Comparative Vascular Effects of Sirolimus and Everolimus on Isolated Human Saphenous Veins
Abstract
:1. Introduction
2. Material and Methods
2.1. Harvesting and Preparation of Saphenous Veins
2.2. Experimental Protocol
2.2.1. Experimental Protocol for Acute Effects of Sirolimus and Everolimus
2.2.2. Experimental Protocol for Modulatory Effects of Sirolimus and Everolimus
2.3. Statistical Analysis
2.4. Chemicals
3. Results
3.1. Patient Characteristics
3.2. Acute Effects of Sirolimus and Everolimus
3.3. Modulatory Effects of Sirolimus and Everolimus
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Willis Hurst, J. The First Coronary Angioplasty as Described by Andreas Gruentzig. Am. J. Cardiol. 1986, 57, 185–186. [Google Scholar] [CrossRef]
- Sigwart, U.; Puel, J.; Mirkovitch, V.; Joffre, F.; Kappenberger, L. Intravascular Stents to Prevent Occlusion and Re-Stenosis after Transluminal Angioplasty. N. Engl. J. Med. 1987, 316, 701–706. [Google Scholar] [CrossRef] [PubMed]
- Virmani, R.; Farb, A. Pathology of In-Stent Restenosis. Curr. Opin. Lipidol. 1999, 10, 499–506. [Google Scholar] [PubMed]
- Schillinger, M.; Minar, E. Restenosis after Percutaneous Angioplasty: The Role of Vascular Inflammation. Vasc. Health Risk Manag. 2005, 1, 73–78. [Google Scholar]
- Virmani, R.; Farb, A.; Guagliumi, G.; Kolodgie, F.D. Drug-Eluting Stents: Caution and Concerns for Long-Term Outcome. Coron. Artery Dis. 2004, 15, 313–318. [Google Scholar]
- Joner, M.; Finn, A.V.; Farb, A.; Mont, E.K.; Kolodgie, F.D.; Ladich, E.; Kutys, R.; Skorija, K.; Gold, H.K.; Virmani, R. Pathology of Drug-Eluting Stents in Humans. Delayed Healing and Late Thrombotic Risk. J. Am. Coll. Cardiol. 2006, 48, 193–202. [Google Scholar] [CrossRef]
- Palmerini, T.; Benedetto, U.; Biondi-Zoccai, G.; Della Riva, D.; Bacchi-Reggiani, L.; Smits, P.C.; Vlachojannis, G.J.; Jensen, L.O.; Christiansen, E.H.; Berencsi, K.; et al. Long-Term Safety of Drug-Eluting and Bare-Metal Stents: Evidence from a Comprehensive Network Meta-Analysis. J. Am. Coll. Cardiol. 2015, 65, 2496–2507. [Google Scholar] [CrossRef]
- McKavanagh, P.; Zawadowski, G.; Ahmed, N.; Kutryk, M. The Evolution of Coronary Stents. Expert Rev. Cardiovasc. Ther. 2018, 16, 219–228. [Google Scholar]
- Stefanini, G.G.; Byrne, R.A.; Windecker, S.; Kastrati, A. State of the Art: Coronary Artery Stents-Past, Present and Future. EuroIntervention 2017, 13, 706–716. [Google Scholar] [CrossRef]
- Condello, F.; Spaccarotella, C.; Sorrentino, S.; Indolfi, C.; Stefanini, G.G.; Polimeni, A. Stent Thrombosis and Restenosis with Contemporary Drug-Eluting Stents: Predictors and Current Evidence. J. Clin. Med. 2023, 12, 1238. [Google Scholar] [CrossRef]
- Spadafora, L.; Quarta, R.; Martino, G.; Romano, L.; Greco, F.; Curcio, A.; Gori, T.; Spaccarotella, C.; Indolfi, C.; Polimeni, A. From Mechanisms to Management: Tackling In-Stent Restenosis in the Drug-Eluting Stent Era. Curr. Cardiol. Rep. 2025, 27, 53. [Google Scholar] [CrossRef] [PubMed]
- Corbin, F.; Blaise, G.A.; Parent, M.; Chen, H.; Daloze, P.M. Effect of Rapamycin on Rat Aortic Ring Vasomotion. J. Cardiovasc. Pharmacol. 1994, 24, 813–817. [Google Scholar] [CrossRef]
- Milliard, S.; Silva, A.; Blaise, G.; Chen, H.; Xu, D.; Qi, S.; Daloze, P. Rapamycin’s Effect on Vasomotion in the Rat. Transplant. Proc. 1998, 30, 1036–1038. [Google Scholar] [CrossRef]
- Neto, M.D.M.S.; Di Marco, G.S.; Casarini, D.E.; Lima, V.C.; Campos, A.H. Orally Administered Rapamycin Does Not Modify Rat Aortic Vascular Tone. J. Cardiovasc. Pharmacol. 2007, 49, 96–99. [Google Scholar] [CrossRef] [PubMed]
- Parlar, A.; Can, C.; Erol, A.; Ülker, S. Posttransplantation Therapeutic Rapamycin Concentration Protects Nitric Oxide-Related Vascular Endothelial Function: Comparative Effects in Rat Thoracic Aorta and Coronary Endothelial Cell Culture. Transplant. Proc. 2010, 42, 1923–1930. [Google Scholar] [CrossRef]
- Shing, C.M.; Fassett, R.G.; Brown, L.; Coombes, J.S. The Effects of Immunosuppressants on Vascular Function, Systemic Oxidative Stress and Inflammation in Rats. Transpl. Int. 2012, 25, 337–346. [Google Scholar] [CrossRef]
- Ghatta, S.; Tunstall, R.R.; Kareem, S.; Rahman, M.; O’Rourke, S.T. Sirolimus Causes Relaxation of Human Vascular Smooth Muscle: A Novel Action of Sirolimus Mediated via ATP-Sensitive Potassium Channels. J. Pharmacol. Exp. Ther. 2007, 320, 1204–1208. [Google Scholar] [CrossRef] [PubMed]
- Reineke, D.C.; Müller-Schweinitzer, E.; Winkler, B.; Kunz, D.; Konerding, M.A.; Grussenmeyer, T.; Carrel, T.P.; Eckstein, F.S.; Grapow, M.T.R. Rapamycin Impairs Endothelial Cell Function in Human Internal Thoracic Arteries. Eur. J. Med. Res. 2015, 20, 59. [Google Scholar] [CrossRef]
- Caliskan, E.; de Souza, D.R.; Böning, A.; Liakopoulos, O.J.; Choi, Y.H.; Pepper, J.; Gibson, C.M.; Perrault, L.P.; Wolf, R.K.; Kim, K.B.; et al. Saphenous Vein Grafts in Contemporary Coronary Artery Bypass Graft Surgery. Nat. Rev. Cardiol. 2020, 17, 155–169. [Google Scholar] [CrossRef]
- Xenogiannis, I.; Zenati, M.; Bhatt, D.L.; Rao, S.V.; Rodés-Cabau, J.; Goldman, S.; Shunk, K.A.; Mavromatis, K.; Banerjee, S.; Alaswad, K.; et al. Saphenous Vein Graft Failure: From Pathophysiology to Prevention and Treatment Strategies. Circulation 2021, 144, 728–745. [Google Scholar] [CrossRef]
- Emmert, M.Y.; Bonatti, J.; Caliskan, E.; Gaudino, M.; Grabenwöger, M.; Grapow, M.T.; Heinisch, P.P.; Kieser-Prieur, T.; Kim, K.B.; Kiss, A.; et al. Consensus Statement-Graft Treatment in Cardiovascular Bypass Graft Surgery. Front. Cardiovasc. Med. 2024, 11, 1285685. [Google Scholar] [CrossRef]
- Hoffmann, R.; Hamm, C.; Nienaber, C.A.; Levenson, B.; Bonzel, T.; Sabin, G.; Senges, J.; Zahn, R.; Tebbe, U.; Pfannebecker, T.; et al. Implantation of Sirolimus-Eluting Stents in Saphenous Vein Grafts Is Associated with High Clinical Follow-up Event Rates Compared with Treatment of Native Vessels. Coron. Artery Dis. 2007, 18, 559–564. [Google Scholar] [CrossRef]
- Kitabata, H.; Loh, J.P.; Pendyala, L.K.; Badr, S.; Dvir, D.; Barbash, I.M.; Minha, S.; Torguson, R.; Chen, F.; Satler, L.F.; et al. Two-Year Follow-up of Outcomes of Second-Generation Everolimus-Eluting Stents versus First-Generation Drug-Eluting Stents for Stenosis of Saphenous Vein Grafts Used as Aortocoronary Conduits. Am. J. Cardiol. 2013, 112, 61–67. [Google Scholar] [CrossRef] [PubMed]
- Jeanmart, H.; Malo, O.; Carrier, M.; Nickner, C.; Desjardins, N.; Perrault, L.P. Comparative Study of Cyclosporine and Tacrolimus vs Newer Immunosuppressants Mycophenolate Mofetil and Rapamycin on Coronary Endothelial Function. J. Heart Lung Transplant. 2002, 21, 990–998. [Google Scholar] [CrossRef] [PubMed]
- Long, C.; Cook, L.G.; Hamilton, S.L.; Wu, G.Y.; Mitchell, B.M. FK506 Binding Protein 12/12.6 Depletion Increases Endothelial Nitric Oxide Synthase Threonine 495 Phosphorylation and Blood Pressure. Hypertension 2007, 49, 569–576. [Google Scholar] [CrossRef] [PubMed]
- Lesniewski, L.A.; Seals, D.R.; Walker, A.E.; Henson, G.D.; Blimline, M.W.; Trott, D.W.; Bosshardt, G.C.; LaRocca, T.J.; Lawson, B.R.; Zigler, M.C.; et al. Dietary Rapamycin Supplementation Reverses Age-Related Vascular Dysfunction and Oxidative Stress, While Modulating Nutrient-Sensing, Cell Cycle, and Senescence Pathways. Aging Cell 2017, 16, 17–26. [Google Scholar] [CrossRef]
- Ramzy, D.; Rao, V.; Tumiati, L.C.; Xu, N.; Miriuka, S.; Delgado, D.; Ross, H.J. Role of Endothelin-1 and Nitric Oxide Bioavailability in Transplant-Related Vascular Injury: Comparative Effects of Rapamycin and Cyclosporine. Circulation 2006, 114, I–214. [Google Scholar] [CrossRef]
- Gadioli, A.L.N.; Nogueira, B.V.; Arruda, R.M.P.; Pereira, R.B.; Meyrelles, S.S.; Arruda, J.A.; Vasquez, E.C. Oral Rapamycin Attenuates Atherosclerosis without Affecting the Arterial Responsiveness of Resistance Vessels in Apolipoprotein E-Deficient Mice. Braz. J. Med. Biol. Res. 2009, 42, 1191–1195. [Google Scholar] [CrossRef]
- Togni, M.; Windecker, S.; Cocchia, R.; Wenaweser, P.; Cook, S.; Billinger, M.; Meier, B.; Hess, O.M. Sirolimus-Eluting Stents Associated with Paradoxic Coronary Vasoconstriction. J. Am. Coll. Cardiol. 2005, 46, 231–236. [Google Scholar] [CrossRef]
- Bergler, T.; Resch, M.; Reinhold, S.W.; Birner, C.; Jungbauer, C.G.; Griese, D.P.; Schmid, P.; Banas, B.; Endemann, D. Cyclosporine A Impairs Norepinephrine-Induced Vascular Contractility. Kidney Blood Press. Res. 2013, 35, 655–662. [Google Scholar] [CrossRef]
- Yazdani, S.K.; Farb, A.; Nakano, M.; Vorpahl, M.; Ladich, E.; Finn, A.V.; Kolodgie, F.D.; Virmani, R. Pathology of Drug-Eluting versus Bare-Metal Stents in Saphenous Vein Bypass Graft Lesions. JACC Cardiovasc. Interv. 2012, 5, 666–674. [Google Scholar] [CrossRef] [PubMed]
- Kheiri, B.; Osman, M.; Abdalla, A.; Ahmed, S.; Bachuwa, G.; Hassan, M. The Short- and Long-Term Outcomes of Percutaneous Intervention with Drug-Eluting Stent vs Bare-Metal Stent in Saphenous Vein Graft Disease: An Updated Meta-Analysis of All Randomized Clinical Trials. Clin. Cardiol. 2018, 41, 685–692. [Google Scholar] [CrossRef] [PubMed]
- Bhogal, S.; Panchal, H.B.; Bagai, J.; Banerjee, S.; Brilakis, E.S.; Mukherjee, D.; Kumar, G.; Shanmugasundaram, M.; Paul, T.K. Drug-Eluting Versus Bare Metal Stents in Saphenous Vein Graft Intervention: An Updated Comprehensive Meta-Analysis of Randomized Trials. Cardiovasc. Revasc. Med. 2019, 20, 758–767. [Google Scholar] [CrossRef] [PubMed]
Parameters | n (%) |
---|---|
Age (year) | 58.25 ± 1.93 |
Number of Patients | 24 |
Sex | |
- Male | 16 (67%) |
- Female | 8 (33%) |
Diseases | |
Hypercholesterolemia | 15 (63%) |
Hypertension | 19 (79%) |
Diabetes Mellitus | 12 (50%) |
Drug therapy | |
β-blockers | 20 (83%) |
ACE Inhibitors | 1 (4%) |
Diuretics | 20 (83%) |
Statins | 3 (13%) |
Drug Therapy During Operation | |
Calcium Channel Blockers | 1 (4%) |
Nitrovasodilators | 23 (96%) |
Emax (%) | pEC50 | |
---|---|---|
Sirolimus | 24.00 ± 6.71 | 6.97 ± 0.23 |
DMSO | 24.36 ± 1.53 | 6.91 ± 0.45 |
Everolimus | 30.91 ± 6.95 | 6.38 ± 0.25 |
DMSO | 28.96 ± 7.12 | 6.41 ± 0.29 |
Phe | ACh | SNP | ||||
---|---|---|---|---|---|---|
Emax (%) | pEC50 | Emax (%) | pEC50 | Emax (%) | pEC50 | |
Sirolimus | 108.1 ± 3.70 | 5.72 ± 0.07 | 20.1 ± 2.93 | 5.51 ± 0.18 | 116.8 ± 3.89 | 6.81 ± 0.07 |
DMSO | 100 ±4.51 | 5.57 ± 0.07 | 23.29 ± 4.08 | 5.84 ± 0.17 | 112 ± 3.16 | 6.68 ± 0.1 |
Everolimus | 113 ± 3.49 | 5.67 ± 0.06 | 29.79 ± 3.9 | 5.81 ± 0.23 | 112.6 ± 2.93 | 7.12 ± 0.15 |
DMSO | 110.8 ± 4.41 | 5.63 ± 0.07 | 26.85 ± 4.61 | 5.78 ± 0.28 | 108.6 ± 2.64 | 7.2 ± 0.22 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kaleli Durman, D.; Civelek, E.; Alp Yildirim, F.İ.; Teskin, Ö.; Uydeş Doğan, B.S. Comparative Vascular Effects of Sirolimus and Everolimus on Isolated Human Saphenous Veins. Life 2025, 15, 553. https://doi.org/10.3390/life15040553
Kaleli Durman D, Civelek E, Alp Yildirim Fİ, Teskin Ö, Uydeş Doğan BS. Comparative Vascular Effects of Sirolimus and Everolimus on Isolated Human Saphenous Veins. Life. 2025; 15(4):553. https://doi.org/10.3390/life15040553
Chicago/Turabian StyleKaleli Durman, Deniz, Erkan Civelek, Fatoş İlkay Alp Yildirim, Önder Teskin, and Birsel Sönmez Uydeş Doğan. 2025. "Comparative Vascular Effects of Sirolimus and Everolimus on Isolated Human Saphenous Veins" Life 15, no. 4: 553. https://doi.org/10.3390/life15040553
APA StyleKaleli Durman, D., Civelek, E., Alp Yildirim, F. İ., Teskin, Ö., & Uydeş Doğan, B. S. (2025). Comparative Vascular Effects of Sirolimus and Everolimus on Isolated Human Saphenous Veins. Life, 15(4), 553. https://doi.org/10.3390/life15040553