Effects of Nefopam on Postoperative Analgesia in Operating Room-Extubated Patients Undergoing Living Donor Liver Transplantation: A Propensity Score-Matched Analysis
Abstract
:1. Introduction
2. Patients and Methods
2.1. Ethical Considerations
2.2. Study Population
2.3. Surgery and Anesthesia
2.4. Postoperative Opioid-Based Pain Management
2.5. Nefopam as an Adjuvant Non-Opioid Analgesia
2.6. Outcome Measures
2.7. Clinical Variables for Propensity Score Matching Analysis
2.8. Statistical Analysis
3. Results
3.1. Demographic Variables
3.2. Clinical Characteristics in the Nefopam and Non-Nefopam Groups Before and After PS Matching
3.3. Postoperative Pain, Opioid Use, and Complications in PS-Matched Patients
3.4. Nefopam-Related to Complications
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jackson, W.E.; Malamon, J.S.; Kaplan, B.; Saben, J.L.; Schold, J.D.; Pomposelli, J.J.; Pomfret, E.A. Survival benefit of living-donor liver transplant. JAMA Surg. 2022, 157, 926–932. [Google Scholar] [CrossRef] [PubMed]
- Kutzler, H.L.; Gannon, R.; Nolan, W.; Meisterling, L.; Cech, M.; Gleason, D.; Uzl, J.; Rochon, C.; Maneckshana, B.; Serrano, O.K. Opioid avoidance in liver transplant recipients: Reduction in postoperative opioid use through a multidisciplinary multimodal approach. Liver Transplant. 2020, 26, 1254–1262. [Google Scholar] [CrossRef] [PubMed]
- Feltracco, P.; Carollo, C.; Barbieri, S.; Milevoj, M.; Pettenuzzo, T.; Gringeri, E.; Boetto, R.; Ori, C. Pain control after liver transplantation surgery. Transplant. Proc. 2014, 46, 2300–2307. [Google Scholar] [CrossRef] [PubMed]
- Katsanos, G.; Karakasi, K.-E.; Antoniadis, N.; Vasileiadou, S.; Kofinas, A.; Morsi-Yeroyannis, A.; Michailidou, E.; Goulis, I.; Sinakos, E.; Giouleme, O. Enhanced recovery after surgery in liver transplantation: Challenges and feasibility. World J. Transplant. 2022, 12, 195. [Google Scholar] [CrossRef]
- Xu, Y.; Zuo, Y.; Zhou, L.; Hao, X.; Xiao, X.; Ye, M.; Bo, L.; Jiang, C.; Yang, J. Extubation in the operating room results in fewer composite mechanical ventilation-related adverse outcomes in patients after liver transplantation: A retrospective cohort study. BMC Anesthesiol. 2021, 21, 286. [Google Scholar] [CrossRef]
- Mandell, M.S.; Lezotte, D.; Kam, I.; Zamudio, S. Reduced use of intensive care after liver transplantation: Influence of early extubation. Liver Transpl. 2002, 8, 676–681. [Google Scholar] [CrossRef]
- Blaszczyk, B.; Wronska, B.; Klukowski, M.; Flakiewicz, E.; Kolacz, M.; Jureczko, L.; Pacholczyk, M.; Chmura, A.; Trzebicki, J. Factors Affecting Breathing Capacity and Early Tracheal Extubation After Liver Transplantation: Analysis of 506 Cases. Transplant. Proc. 2016, 48, 1692–1696. [Google Scholar] [CrossRef]
- Yoon, J.-P.; Yoon, J.-U.; Kim, H.-J.; Park, S.; Yoo, Y.M.; Shon, H.-S.; Lee, D.E.; Kim, E.-J.; Kim, H.Y. Effects of immediate extubation in the operating room on long-term outcomes in living donor liver transplantation: A retrospective cohort study. Anesth. Pain Med. 2025, 20, 50–60. [Google Scholar] [CrossRef]
- Aniskevich, S.; Pai, S.-L. Fast track anesthesia for liver transplantation: Review of the current practice. World J. Hepatol. 2015, 7, 2303–2308. [Google Scholar] [CrossRef]
- Jacquenod, P.; Wallon, G.; Gazon, M.; Darnis, B.; Pradat, P.; Virlogeux, V.; Farges, O.; Aubrun, F. Incidence and risk factors of coagulation profile derangement after liver surgery: Implications for the use of epidural analgesia—A retrospective cohort study. Anesth. Analg. 2018, 126, 1142–1147. [Google Scholar] [CrossRef]
- Girard, P.; Chauvin, M.; Verleye, M. Nefopam analgesia and its role in multimodal analgesia: A review of preclinical and clinical studies. Clin. Exp. Pharmacol. Physiol. 2016, 43, 3–12. [Google Scholar] [CrossRef] [PubMed]
- Oh, E.J.; Sim, W.S.; Wi, W.G.; Kim, J.; Kim, W.J.; Lee, J.Y. Analgesic efficacy of Nefopam as an adjuvant in patient-controlled analgesia for acute postoperative pain after laparoscopic colorectal cancer surgery. J. Clin. Med. 2021, 10, 270. [Google Scholar] [CrossRef] [PubMed]
- Son, J.-S.; Doo, A.; Kwon, Y.-J.; Han, Y.-J.; Ko, S. A comparison between ketorolac and nefopam as adjuvant analgesics for postoperative patient-controlled analgesia: A randomized, double-blind, prospective study. Korean J. Anesthesiol. 2017, 70, 612–618. [Google Scholar] [CrossRef] [PubMed]
- Sakai, T.; Ko, J.S.; Crouch, C.E.; Kumar, S.; Little, M.B.; Chae, M.S.; Ganoza, A.; Gómez-Salinas, L.; Humar, A.; Kim, S.H.; et al. Perioperative management of adult living donor liver transplantation: Part 1—Recipients. Clin. Transplant. 2022, 36, e14667. [Google Scholar] [CrossRef]
- Crouch, C.E.; Ko, J.S.; Hendrickse, A.; Kumar, S.S.; Little, M.; Chae, M.S.; Park, S.Y.; Sakai, T. Exploring Anesthesiology Management of Living Donor Liver Transplantation: Survey from the Society for the Advancement of Transplant Anesthesia and the Korean Society for Transplantation Anesthesiologists. Clin. Transplant. 2024, 38, e15428. [Google Scholar] [CrossRef]
- Chae, M.S.; Kim, J.W.; Jung, J.Y.; Choi, H.J.; Chung, H.S.; Park, C.S.; Choi, J.H.; Hong, S.H. Analysis of pre- and intraoperative clinical for successful operating room extubation after living donor liver transplantation: A retrospective observational cohort study. BMC Anesthesiol. 2019, 19, 112. [Google Scholar] [CrossRef]
- Kang, R.A.; Ko, J.S. Living liver donor pain management. Curr. Opin. Organ. Transplant. 2023, 28, 391–396. [Google Scholar] [CrossRef]
- Joliat, G.R.; Kobayashi, K.; Hasegawa, K.; Thomson, J.E.; Padbury, R.; Scott, M.; Brustia, R.; Scatton, O.; Tran Cao, H.S.; Vauthey, J.N.; et al. Guidelines for Perioperative Care for Liver Surgery: Enhanced Recovery After Surgery (ERAS) Society Recommendations 2022. World J. Surg. 2023, 47, 11–34. [Google Scholar] [CrossRef]
- Mimoz, O.; Incagnoli, P.; Josse, C.; Gillon, M.C.; Kuhlman, L.; Mirand, A.; Soilleux, H.; Fletcher, D. Analgesic efficacy and safety of nefopam vs. propacetamol following hepatic resection. Anaesthesia 2001, 56, 520–525. [Google Scholar] [CrossRef]
- Chanques, G.; Sebbane, M.; Constantin, J.M.; Ramillon, N.; Jung, B.; Cisse, M.; Lefrant, J.Y.; Jaber, S. Analgesic efficacy and haemodynamic effects of nefopam in critically ill patients. Br. J. Anaesth. 2011, 106, 336–343. [Google Scholar] [CrossRef]
- Humar, A.; Ganesh, S.; Jorgensen, D.; Tevar, A.; Ganoza, A.; Molinari, M.; Hughes, C. Adult Living Donor Versus Deceased Donor Liver Transplant (LDLT Versus DDLT) at a Single Center: Time to Change Our Paradigm for Liver Transplant. Ann. Surg. 2019, 270, 444–451. [Google Scholar] [CrossRef] [PubMed]
- Beverly, A.; Kaye, A.D.; Ljungqvist, O.; Urman, R.D. Essential elements of multimodal analgesia in enhanced recovery after surgery (ERAS) guidelines. Anesthesiol. Clin. 2017, 35, e115–e143. [Google Scholar] [CrossRef] [PubMed]
- Ljungqvist, O.; Hubner, M. Enhanced recovery after surgery—ERAS—Principles, practice and feasibility in the elderly. Aging Clin. Exp. Res. 2018, 30, 249–252. [Google Scholar] [CrossRef] [PubMed]
- Zhao, T.; Shen, Z.; Sheng, S. The efficacy and safety of nefopam for pain relief during laparoscopic cholecystectomy: A meta-analysis. Medicine 2018, 97, e0089. [Google Scholar] [CrossRef]
- Lee, S.Y.; Kim, D.H.; Park, J.H.; Chae, M.S. Impact of Intraoperative Nefopam on Postoperative Pain, Opioid Use, and Recovery Quality with Parietal Pain Block in Single-Port Robotic Cholecystectomy: A Prospective Randomized Controlled Trial. Medicina 2024, 60, 848. [Google Scholar] [CrossRef]
- Hwang, W.J.; Koo, J.M.; Yang, A.R.; Park, Y.H.; Chae, M.S. Comparison of analgesic effectiveness between nefopam and propacetamol in living kidney donors following rectus sheath block after hand-assisted living donor nephrectomy: A prospective, randomized controlled trial. BMC Anesthesiol. 2024, 24, 219. [Google Scholar] [CrossRef]
- Pardue, B.; Thomas, A.; Buckley, J.; Suggs, W.J. An opioid-sparing protocol improves recovery time and reduces opioid use after laparoscopic sleeve gastrectomy. Obes. Surg. 2020, 30, 4919–4925. [Google Scholar] [CrossRef]
- Beloeil, H.; Delage, N.; Negre, I.; Mazoit, J.-X.; Benhamou, D. The median effective dose of nefopam and morphine administered intravenously for postoperative pain after minor surgery: A prospective randomized double-blinded isobolographic study of their analgesic action. Anesth. Analg. 2004, 98, 395–400. [Google Scholar] [CrossRef]
- Heel, R.; Brogden, R.; Pakes, G.; Speight, T.; Avery, G. Nefopam: A review of its pharmacological properties and therapeutic efficacy. Drugs 1980, 19, 249–267. [Google Scholar] [CrossRef]
- Chae, M.S.; Jeong, J.-O.; Lee, K.K.; Jeong, W.; Moon, Y.W.; Min, J.Y. Effect of Intraoperative Nefopam on Postoperative Analgesia in Living Liver Donors Undergoing Laparoscopic Hepatectomy with Transversus Abdominis Plane Block: A Propensity Score-Matched Study. Life 2025, 15, 590. [Google Scholar] [CrossRef]
- Shanthanna, H.; Ladha, K.S.; Kehlet, H.; Joshi, G.P. Perioperative Opioid Administration. Anesthesiology 2021, 134, 645–659. [Google Scholar] [CrossRef] [PubMed]
- Sun, Q.; Li, Z.; Wang, Z.; Wang, Q.; Qin, F.; Pan, H.; Lin, W.; Mu, X.; Wang, Y.; Jiang, Y.; et al. Immunosuppression by opioids: Mechanisms of action on innate and adaptive immunity. Biochem. Pharmacol. 2023, 209, 115417. [Google Scholar] [CrossRef] [PubMed]
- Rubin, J.B.; Aby, E.S.; Barman, P.; Tincopa, M. Opioid use and risks in candidates and recipients of liver transplant. Liver Transpl. 2025, 31, 231–241. [Google Scholar] [CrossRef] [PubMed]
- Teoh, N.C.; Farrell, G.C. Hepatotoxicity associated with non-steroidal anti-inflammatory drugs. Clin. Liver Dis. 2003, 7, 401–413. [Google Scholar] [CrossRef]
- Musu, M.; Finco, G.; Antonucci, R.; Polati, E.; Sanna, D.; Evangelista, M.; Ribuffo, D.; Schweiger, V.; Fanos, V. Acute nephrotoxicity of NSAID from the foetus to the adult. Eur. Rev. Med. Pharmacol. Sci. 2011, 15, 1461–1472. [Google Scholar]
- Soleimanpour, M.; Imani, F.; Safari, S.; Sanaie, S.; Soleimanpour, H.; Ameli, H.; Alavian, S.M. The role of non-steroidal anti-inflammatory drugs (NSAIDs) in the treatment of patients with hepatic disease: A review article. Anesthesiol. Pain Med. 2016, 6, e37822. [Google Scholar] [CrossRef]
- Huh, J.; Chae, M.S. The Role of the Subcostal Transversus Abdominis Plane Block in Facilitating Operating Room Extubation After Living Donor Liver Transplantation for Hepatocellular Carcinoma: A Propensity Score-Matching Analysis. Life 2025, 15, 297. [Google Scholar] [CrossRef]
- Sunshine, A.; Laska, E. Nefopam and morphine in man. Clin. Pharmacol. Ther. 1975, 18 Pt 1, 530–534. [Google Scholar] [CrossRef]
- Geneletti, S.; Richardson, S.; Best, N. Adjusting for selection bias in retrospective, case-control studies. Biostatistics 2009, 10, 17–31. [Google Scholar] [CrossRef]
- Bellomo, R.; Warrillow, S.J.; Reade, M.C. Why we should be wary of single-center trials. Crit. Care Med. 2009, 37, 3114–3119. [Google Scholar] [CrossRef]
- Durrieu, G.; Olivier, P.; Bagheri, H.; Montastruc, J.L.; French Network of Pharmacovigilance Centers. Overview of adverse reactions to nefopam: An analysis of the French Pharmacovigilance database. Fundam. Clin. Pharmacol. 2007, 21, 555–558. [Google Scholar] [CrossRef] [PubMed]
- Park, Y.S.; Kim, Y.B.; Kim, J.M. Status epilepticus caused by nefopam. J. Korean Neurosurg. Soc. 2014, 56, 448–450. [Google Scholar] [CrossRef] [PubMed]
- Pillans, P.I.; Woods, D.J. Adverse reactions associated with nefopam. N. Z. Med. J. 1995, 108, 382–384. [Google Scholar] [PubMed]
Before Propensity Score Matching | After Propensity Score Matching | |||||||
---|---|---|---|---|---|---|---|---|
Nefopam (n = 188) | Non-Nefopam (n = 188) | p-Value | SD | Nefopam (n = 182) | Non-Nefopam (n = 182) | p-Value | SD | |
Preoperative recipient variables | ||||||||
Sex; n (%) | 141 (75.0%) | 132 (70.2%) | 0.298 | −0.110 | 135 (74.2%) | 130 (71.4%) | 0.556 | −0.063 |
Age; years | 54.0 (49.0–60.0) | 54.0 (48.3–61.0) | 0.972 | −0.024 | 54.0 (49.0–60.0) | 54.0 (48.8–61.0) | 0.990 | −0.027 |
BMI; kg/m2 | 23.9 (22.0–26.5) | 24.7 (22.2–27.1) | 0.057 | −0.195 | 23.9 (22.0–26.5) | 24.6 (22.2–26.9) | 0.158 | −0.125 |
Comorbidity | ||||||||
Hypertension | 43 (22.9%) | 40 (21.3%) | 0.709 | 0.038 | 42 (23.1%) | 39 (21.4%) | 0.705 | 0.039 |
Diabetes mellitus | 56 (29.8%) | 49 (26.1%) | 0.421 | 0.081 | 54 (29.7%) | 47 (25.8%) | 0.413 | 0.084 |
MELD score; points | 12.0 (6.1–22.9) | 16.5 (7.6–26.0) | 0.094 | −0.142 | 11.9 (6.1–22.5) | 15.7 (7.5–25.3) | 0.094 | −0.148 |
Complications | ||||||||
Varix | 52 (27.7%) | 50 (26.6%) | 0.817 | 0.024 | 49 (26.9%) | 50 (27.5%) | 0.906 | −0.012 |
Ascite (≥1 L) | 85 (45.2%) | 100 (53.2%) | 0.122 | −0.160 | 82 (45.1%) | 94 (51.6%) | 0.208 | −0.132 |
Echocardiography | ||||||||
Ejection fraction; % | 64.4 (62.0–66.8) | 64.0 (61.8–66.0) | 0.128 | 0.197 | 64.4 (62.0–66.7) | 64.0 (61.9–66.0) | 0.141 | 0.163 |
Diastolic dysfunction (≥grade II); n (%) | 30 (16.0%) | 25 (13.3%) | 0.466 | 0.072 | 28 (15.4%) | 25 (13.7%) | 0.656 | 0.045 |
Laboratory values | ||||||||
WBC count; ×109/L | 4.5 (3.0–7.4) | 5.0 (3.1–8.0) | 0.259 | −0.157 | 4.4 (3.0–7.0) | 4.9 (3.0–7.7) | 0.255 | −0.155 |
Neutrophil; % | 63.0 (52.5–76.9) | 63.0 (53.3–73.7) | 0.892 | 0.030 | 62.4 (52.0–76.2) | 63.0 (53.2–73.6) | 0.861 | −0.001 |
Lymphocyte; % | 22.3 (11.3–32.3) | 19.9 (11.9–30.9) | 0.831 | 0.012 | 22.8 (11.8–32.8) | 20.2 (11.9–31.0) | 0.625 | 0.036 |
Hematocrit; % | 30.3 (25.3–36.6) | 28.6 (24.4–34.3) | 0.046 | 0.196 | 30.3 (25.4–36.5) | 28.7 (24.5–34.6) | 0.078 | 0.177 |
AST; U/L | 50.5 (36.3–78.5) | 50.0 (36.0–81.8) | 0.987 | 0.072 | 50.0 (35.8–72.5) | 50.0 (35.0–82.5) | 0.897 | −0.002 |
ALT; U/L | 33.0 (20.0–60.0) | 31.0 (21.0–58.0) | 0.815 | 0.059 | 33.0 (20.0–59.3) | 31.0 (21.0–59.3) | 0.969 | −0.019 |
Total bilirubin; mg/dL | 2.3 (0.8–12.4) | 3.4 (1.1–18.7) | 0.034 | −0.204 | 2.3 (0.8–12.3) | 3.2 (1.0–18.0) | 0.051 | −0.182 |
Sodium; mmol/L | 140.0 (136.0–142.0) | 139.0 (135.0–142.0) | 0.433 | 0.089 | 140.0 (136.0–142.0) | 139.0 (135.0–142.0) | 0.408 | 0.088 |
Calcium; mg/dL | 8.4 (7.9–8.9) | 8.4 (7.9–8.9) | 0.366 | 0.008 | 8.4 (7.9–8.9) | 8.4 (7.9–8.9) | 0.453 | −0.003 |
Potassium; mmol/L | 3.9 (3.6–4.3) | 4.0 (3.6–4.4) | 0.494 | −0.094 | 4.0 (3.6–4.3) | 4.0 (3.6–4.4) | 0.730 | −0.009 |
Albumin; g/dL | 3.1 (2.7–3.7) | 3.0 (2.6–3.5) | 0.180 | 0.154 | 3.1 (2.7–3.7) | 3.1 (2.6–3.5) | 0.344 | 0.114 |
Ammonia; μg/dL | 94.5 (68.3–146.8) | 92.0 (66.0–138.8) | 0.371 | 0.127 | 95.0 (68.8–144.3) | 95.0 (66.0–139.5) | 0.469 | 0.120 |
Platelet count; ×109/L | 67.5 (48.3–103.8) | 65.5 (44.0–104.5) | 0.537 | 0.041 | 66.0 (48.0–103.0) | 65.0 (43.8–103.5) | 0.586 | 0.036 |
INR | 1.4 (1.2–2.1) | 1.6 (1.3–2.2) | 0.083 | −0.161 | 1.4 (1.2–2.0) | 1.5 (1.2–2.2) | 0.159 | −0.156 |
Intraoperative recipient variables | ||||||||
Operation time; min | 475.0 (415.0–535.0) | 472.5 (429.3–530.0) | 0.695 | 0.018 | 475.0 (415.0–535.0) | 472.5 (428.0–530.0) | 0.587 | 0.003 |
Hourly fluid infusion; mL/kg/h | 12.5 (9.4–16.2) | 12.6 (9.4–17.3) | 0.863 | 0.010 | 12.5 (9.4–16.2) | 12.6 (9.5–17.4) | 0.506 | −0.015 |
Hourly urine output; mL/kg/hr | 1.3 (0.5–2.2) | 1.1 (0.5–1.9) | 0.229 | 0.122 | 1.3 (0.5–2.2) | 1.1 (0.5–1.9) | 0.243 | 0.106 |
Average of vital signs | ||||||||
Systolic blood pressure; mmHg | 107.3 (98.1–115.8) | 104.4 (96.8–113.5) | 0.096 | 0.159 | 107.1 (98.4–115.6) | 104.1 (96.8–113.8) | 0.099 | 0.155 |
Diastolic blood pressure; mmHg | 56.1 (51.0–61.7) | 55.8 (49.5–60.9) | 0.285 | 0.127 | 56.1 (51.0–61.6) | 55.8 (49.5–60.8) | 0.316 | 0.113 |
Heart rate; beats/min | 89.3 (81.4–98.3) | 89.1 (78.8–100.3) | 0.826 | 0.010 | 89.3 (81.5–98.3) | 89.1 (78.8–100.5) | 0.913 | −0.013 |
Transfusion | ||||||||
Packed red blood cells; units | 8.0 (4.0–11.0) | 8.0 (4.0–12.0) | 0.547 | −0.094 | 7.0 (4.0–11.0) | 8.0 (4.0–12.0) | 0.483 | −0.106 |
Fresh frozen plasma; units | 6.0 (4.0–10.0) | 7.0 (4.0–10.0) | 0.495 | −0.043 | 6.0 (4.0–10.0) | 7.0 (4.0–10.0) | 0.391 | −0.053 |
Donor graft variables | ||||||||
Sex; n (%) | 139 (73.9%) | 132 (70.2%) | 0.421 | −0.085 | 133 (73.1%) | 130 (71.4%) | 0.725 | −0.037 |
Age; years | 35.4 (28.0–41.0) | 35.4 (26.0–43.0) | 0.734 | 0.046 | 35.4 (28.0–41.0) | 35.4 (26.8–43.0) | 0.773 | 0.044 |
BMI; kg/m2 | 20.2 (18.9–22.1) | 20.2 (19.0–22.2) | 0.679 | −0.090 | 20.2 (18.9–22.2) | 20.2 (19.0–22.1) | 0.740 | −0.071 |
Graft-recipient-weight ratio; % | 1.2 (1.1–1.6) | 1.3 (1.0–1.6) | 0.864 | −0.011 | 1.2 (1.1–1.6) | 1.3 (1.1–1.6) | 0.849 | −0.046 |
Graft weight; g | 866.0 (700.0–1049.5) | 862.0 (738.5–1115.0) | 0.722 | −0.076 | 863.0 (699.5–1043.0) | 866.0 (739.5–1105.0) | 0.596 | −0.094 |
Fatty percentage; % | 4.9 (0.0–5.0) | 4.9 (1.0–5.0) | 0.137 | −0.059 | 4.9 (0.0–5.0) | 4.9 (1.0–5.0) | 0.176 | −0.055 |
Total ischemic time; min | 89.0 (63.5–132.0) | 83.0 (62.3–138.0) | 0.470 | 0.054 | 86.5 (63.0–133.5) | 83.0 (62.8–139.3) | 0.718 | 0.030 |
Nefopam (n = 182) | Non-Nefopam (n = 182) | p-Value | |
---|---|---|---|
Visual analog scale; mm | |||
1 h after surgery | 59.0 ± 18.4 | 71.4 ± 18.1 | <0.001 ** |
4 h after surgery | 57.1 ± 21.3 | 66.1 ± 17.9 | <0.001 ** |
8 h after surgery | 44.2 ± 17.5 | 56.0 ± 19.5 | <0.001 ** |
12 h after surgery | 42.1 ± 19.5 | 50.1 ± 17.7 | <0.001 ** |
24 h after surgery | 27.7 ± 12.9 | 30.0 ± 13.7 | 0.103 |
Total fentanyl dose for 24 h after surgery; mL | 53.2 ± 20.8 | 58.6 ± 27.5 | 0.035 * |
Opioid-related complications | |||
Nausea | 8 (4.4%) | 11 (6.0%) | 0.480 |
Vomiting | 4 (2.2%) | 3 (1.6%) | 0.703 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chae, M.S.; Jeong, J.-O.; Lee, K.K.; Jeong, W.; Moon, Y.W.; Min, J.Y. Effects of Nefopam on Postoperative Analgesia in Operating Room-Extubated Patients Undergoing Living Donor Liver Transplantation: A Propensity Score-Matched Analysis. Life 2025, 15, 662. https://doi.org/10.3390/life15040662
Chae MS, Jeong J-O, Lee KK, Jeong W, Moon YW, Min JY. Effects of Nefopam on Postoperative Analgesia in Operating Room-Extubated Patients Undergoing Living Donor Liver Transplantation: A Propensity Score-Matched Analysis. Life. 2025; 15(4):662. https://doi.org/10.3390/life15040662
Chicago/Turabian StyleChae, Min Suk, Jin-Oh Jeong, Kyung Kwan Lee, Wonwoo Jeong, Young Wook Moon, and Ji Young Min. 2025. "Effects of Nefopam on Postoperative Analgesia in Operating Room-Extubated Patients Undergoing Living Donor Liver Transplantation: A Propensity Score-Matched Analysis" Life 15, no. 4: 662. https://doi.org/10.3390/life15040662
APA StyleChae, M. S., Jeong, J.-O., Lee, K. K., Jeong, W., Moon, Y. W., & Min, J. Y. (2025). Effects of Nefopam on Postoperative Analgesia in Operating Room-Extubated Patients Undergoing Living Donor Liver Transplantation: A Propensity Score-Matched Analysis. Life, 15(4), 662. https://doi.org/10.3390/life15040662