Artificial Intelligence (AI) for Programmed Death Ligand-1 (PD-L1) Immunohistochemical Assessment in Urothelial Carcinomas: “Teaching” Cell Differentiation to AI Systems
Abstract
:1. Introduction
2. Materials and Methods
2.1. Case Selection
2.2. IHC Assay for Detection of PD-L1 Expression
2.3. Manual Scoring Assessment of PD-L1 Expression
2.4. Slide Scanning and Automatic Scoring Assessment of PD-L1 Expression
- (1)
- Training the software classifier by means of selected representative areas for both TCs and ICs that were identified and marked on the scanned slide by a pathologist (A.N.-B.);
- (2)
- Case interpretation and PD-L1 scoring assessment using Selected Area Interpretation (SAI) only (AI-SAI protocol);
- (3)
- Re-interpretation of the case and new PD-L1 scoring assessment including the entire tissue area present on the slide, using Whole Slide Imaging (WSI; AI-WSI protocol).
2.5. Statistical Analysis
3. Results
3.1. Characteristics of the Study Population
3.2. Comparative Analysis of AI Protocols Versus Manual Evaluation of TC and IC Staining
3.3. Comparative Analysis of AI Protocols Versus Manual Evaluation in the Assessment of PD-L1 IHC Expression
4. Discussion
4.1. Digital Pathology in Diagnostic Medicine
4.2. An Overview of the Results of the Current Study
4.3. Placing Our Findings Within the Existing Literature Context
4.4. What About the ICs?
4.5. Study’s Strengths and Weaknesses
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AI | Artificial Intelligence |
AI-SAI | Artificial Intelligence protocol, Selected Area Interpretation |
AI-WSI | Artificial Intelligence protocol, Whole Slide Imaging |
AJCC/UICC | American Joint Committee on Cancer/Union for International Cancer Control |
AUC | Area Under the Curve |
BC | Bladder cancer |
CPS | Combined positive score |
DAB | Diaminobenzidine |
EDTA | Ethylenediaminetetraacetic acid |
EMA | European Medicines Agency |
FDA | Food and Drug Administration |
FFPE | Formalin-fixed and paraffin-embedded |
HE | Hematoxylin and eosin |
ICs | Tumor-infiltrating immune cells |
IHC | Immunohistochemistry |
NSCLC | Non-small cell lung cancer |
PD-1 | Programmed Death 1 |
PD-L1 | Programmed Death Ligand 1 |
ROC | Receiver Operating Characteristic |
TCs | Tumor cells |
TNM | Tumor Lymph Node Metastasis |
UC | Urothelial carcinoma |
WHO | World Health Organization |
References
- Paver, E.C.; Cooper, W.A.; Colebatch, A.J.; Ferguson, P.M.; Hill, S.K.; Lum, T.; Shin, J.S.; O’Toole, S.; Anderson, L.; Scolyer, R.A.; et al. Programmed Death Ligand-1 (PD-L1) as a Predictive Marker for Immunotherapy in Solid Tumours: A Guide to Immunohistochemistry Implementation and Interpretation. Pathology 2021, 53, 141–156. [Google Scholar] [CrossRef] [PubMed]
- Witjes, J.A.; Bruins, H.M.; Carrion, A.; Cathomas, R.; Comperat, E.M.; Efstathiou, J.A.; Fietkau, R. EAU Guidelines on Muscle-Invasive and Metastatic Bladder Cancer; EAU: Arnhem, The Netherlands, 2024. [Google Scholar]
- Lopez-Beltran, A.; Sauter, G.; Gasser, T. Tumours of the Urinary System. In Pathology and Genetics of Tumours of the Urinary System and Male Genital Organs; World Health Organization: Geneva, Switzerland, 2004; pp. 89–157. [Google Scholar]
- European Medicines Agency. Bavencio Product Information. Available online: https://www.ema.europa.eu/en/medicines/human/EPAR/bavencio (accessed on 12 April 2025).
- European Medicines Agency. Keytruda (Pembrolizumab): An Overview of Keytruda and Why It Is Authorised in the EU. Available online: https://www.ema.europa.eu/en/documents/product-information/keytruda-epar-product-information_en.pdf (accessed on 12 April 2025).
- Khaki, A.R.; Shan, Y.; Nelson, R.E.; Kaul, S.; Gore, J.L.; Grivas, P.; Williams, S.B. Cost-Effectiveness Analysis of Neoadjuvant Immune Checkpoint Inhibition vs. Cisplatin-Based Chemotherapy in Muscle Invasive Bladder Cancer. Urol. Oncol. Semin. Orig. Investig. 2021, 39, 732.e9–732.e16. [Google Scholar] [CrossRef] [PubMed]
- VENTANA PD-L1 (SP263). Assay in Urothelial Carcinoma Interpretation Guide. Available online: https://www.google.com/url?sa=t&source=web&rct=j&opi=89978449&url=https://diagnostics.roche.com/content/dam/diagnostics/us/en/resource-center/PD-L1-SP263-IG.pdf&ved=2ahUKEwiKv4Dj2dGMAxV6xAIHHVEyLFwQFnoECBYQAQ&usg=AOvVaw1Sfu7RjjzoFCw8-z44xN49 (accessed on 12 April 2025).
- Schwamborn, K.; Ammann, J.U.; Knüchel, R.; Hartmann, A.; Baretton, G.; Lasitschka, F.; Schirmacher, P.; Braunschweig, T.; Tauber, R.; Erlmeier, F.; et al. Multicentric Analytical Comparability Study of Programmed Death-Ligand 1 Expression on Tumor-Infiltrating Immune Cells and Tumor Cells in Urothelial Bladder Cancer Using Four Clinically Developed Immunohistochemistry Assays. Virchows Archiv. 2019, 475, 599–608. [Google Scholar] [CrossRef] [PubMed]
- Widmaier, M.; Wiestler, T.; Walker, J.; Barker, C.; Scott, M.L.; Sekhavati, F.; Budco, A.; Schneider, K.; Segerer, F.J.; Steele, K.; et al. Comparison of Continuous Measures across Diagnostic PD-L1 Assays in Non-Small Cell Lung Cancer Using Automated Image Analysis. Mod. Pathol. 2020, 33, 380–390. [Google Scholar] [CrossRef] [PubMed]
- Naso, J.R.; Povshedna, T.; Wang, G.; Banyi, N.; MacAulay, C.; Ionescu, D.N.; Zhou, C. Automated PD-L1 Scoring for Non-Small Cell Lung Carcinoma Using Open-Source Software. Pathol. Oncol. Res. 2021, 27, 609–717. [Google Scholar] [CrossRef] [PubMed]
- Taylor, C.R.; Jadhav, A.P.; Gholap, A.; Kamble, G.; Huang, J.; Gown, A.; Doshi, I.; Rimm, D.L. A Multi-Institutional Study to Evaluate Automated Whole Slide Scoring of Immunohistochemistry for Assessment of Programmed Death-Ligand 1 (PD-L1) Expression in Non-Small Cell Lung Cancer. Appl. Immunohistochem. Mol. Morphol. 2019, 27, 263–269. [Google Scholar] [CrossRef] [PubMed]
- Loghin, A.; Nechifor-Boilă, A.; Borda, A.; Nechifor-Boilă, I.A.; Voidazan, S.; Decaussin-Petrucci, M. Programmed Death Ligand-1 (PD-L1) Immunohistochemical Assessment Using the QR1 Clone in Muscle-Invasive Urothelial Carcinomas: A Comparison with Reference Clones 22C3 and SP263. Virchows Archiv. 2022, 480, 303–313. [Google Scholar] [CrossRef] [PubMed]
- Nechifor-Boilă, I.A.; Loghin, A.; Nechifor-Boilă, A.; Decaussin-Petrucci, M.; Voidăzan, S.; Chibelean, B.C.; Martha, O.; Borda, A. Pd-L1 Expression in Muscle Invasive Urothelial Carcinomas as Assessed via Immunohistochemistry: Correlations with Specific Clinical and Pathological Features, with Emphasis on Prognosis after Radical Cystectomy. Life 2021, 11, 404. [Google Scholar] [CrossRef] [PubMed]
- Moch, H.; Humphrey, P.A.; Ulbright, T.M.; Reuter, V.E. Tumours of the Urinary Tract. In WHO Classification of Tumors of the Urinary System and Male Genital Organs; Moch, H., Humphrey, P.A., Ulbright, T.M., Reuter, V.E., Eds.; International Agency for Research on Cancer (IARC): Lyon, France, 2016; pp. 81–99. [Google Scholar]
- American Joint Committee on Cancer. AJCC Cancer Staging Manual, 8th ed.; Amin, M.B., Edge, S.B., Greene, F.L., Byrd, D.R., Brookland, R.K., Washington, M.K., Gershenwald, J.E., Compton, C.C., Hess, K.R., Sullivan, D.C., et al., Eds.; Springer: Berlin/Heidelberg, Germany, 2017; ISBN 978-3319406176. [Google Scholar]
- The Jamovi Project. Available online: https://www.google.com/url?sa=t&source=web&rct=j&opi=89978449&url=https://www.jamovi.org/&ved=2ahUKEwiH_czr2tGMAxUMgf0HHfo5AL8QFnoECA4QAQ&usg=AOvVaw0RWj7pKsN4eyfEDmAxDAaP (accessed on 12 April 2025).
- Lemmers, S.A.M.; Le Luyer, M.; Stoll, S.J.; Hoffnagle, A.G.; Ferrell, R.J.; Gamble, J.A.; Guatelli-Steinberg, D.; Gurian, K.N.; McGrath, K.; O’hara, M.C.; et al. Inter-rater reliability of stress signatures in exfoliated primary dentition - Improving scientific rigor and reproducibility in histological data collection. PLoS ONE 2025, 20, e0318700. [Google Scholar] [CrossRef] [PubMed]
- Chiu, H.Y.; Chao, H.S.; Chen, Y.M. Application of Artificial Intelligence in Lung Cancer. Cancers 2022, 14, 1370. [Google Scholar] [CrossRef] [PubMed]
- Plass, M.; Olteanu, G.; Dacic, S.; Kern, I.; Zacharias, M.; Popper, H.; Fukuoka, J.; Ishijima, S.; Kargl, M.; Murauer, C.; et al. Comparative Performance of PD-L1 Scoring by Pathologists and AI Algorithms. Histopathology 2025. Online ahead of print. [Google Scholar] [CrossRef] [PubMed]
- U.S. Food and Drug Administration FDA Allows Marketing of First Whole Slide Imaging System for Digital Pathology. Available online: https://www.fda.gov/news-events/press-announcements/fda-allows-marketing-first-whole-slide-imaging-system-digital-pathology (accessed on 12 April 2025).
- Canadian Agency for Drugs and Technologies in Health. The Paige Prostate Suite: Assistive Artificial Intelligence for Prostate Cancer Diagnosis: Emerging Health Technologies; Canadian Agency for Drugs and Technologies in Health: Ottawa, ON, Canada, 2024. [Google Scholar]
- Rüschoff, J.; Kumar, G.; Badve, S.; Jasani, B.; Krause, E.; Rioux-Leclercq, N.; Rojo, F.; Martini, M.; Cheng, L.; Tretiakova, M.; et al. Scoring PD-L1 Expression in Urothelial Carcinoma: An International Multi-Institutional Study on Comparison of Manual and Artificial Intelligence Measurement Model (AIM-PD-L1) Pathology Assessments. Virchows Archiv. 2024, 484, 597–608. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.S.; Choi, E.; Cho, S.I.; Park, S.; Ryu, J.; Puche, A.V.; Ma, M.; Park, J.; Jung, W.; Ro, J.; et al. An Artificial Intelligence-Powered PD-L1 Combined Positive Score (CPS) Analyser in Urothelial Carcinoma Alleviating Interobserver and Intersite Variability. Histopathology 2024, 85, 81–91. [Google Scholar] [CrossRef] [PubMed]
Characteristic | Total (n = 43) |
---|---|
Demographic data | |
Age (mean ± SD) | 63.5 ± 7.4 |
Male (n, %) | 36 (84%) |
Female (n, %) | 7 (16%) |
Pathological features (n, %) | |
Histology | |
UC conventional | 23 (53.5%) |
UC variants | |
Poorly differentiated | 6 (14%) |
Sarcomatoid | 1 (2.3%) |
Squamous | 4 (9.3%) |
Micropapillary | 3 (7%) |
Plasmacytoid | 3 (7%) |
Glandular | 1 (2.3%) |
Mixed (glandular and squamous) | 2 (4.7%) |
TNM staging | |
Primary tumor, pT (n, %) | |
T2 | 13 (30.2%) |
T3 | 20 (46.5%) |
T4 | 10 (23.3%) |
Lymph node involvement | 30/43 (69.7%) |
Distant metastasis | 5 (11.6%) |
Factors | PD-L1 Manual | PD-L1 AI-SAI | PD-L1 AI-WSI | p Value |
---|---|---|---|---|
TCs (n, %) | p = 0.008 * | |||
%TCs positive (≥25%) | 17/39.5% | 19/44.18% | 14/32.5% | |
%TCs negative (<25%) | 26/60.4% | 24/55.8% | 29/67.4% | |
ICs (n, %) | ||||
%ICs positive (≥25%) | 3/6.9% | 17/39.5% | 15/34.8 | p < 0.001 * |
%ICs negative (<25%) | 40/93.1% | 26/60.4% | 28/65.1 | |
PD-L1 status Combined TCs%/ICs% (n, %) | ||||
Positive | 18/42% | 21/48.8% | 15/34.8 | p = 0.034 * |
Negative | 25/58% | 22/51.2% | 28/65.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nechifor-Boilă, I.A.; Nechifor-Boilă, A.; Loghin, A.; Mihu, C.M.; Melincovici, C.S.; Onofrei, M.M.; Chibelean, C.B.; Martha, O.; Borda, A. Artificial Intelligence (AI) for Programmed Death Ligand-1 (PD-L1) Immunohistochemical Assessment in Urothelial Carcinomas: “Teaching” Cell Differentiation to AI Systems. Life 2025, 15, 839. https://doi.org/10.3390/life15060839
Nechifor-Boilă IA, Nechifor-Boilă A, Loghin A, Mihu CM, Melincovici CS, Onofrei MM, Chibelean CB, Martha O, Borda A. Artificial Intelligence (AI) for Programmed Death Ligand-1 (PD-L1) Immunohistochemical Assessment in Urothelial Carcinomas: “Teaching” Cell Differentiation to AI Systems. Life. 2025; 15(6):839. https://doi.org/10.3390/life15060839
Chicago/Turabian StyleNechifor-Boilă, Ioan Alin, Adela Nechifor-Boilă, Andrada Loghin, Carmen Mihaela Mihu, Carmen Stanca Melincovici, Mădălin Mihai Onofrei, Călin Bogdan Chibelean, Orsolya Martha, and Angela Borda. 2025. "Artificial Intelligence (AI) for Programmed Death Ligand-1 (PD-L1) Immunohistochemical Assessment in Urothelial Carcinomas: “Teaching” Cell Differentiation to AI Systems" Life 15, no. 6: 839. https://doi.org/10.3390/life15060839
APA StyleNechifor-Boilă, I. A., Nechifor-Boilă, A., Loghin, A., Mihu, C. M., Melincovici, C. S., Onofrei, M. M., Chibelean, C. B., Martha, O., & Borda, A. (2025). Artificial Intelligence (AI) for Programmed Death Ligand-1 (PD-L1) Immunohistochemical Assessment in Urothelial Carcinomas: “Teaching” Cell Differentiation to AI Systems. Life, 15(6), 839. https://doi.org/10.3390/life15060839