, E.; Preusser, M.; Roth, P.; Reardon, D.A.; van den Bent, M.; Wen, P.; Reifenberger, G.; Weller, M. Molecular targeted therapy of glioblastoma. Cancer Treat. Rev. 2019, 80, 101896. [Google Scholar] [CrossRef]
- Oronsky, B.; Reid, T.R.; Oronsky, A.; Sandhu, N.; Knox, S.J. A Review of Newly Diagnosed Glioblastoma. Front. Oncol. 2020, 10, 574012. [Google Scholar] [CrossRef]
- Hambardzumyan, D.; Bergers, G. Glioblastoma: Defining Tumor Niches. Trends Cancer 2015, 1, 252–265. [Google Scholar] [CrossRef]
- Katta, S.S.; Nagati, V.; Paturi, A.S.V.; Murakonda, S.P.; Murakonda, A.B.; Pandey, M.K.; Gupta, S.C.; Pasupulati, A.K.; Challagundla, K.B. Neuroblastoma: Emerging trends in pathogenesis, diagnosis, and therapeutic targets. J. Control Release 2023, 357, 444–459. [Google Scholar] [CrossRef]
- Lundberg, K.I.; Treis, D.; Johnsen, J.I. Neuroblastoma Heterogeneity, Plasticity, and Emerging Therapies. Curr. Oncol. Rep. 2022, 24, 1053–1062. [Google Scholar] [CrossRef]
- Shawraba, F.; Hammoud, H.; Mrad, Y.; Saker, Z.; Fares, Y.; Harati, H.; Bahmad, H.F.; Nabha, S. Biomarkers in Neuroblastoma: An Insight into Their Potential Diagnostic and Prognostic Utilities. Curr. Treat. Options Oncol. 2021, 22, 102. [Google Scholar] [CrossRef] [PubMed]
- Kholodenko, I.V.; Kalinovsky, D.V.; Doronin, I.I.; Deyev, S.M.; Kholodenko, R.V. Neuroblastoma Origin and Therapeutic Targets for Immunotherapy. J. Immunol. Res. 2018, 2018, 7394268. [Google Scholar] [CrossRef] [PubMed]
- Jeon, H.-M.; Oh, Y.T.; Shin, Y.J.; Chang, N.; Kim, D.; Woo, D.; Yeup, Y.; Joo, K.M.; Jo, H.; Yang, H.; et al. Dopamine receptor D2 regulates glioblastoma survival and death through MET and death receptor 4/5. Neoplasia 2023, 39, 100894. [Google Scholar] [CrossRef]
- Speranza, L.; Di Porzio, U.; Viggiano, D.; de Donato, A.; Volpicelli, F. Dopamine: The neuromodulator of long-term synaptic plasticity, reward and movement control. Cells 2021, 10, 735. [Google Scholar] [CrossRef]
- Turk, A.Z.; Marchoubeh, M.L.; Fritsch, I.; Maguire, G.A.; SheikhBahaei, S. Dopamine, vocalization, and astrocytes. Brain Lang. 2021, 219, 104970. [Google Scholar] [CrossRef] [PubMed]
- Rosas-Cruz, A.; Salinas-Jazmín, N.; Velázquez, M.A.V. Dopamine receptors in cancer: Are they valid therapeutic targets? Technol. Cancer Res. Treat. 2021, 20, 15330338211027913. [Google Scholar] [CrossRef] [PubMed]
- Grant, C.E.; Flis, A.L.; Ryan, B.M. Understanding the role of dopamine in cancer: Past, present and future. Carcinogenesis 2022, 43, 517–527. [Google Scholar] [CrossRef]
- Correia, A.S.; Fraga, S.; Teixeira, J.P.; Vale, N. Cell model of depression: Reduction of cell stress with mirtazapine. Int. J. Mol. Sci. 2022, 23, 4942. [Google Scholar] [CrossRef]
- Jackson, C.W.; Sheehan, A.H.; Reddan, J.G. Evidence-based review of the black-box warning for droperidol. Am. J. Health Syst. Pharm. 2007, 64, 1174–1186. [Google Scholar] [CrossRef]
- Perkins, J.; Ho, J.D.; Vilke, G.M.; DeMers, G. American Academy of Emergency Medicine Position Statement: Safety of Droperidol Use in the Emergency Department. J. Emerg. Med. 2015, 49, 91–97. [Google Scholar] [CrossRef]
- Rossi, M.; Giorgi, G. Domperidone and long QT syndrome. Curr. Drug Saf. 2010, 5, 257–262. [Google Scholar] [CrossRef] [PubMed]
- Sugumar, A.; Singh, A.; Pasricha, P.J. A systematic review of the efficacy of domperidone for the treatment of diabetic gastroparesis. Clin. Gastroenterol. Hepatol. 2008, 6, 726–733. [Google Scholar] [CrossRef] [PubMed]
- Hondeghem, L.M. Domperidone: Limited benefits with significant risk for sudden cardiac death. J. Cardiovasc. Pharmacol. 2013, 61, 218–225. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.B.; Zhang, B.H.; Zhang, K.Z.; Meng, X.T.; Jia, Q.A.; Zhang, Q.B.; Bu, Y.; Zhu, X.D.; Ma, D.N.; Ye, B.G.; et al. Moderate swimming suppressed the growth and metastasis of the transplanted liver cancer in mice model: With reference to nervous system. Oncogene 2016, 35, 4122–4131. [Google Scholar] [CrossRef]
- Gonçalves, J.M.; Silva, C.A.B.; Rivero, E.R.C.; Cordeiro, M.M.R. Inhibition of cancer stem cells promoted by Pimozide. Clin. Exp. Pharmacol. Physiol. 2019, 46, 116–125. [Google Scholar] [CrossRef]
- Shaw, V.; Srivastava, S.; Srivastava, S.K. Repurposing antipsychotics of the diphenylbutylpiperidine class for cancer therapy. Semin. Cancer Biol. 2021, 68, 75–83. [Google Scholar] [CrossRef]
- Germann, D.; Kurylo, N.; Han, F. Risperidone. Profiles Drug Subst. Excip. Relat. Methodol. 2012, 37, 313–361. [Google Scholar] [CrossRef]
- Möller, H.-J. Risperidone: A review. Expert. Opin. Pharmacother. 2005, 6, 803–818. [Google Scholar] [CrossRef]
- Reutfors, J.; Wingard, L.; Brandt, L.; Wang, Y.; Qiu, H.; Kieler, H.; Bahmanyar, S. Risk of breast cancer in risperidone users: A nationwide cohort study. Schizophr. Res. 2017, 182, 98–103. [Google Scholar] [CrossRef]
- Saudemont, G.; Prod’Homme, C.; Da Silva, A.; Villet, S.; Reich, M.; Penel, N.; Gamblin, V. The use of olanzapine as an antiemetic in palliative medicine: A systematic review of the literature. BMC Palliat. Care 2020, 19, 56. [Google Scholar] [CrossRef]
- Ji, M.; Cui, J.; Xi, H.; Yang, Y.; Wang, L. Efficacy of olanzapine for quality of life improvement among patients with malignant tumor: A systematic review. Cancer Rep. 2019, 2, e1167. [Google Scholar] [CrossRef]
- Gammon, D.; Cheng, C.; Volkovinskaia, A.; Baker, G.B.; Dursun, S.M. Clozapine: Why Is It So Uniquely Effective in the Treatment of a Range of Neuropsychiatric Disorders? Biomolecules 2021, 11, 1030. [Google Scholar] [CrossRef] [PubMed]
- Usta, N.G.; Poyraz, C.A.; Aktan, M.; Duran, A. Clozapine treatment of refractory schizophrenia during essential chemotherapy: A case study and mini review of a clinical dilemma. Ther. Adv. Psychopharmacol. 2014, 4, 276–281. [Google Scholar] [CrossRef] [PubMed]
- Wagner, E.; Siafis, S.; Fernando, P.; Falkai, P.; Honer, W.G.; Roh, A.; Siskind, D.; Leucht, S.; Hasan, A. Efficacy and safety of clozapine in psychotic disorders—A systematic quantitative meta-review. Transl. Psychiatry 2021, 11, 487. [Google Scholar] [CrossRef] [PubMed]
- Abdelaleem, M.; Ezzat, H.; Osama, M.; Megahed, A.; Alaa, W.; Gaber, A.; Shafei, A.; Refaat, A. Prospects for repurposing CNS drugs for cancer treatment. Oncol. Rev. 2019, 13, 411. [Google Scholar] [CrossRef]
- Chen, V.C.-H.; Hsu, T.-C.; Lin, C.-F.; Huang, J.-Y.; Chen, Y.-L.; Tzang, B.-S.; McIntyre, R.S. Association of risperidone with gastric cancer: Triangulation method from cell study, animal study, and cohort study. Front. Pharmacol. 2022, 13, 1151. [Google Scholar] [CrossRef]
- Gassó, P.; Mas, S.; Molina, O.; Bernardo, M.; Lafuente, A.; Parellada, E. Neurotoxic/neuroprotective activity of haloperidol, risperidone and paliperidone in neuroblastoma cells. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2012, 36, 71–77. [Google Scholar] [CrossRef]
- Chen, V.C.-H.; Hsieh, Y.-H.; Lin, T.-C.; Lu, M.-L.; Liao, Y.-T.; Yang, Y.-H.; Hsu, T.-C.; Stewart, R.; Weng, J.-C.; Lee, M.-J. New use for old drugs: The protective effect of risperidone on colorectal cancer. Cancers 2020, 12, 1560. [Google Scholar] [CrossRef]
- Sanomachi, T.; Suzuki, S.; Kuramoto, K.; Takeda, H.; Sakaki, H.; Togashi, K.; Seino, S.; Yoshioka, T.; Okada, M.; Kitanaka, C. Olanzapine, an Atypical Antipsychotic, Inhibits Survivin Expression and Sensitizes Cancer Cells to Chemotherapeutic Agents. Anticancer Res. 2017, 37, 6177–6188. [Google Scholar] [CrossRef]
- Sachlos, E.; Risueno, R.M.; Laronde, S.; Shapovalova, Z.; Lee, J.H.; Russell, J.; Malig, M.; McNicol, J.D.; Fiebig-Comyn, A.; Graham, M.; et al. Identification of drugs including a dopamine receptor antagonist that selectively target cancer stem cells. Cell 2012, 149, 1284–1297. [Google Scholar] [CrossRef]
- Nunes, M.; Duarte, D.; Vale, N.; Ricardo, S. Pitavastatin and ivermectin enhance the efficacy of paclitaxel in chemoresistant high-grade serous carcinoma. Cancers 2022, 14, 4357. [Google Scholar] [CrossRef] [PubMed]
- Kang, U.G.; Seo, M.S.; Roh, M.S.; Kim, Y.; Yoon, S.C.; Kim, Y.S. The effects of clozapine on the GSK-3-mediated signaling pathway. FEBS Lett. 2004, 560, 115–119. [Google Scholar] [CrossRef]
- Weissenrieder, J.S.; Reed, J.L.; Moldovan, G.-L.; Johnson, M.T.; Trebak, M.; Neighbors, J.D.; Mailman, R.B.; Hohl, R.J. Antipsychotic drugs elicit cytotoxicity in glioblastoma multiforme in a calcium-dependent, non-D2 receptor-dependent, manner. Pharmacol. Res. Perspect. 2021, 13, e00689. [Google Scholar] [CrossRef]
- Schmidt, A.; Krieg, J.; Clement, H.; Hemmeter, U.; Schulz, E.; Vedder, H.; Heiser, P. Effects of quetiapine, risperidone, 9-hydroxyrisperidone and ziprasidone on the survival of human neuronal and immune cells in vitro. J. Psychopharmacol. 2010, 24, 349–354. [Google Scholar] [CrossRef] [PubMed]
- Yan, Y.; Pan, J.; Chen, Y.; Xing, W.; Li, Q.; Wang, D.; Zhou, X.; Xie, J.; Miao, C.; Yuan, Y. Increased dopamine and its receptor dopamine receptor D1 promote tumor growth in human hepatocellular carcinoma. Cancer Commun. 2020, 40, 694–710. [Google Scholar] [CrossRef]
- Sobczuk, P.; Łomiak, M.; Cudnoch-Jędrzejewska, A. Dopamine D1 receptor in cancer. Cancers 2020, 12, 3232. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Jiang, X.; Gao, L.; Liu, X.; Li, J.; Huang, X.; Zeng, T. Synergistic suppression of glioblastoma cell growth by combined application of temozolomide and dopamine D2 receptor antagonists. World Neurosurg. 2019, 128, e468–e477. [Google Scholar] [CrossRef]
- Csernansky, J.G.; Martin, M.V.; Czeisler, B.; Meltzer, M.A.; Ali, Z.; Dong, H. Neuroprotective effects of olanzapine in a rat model of neurodevelopmental injury. Pharmacol. Biochem. Behav. 2006, 83, 208–213. [Google Scholar] [CrossRef]
- Islam, M.S.; Shin, H.-Y.; Yoo, Y.-J.; Kim, R.; Jang, Y.-J.; Akanda, M.R.; Tae, H.-J.; Kim, I.-S.; Ahn, D.; Park, B.-Y. Olanzapine ameliorates ischemic stroke-like pathology in gerbils and H2O2-induced neurotoxicity in SH-SY5Y cells via inhibiting the MAPK signaling pathway. Antioxidants 2022, 11, 1697. [Google Scholar] [CrossRef]
- Karpel-Massler, G.; Kast, R.E.; Westhoff, M.-A.; Dwucet, A.; Welscher, N.; Nonnenmacher, L.; Hlavac, M.; Siegelin, M.D.; Wirtz, C.R.; Debatin, K.-M. Olanzapine inhibits proliferation, migration and anchorage-independent growth in human glioblastoma cell lines and enhances temozolomide’s antiproliferative effect. J. Neuro-Oncol. 2015, 122, 21–33. [Google Scholar] [CrossRef]
- Yamashita, D.; Bernstock, J.D.; Elsayed, G.; Sadahiro, H.; Mohyeldin, A.; Chagoya, G.; Ilyas, A.; Mooney, J.; Estevez-Ordonez, D.; Yamaguchi, S.; et al. Targeting glioma-initiating cells via the tyrosine metabolic pathway. J. Neurosurg. 2020, 134, 721–732. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.Y.; Dai, X.T.; Gao, Q.L.; Chang, H.K.; Zhang, S.; Shan, C.L.; He, T. Tyrosine metabolic reprogramming coordinated with the tricarboxylic acid cycle to drive glioma immune evasion by regulating PD-L1 expression. Ibrain 2023, 9, 133–147. [Google Scholar] [CrossRef]
- Xie, H.-R.; Hu, L.-S.; Li, G.-Y. SH-SY5Y human neuroblastoma cell line: In vitro cell model of dopaminergic neurons in Parkinson’s disease. Chin. Med. J. 2010, 123, 1086–1092. [Google Scholar]
- Zhong, Y.; Geng, F.; Mazik, L.; Yin, X.; Becker, A.P.; Mohammed, S.; Su, H.; Xing, E.; Kou, Y.; Chiang, C.Y.; et al. Combinatorial targeting of glutamine metabolism and lysosomal-based lipid metabolism effectively suppresses glioblastoma. Cell Rep. Med. 2024, 5, 101706. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Moura, C.; Correia, A.S.; Vale, N. Exploring the Interaction of Indole-3-Acetonitrile with Neuroblastoma Cells: Understanding the Connection with the Serotonin and Dopamine Pathways. Biomedicines 2023, 11, 3325. [Google Scholar] [CrossRef] [PubMed]
- Ransy, C.; Vaz, C.; Lombès, A.; Bouillaud, F. Use of H2O2 to Cause Oxidative Stress, the Catalase Issue. Int. J. Mol. Sci. 2020, 21, 9149. [Google Scholar] [CrossRef]
- Chihara, R.; Kitajima, H.; Ogawa, Y.; Nakamura, H.; Tsutsui, S.; Mizutani, M.; Kino-Oka, M.; Ezoe, S. Effects of residual H2O2 on the growth of MSCs after decontamination. Regen. Ther. 2018, 9, 111–115. [Google Scholar] [CrossRef]
- Whittemore, E.R.; Loo, D.T.; Watt, J.A.; Cotman, C.W. A detailed analysis of hydrogen peroxide-induced cell death in primary neuronal culture. Neuroscience 1995, 67, 921–932. [Google Scholar] [CrossRef]
- Correia, A.S.; Silva, I.; Reguengo, H.; Oliveira, J.C.; Vasques-Nóvoa, F.; Cardoso, A.; Vale, N. The Effect of the Stress Induced by Hydrogen Peroxide and Corticosterone on Tryptophan Metabolism, Using Human Neuroblastoma Cell Line (SH-SY5Y). Int. J. Mol. Sci. 2023, 24, 4389. [Google Scholar] [CrossRef]
- Correia, A.S.; Silva, I.; Oliveira, J.C.; Reguengo, H.; Vale, N. Serotonin Type 3 Receptor Is Potentially Involved in Cellular Stress Induced by Hydrogen Peroxide. Life 2022, 12, 1645. [Google Scholar] [CrossRef]
- Yalamarty, S.S.K.; Filipczak, N.; Li, X.; Subhan, M.A.; Parveen, F.; Ataide, J.A.; Rajmalani, B.A.; Torchilin, V.P. Mechanisms of Resistance and Current Treatment Options for Glioblastoma Multiforme (GBM). Cancers. 2023, 15, 2116. [Google Scholar] [CrossRef] [PubMed]
- Alrashidi, H.; Eaton, S.; Heales, S. Biochemical characterization of proliferative and differentiated SH-SY5Y cell line as a model for Parkinson’s disease. Neurochem. Int. 2021, 145, 105009. [Google Scholar] [CrossRef] [PubMed]
IC50 (µM) | ||||||
---|---|---|---|---|---|---|
SH-SY5 | A172 | |||||
24 h | 48 h | 72 h | 24 h | 48 h | 72 h | |
Domperidone | 30.3 | 18.6 | 17.6 | >100 | >100 | >100 |
Droperidol | >100 | >100 | >100 | >100 | >100 | >100 |
Pimozide | 6.6 | 1.8 | 2.9 | >100 | >100 | >100 |
Risperidone | >100 | >100 | >100 | >100 | 51.6 | >100 |
Clozapine | 41 | 31.4 | 27.4 | 50.8 | 42.2 | 41.3 |
Olanzapine | >100 | >100 | >100 | >100 | >100 | >100 |
SH-SY5Y | A172 | ||||||
---|---|---|---|---|---|---|---|
[CLZ] (µM) | [Tyr] (µM) | CI (24 h) | CI (48 h) | CI (72 h) | CI (24 h) | CI (48 h) | CI (72 h) |
25 | 25 | 1.085 | 1.209 | 0.3500 | 0.3634 | 8.23 × 108 | 84.66 |
25 | 100 | 2.844 | 4.400 | 0.3731 | 0.3330 | 7.715 × 108 | 70.80 |
25 | 250 | 15.19 | 11.52 | 0.4312 | 0.4137 | 7.82 × 108 | 20.48 |
25 | 500 | 46.87 | 24.72 | 0.3963 | 0.2922 | 9.89 × 109 | 8.721 |
50 | 25 | 595.6 | 1.544 | 0.6803 | 0.2576 | 1.30 × 1011 | 1.535 |
50 | 100 | 595.6 | 6.141 | 0.7595 | 0.2730 | 3.68 × 1011 | 7.658 |
50 | 250 | 595.6 | 14.81 | 0.7454 | 0.2737 | 1.73 × 1012 | 3.040 |
50 | 500 | 17.48 | 31.40 | 0.7630 | 0.2912 | 2.87 × 1012 | 6.109 |
Cell Line | [Drug] (µM) | [Tyr] (µM) | CI (48 h) | CI (72 h) | |
---|---|---|---|---|---|
PIM | SH-SY5Y | 1 | 25 | 1.100 | 0.2064 |
1 | 100 | 4.122 | 0.08279 | ||
1 | 250 | 11.15 | 0.3007 | ||
1 | 500 | 25.47 | 0.3439 | ||
10 | 25 | 1.199 | 31,900.4 | ||
10 | 100 | 3.921 | 31,901.8 | ||
10 | 250 | 11.08 | 31,904.7 | ||
10 | 500 | 22.71 | 0.4406 | ||
DOM | 10 | 25 | 0.9455 | 42,935.0 | |
10 | 100 | 2.910 | 42,936.5 | ||
10 | 250 | 8.217 | 42,939.4 | ||
10 | 500 | 19.93 | 42,944.3 | ||
25 | 25 | 1.174 | 107,337 | ||
25 | 100 | 3.387 | 107,338 | ||
25 | 250 | 7.540 | 107,341 | ||
25 | 500 | 17.1888 | 107,346 | ||
RIS | A172 | 50 | 25 | 7.145 × 108 | 52.01 |
50 | 100 | 5.613 × 108 | 422.1 | ||
50 | 250 | 6.455 × 109 | 33.39 | ||
50 | 500 | 1.37 × 1010 | 671.6 | ||
100 | 25 | 2.485 × 108 | 5.299 × 107 | ||
100 | 100 | 6.387 × 108 | 3.94 × 1052 | ||
100 | 250 | 1.33 × 1010 | 9.244 × 106 | ||
100 | 500 | 3.70 × 1010 | 2.931 × 107 |
SH-SY5Y | |||||
---|---|---|---|---|---|
[Drug] (µM) | [H2O2] (µM) | CI (24 h) | CI (48 h) | CI (72 h) | |
CLZ | 25 | 132 | 0.3961 | 0.5372 | 0.3657 |
50 | 0.1936 | 0.5357 | 0.6272 | ||
DOM | 10 | 0.1301 | 1.135 | 2.048 | |
25 | 0.6782 | 1.080 | 2.882 | ||
PIM | 1 | 1.770 | 0.9803 | 0.9344 | |
10 | 0.8500 | 0.9743 | 0.6664 |
A172 | |||||
---|---|---|---|---|---|
[Drug] (µM) | [H2O2] (µM) | CI (24 h) | CI (48 h) | CI (72 h) | |
CLZ | 25 | 132 | 0.4525 | 0.7099 | 8.695 |
50 | 0.8073 | 1.649 | 15.53 | ||
RIS | 50 | 2.301 | 3.716 | 14.45 | |
100 | 0.8770 | 267.5 | 1.052E5 |
[Drug] (µM) | [H2O2] (µM) | [Tyr] (µM) | SH-SY5Y | |||
---|---|---|---|---|---|---|
CI (24 h) | CI (48 h) | CI (72 h) | ||||
CLZ | 25 | 132 | 500 | 37.3339 | 25.6252 | 0.70109 |
50 | 35.4844 | 27.7150 | 0.72783 | |||
DOM | 10 | 0.26510 | 22.9817 | 0.98122 | ||
25 | 0.32063 | 22.2473 | 1.78671 | |||
PIM | 1 | 0.23416 | 24.2442 | 0.30503 | ||
10 | 1.04354 | 21.3904 | 0.24447 |
[Drug] (µM) | [H2O2] (µM) | [Tyr] (µM) | A172 | |||
---|---|---|---|---|---|---|
CI (24 h) | CI (48 h) | CI (72 h) | ||||
CLZ | 25 | 132 | 500 | 0.36817 | 1.09 × 1010 | 190.077 |
50 | 0.95749 | 1.41 × 1010 | 33.3389 | |||
RIS | 50 | 0.64749 | 2.00 × 1010 | 9.65919 | ||
100 | 0.45423 | 1.25 × 1010 | 16.7132 |
SH-SY5Y Cells (48 h) | Retention Time (min) | Total Area | Tyr Area | Final Area | [Tyr] (µM) |
---|---|---|---|---|---|
Standard | 2.694 | - | 195,139.56 | - | - |
Control | 2.884 | - | - | - | - |
Tyr 500 µM | 2.905 | 234,969.88 | 91,406.03 | 103,733.53 | 353.19 |
CLZ 25 µM | 2.728 | - | - | - | - |
CLZ 25 µM + Tyr 500 µM | 2.690 | 225,583.15 | 82,019.33 | 113,120.23 | 385.22 |
CLZ 25 µM + H2O2 132 µM | 2.679 | - | - | - | - |
CLZ 25 µM + H2O2 132 µM + Tyr 500 µM | 2.679 | 143,483.79 | −80.3 | Tyr was all consumed | - |
CLZ 50 µM | 2.684 | - | - | - | - |
CLZ 50 µM + Tyr 500 µM | 2.677 | 252,686.25 | 109,122.43 | 86,017.13 | 292.73 |
CLZ 50 µM + H2O2 132 µM | 2.709 | - | - | - | - |
CLZ 50 µM + H2O2 132 µM + Tyr 500 µM | 2.684 | 137,808.98 | −5754.84 | Tyr was all consumed | - |
A172 Cells (48 h) | Retention Time (min) | Total Area | Tyr Area | Final Area | [Tyr] (µM) |
---|---|---|---|---|---|
Standard | 2.694 | - | 195,139.56 | - | - |
Control | 2.721 | - | - | - | - |
Tyr 500 µM | 2.702 | 332,258.91 | 220,009.74 | −24,870.18 | −85.69 |
CLZ 25 µM | 3.021 | - | - | - | - |
CLZ 25 µM + Tyr 500 µM | 2.681 | 274,430.57 | 162,181.4 | 32,958.16 | 111.65 |
CLZ 25 µM + H2O2 132 µM | 2.714 | - | - | - | - |
CLZ 25 µM + H2O2 132 µM + Tyr 500 µM | 2.706 | 294,476.33 | 182,227.16 | 176,912.4 | 602.93 |
CLZ 50 µM | 2.704 | - | - | - | - |
CLZ 50 µM + Tyr 500 µM | 2.687 | 266,350.71 | 154,101.54 | 41,038.02 | 139.23 |
CLZ 50 µM + H2O2 132 µM | 2.692 | - | - | - | - |
CLZ 50 µM + H2O2 132 µM + Tyr 500 µM | 2.700 | 171,386.49 | 59,137.32 | 59,137.32 | 200.99 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moura, C.; Gouveia, M.J.; Vale, N. Repurposed Antipsychotics as Potential Anticancer Agents: Clozapine Efficacy and Dopaminergic Pathways in Neuroblastoma and Glioblastoma. Life 2025, 15, 1097. https://doi.org/10.3390/life15071097
Moura C, Gouveia MJ, Vale N. Repurposed Antipsychotics as Potential Anticancer Agents: Clozapine Efficacy and Dopaminergic Pathways in Neuroblastoma and Glioblastoma. Life. 2025; 15(7):1097. https://doi.org/10.3390/life15071097
Chicago/Turabian StyleMoura, Catarina, Maria João Gouveia, and Nuno Vale. 2025. "Repurposed Antipsychotics as Potential Anticancer Agents: Clozapine Efficacy and Dopaminergic Pathways in Neuroblastoma and Glioblastoma" Life 15, no. 7: 1097. https://doi.org/10.3390/life15071097
APA StyleMoura, C., Gouveia, M. J., & Vale, N. (2025). Repurposed Antipsychotics as Potential Anticancer Agents: Clozapine Efficacy and Dopaminergic Pathways in Neuroblastoma and Glioblastoma. Life, 15(7), 1097. https://doi.org/10.3390/life15071097