Seasonal Variability and Sex-Specific Accumulation of Trace Metals in Black Scorpionfish (Scorpaena porcus Linnaeus, 1758) from Izmir Bay (Aegean Sea), Türkiye: Implications for Human Health Risk Assessment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection and Preparation
2.2. Determination of Elements
2.3. Microwave Digestion Procedure
- The temperature was increased to 160 °C over 5 min.
- The samples were held at 160 °C for 5 min.
- The temperature was then increased to 190 °C over 1 min.
- The samples were held at 190 °C for 15 min.
- Finally, the samples were cooled to 50 °C.
2.4. ICP-MS Analysis
- Nebulizer: Mainhard (concentric).
- Spray chamber: glass cyclonic.
- Triple-cone interface material: nickel.
- Plasma gas flow rate: 18.0 L/min.
- Auxiliary gas flow rate: 1.2 L/min.
- Nebulizer gas flow rate: 0.76 L/min.
- Sample uptake rate: 1 mL/min.
- RF power: 1500 W.
- Replicates per sample: 3.
- Mode of operation: standard (STD) mode and kinetic energy discrimination (KED) mode.
- Collision gas: helium (He).
- Sample preparation for ICP-MS.
2.5. Evaluation of Health Risk
2.6. The Se Health Benefit Value (HBVSe)
2.7. Ecological Risk Assessment
2.8. Statistical Analysis
3. Results and Discussion
3.1. Average Weights and Total Lengths of Fish Samples
3.2. Metal Concentrations of Samples
3.3. Comparison of Metal Levels with Previous Studies from the Aegean Sea
3.4. Health Risk Assessment
3.5. The HBVSe and MPI
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cordeli, A.N.; Oprea, L.; Cret, M.; Dediu, L.; Coad, M.T.; Mînzal, D.N. Bioaccumulation of metals in some fish species from the Romanian Danube River: A Review. Fishes 2023, 8, 387. [Google Scholar] [CrossRef]
- Artar, E.; Olgunoglu, M.P.; Olgunoglu, I.A. Evaluation of heavy metal accumulation and associated human health risks in three commercial marine fish species from the Aegean Sea, Türkiye. Ital. J. Food Sci. 2024, 36, 136–149. [Google Scholar] [CrossRef]
- Çulha, S.T.; Yabanlı, M.; Baki, B.; Yozukmaz, A. Heavy metals in tissues of scorpionfish (Scorpaena porcus) caught from Black Sea (Turkey) and potential risks to human health. Environ. Sci. Pollut. Res. 2016, 23, 20882–20892. [Google Scholar] [CrossRef] [PubMed]
- Çulha, S.T.; Karaduman, F.R.; Çulha, M. Heavy metal accumulation in molluscs associated with Cystoseira barbata in the Black Sea (Türkiye). Sustain. Aquat. Res. 2022, 1, 184–201. [Google Scholar]
- Ayas, Z.; Ekmekci, G.; Yerli, S.V.; Ozmen, M. Heavy metal accumulation in water, sediments, and fishes of Nallihan Bird Paradise, Turkey. J. Environ. Biol. 2007, 28, 545–549. [Google Scholar]
- Bat, L.; Öztekin, A.; Arici, E.; Şahin, F. Health risk assessment: Heavy metals in fish from the southern Black Sea. Foods Raw Mater. 2020, 8, 115–124. [Google Scholar] [CrossRef]
- Usman, I.B.; Mustapha, A.B. Bacteriological quality and heavy metal concentration of smoked catfish (Clarias gariepinus) in Minna Niger State, Nigeria. Dutse J. Pure Appl. Sci. 2017, 3, 149–160. [Google Scholar]
- Jafiya, L.; Akogwu, A.D.; Suleimana, J.S.; Osunlaja, A.A. Assessment of heavy metals in some edible fish species of the Komadugu-Yobe River, Gashua, Yobe State, North-East Nigeria: Threat to public health. Int. J. Biol. Pharm. Sci. Arch. 2022, 4, 001–011. [Google Scholar] [CrossRef]
- Sunlu, U. Trace metal levels in mussels (Mytilus galloprovincialis L., 1758) from Turkish Aegean Sea coast. Environ. Monit. Assess. 2006, 114, 273–286. [Google Scholar] [CrossRef]
- Kaya, Y.; Kocatepe, D. Chemical composition and nutritional quality of scorpion fish (Scorpaena porcus, Linnaeus 1758) muscle. Indian J. Anim. Res. 2014, 48, 83–87. [Google Scholar] [CrossRef]
- Erkan, N.; Kaplan, M.; Özden, Ö. Determination of trace/toxic mineral risk levels for different aged consumers of three fish species caught in the Marmara Sea. Aquat. Sci. Eng. 2020, 35, 6–12. [Google Scholar] [CrossRef]
- Samsun, S.; Sağlam, N.E. The biology of black scorpion fish (Scorpaena porcus Linnaeus, 1758) in the Black Sea (Samsun, Ordu, Giresun). Acta Aquat. Turc. 2018, 14, 291–302. (In Turkish) [Google Scholar] [CrossRef]
- TÜIK-Turkish Statistical Institute. Fishery Statistics, 2023. Number: 53702. 4 June 2024. Available online: https://data.tuik.gov.tr/Bulten/Index?p=Su-Urunleri-2023-53702 (accessed on 2 February 2025).
- Yedier, S.; Bostancı, D. Morphologic and morphometric comparisons of sagittal otoliths of five Scorpaena species in the Sea of Marmara, Mediterranean Sea, Aegean Sea, and Black Sea. Cah. Biol. Mar. 2021, 62, 357–369. [Google Scholar] [CrossRef]
- Ourgaud, M.; Ruitton, S.; Bourgogne, H.; Bustamente, P.; Churlaud, C.; Guillou, G.; Lebreton, B.; Harmelin-Vivien, M.L. Trace elements in a Mediterranean scorpaenid fish: Bioaccumulation processes and spatial variations. Prog. Oceanogr. 2018, 163, 184–195. [Google Scholar] [CrossRef]
- Sunlu, U. Comparison of heavy metal levels in native and cultured mussel Mytilus galloprovincialis (L., 1758) from the Bay of Izmir (Aegean Sea/Turkey). In CIESM Workshop Series, Proceedings of the Mediterranean Mussel Watch–Designing A Regional Program, Marseille, France, 18–20 April 2002; CIESM: Monaco, 2002. [Google Scholar]
- Zyadah, M.; Chouikhi, A. Heavy metal accumulation in Mullus barbatus, Merluccius merluccius, and Boops boops fish from the Aegean Sea, Turkey. Int. J. Food Sci. Nutr. 1999, 50, 429–434. [Google Scholar] [CrossRef]
- Bat, L.; Arici, E. Heavy metal levels in fish, molluscs, and crustacea from Turkish seas and potential risk of human health. In Food Quality: Balancing Health and Disease; Handbook of Food Bioengineering; Academic Press: Cambridge, MA, USA, 2018; pp. 159–196. [Google Scholar] [CrossRef]
- Sadeghi, P.; Loghmani, M.; Frokhzad, S. Human health risk assessment of heavy metals via consumption of commercial marine fish (Thunnus albacares, Euthynnus affinis, and Katsuwonus pelamis) in Oman Sea. Environ. Sci. Pollut. Res. 2020, 27, 14944–14952. [Google Scholar] [CrossRef]
- WPR—World Population Review. Fish Consumption by Country 2022. Available online: https://worldpopulationreview.com/country-rankings/fish-consumption-by-country (accessed on 2 February 2025).
- Alipour, H.; Pourkhabbaz, A.; Hassanpour, M. Estimation of potential health risks for some metallic elements by consumption of fish. Water Qual. Expo. Health 2015, 7, 179–185. [Google Scholar] [CrossRef]
- Pokorska, N.K.; Witczak, A.; Protasowicki, M.; Cybulski, J. Estimation of target hazard quotients and potential health risks for toxic metals and other trace elements by consumption of female fish gonads and testicles. Int. J. Environ. Res. Public Health 2022, 19, 2762. [Google Scholar] [CrossRef]
- Miri, M.; Akbari, E.; Amrane, A.; Jafari, S.J.; Eslami, H.; Hoseinzadeh, E.; Zarrabi, M.; Salimi, J.; Arbabi, M.S.; Taghavi, M. Health risk assessment of heavy metal intake due to fish consumption in the Sistan region, Iran. Environ. Monit. Assess. 2017, 189, 583. [Google Scholar] [CrossRef]
- Kilercioglu, S.; Kosker, A.R.; Evliyaoglu, E. Public health risk assessments associated with heavy metal levels in panga fish fillets imported from Vietnam. Int. J. Agric. Environ. Food Sci. 2022, 6, 568–578. [Google Scholar]
- Javed, M.; Usmani, N. Accumulation of heavy metals and human health risk assessment via the consumption of freshwater fish Mastacembelus armatus inhabiting thermal power plant effluent-loaded canal. SpringerPlus 2016, 5, 776. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Miao, X.; Hao, Y.; Xie, Z.; Zou, S.; Zhou, C. Health risk assessment of metals (Cu, Pb, Zn, Cr, Cd, As, Hg, Se) in angling fish with different lengths collected from Liuzhou, China. Int. J. Environ. Res. Public Health 2020, 17, 2192. [Google Scholar] [CrossRef] [PubMed]
- Çiftçi, H.; Çalışkan, Ç.E.; Öztürk, K. Determination of trace and toxic metal levels in some fish species and assessment of human health risk. J. Adv. Res. Nat. Appl. Sci. 2021, 7, 219–233. [Google Scholar] [CrossRef]
- Dayananda, N.R.; Liyana, J.A. Quest to assess potentially nephrotoxic heavy metal contaminants in edible wild and commercial inland fish species and associated reservoir sediments; a study in a CKDu prevailed area, Sri Lanka. J. Expo. Health 2021, 13, 567–581. [Google Scholar] [CrossRef]
- Tecimen, L.C.; Çiftçi, N.; Çiçek, B. Heavy metal levels and human health risk assessment in some fish species caught from Kuşadası Bay (Aegean Sea). Adv. Underw. Sci. 2023, 3, 01–08. [Google Scholar]
- Islam, S.; Ahmed, K.; Mamun, H.A.; Raknuzzaman, M.; Ali, M.M.; Eaton, D.W. Health risk assessment due to exposure from commonly consumed fish and vegetables. Environ. Syst. Decis. 2016, 36, 253–265. [Google Scholar] [CrossRef]
- Tokatlı, C.; Ustaoglu, F. Evaluation of toxic metal accumulations in Meriç Delta fish: Possible risks to human health. Acta Aquat. Turc. 2021, 17, 136–145. (In Turkish) [Google Scholar] [CrossRef]
- Alam, M.; Rohani, M.F.; Hossain, M.S. Heavy metals accumulation in some important fish species cultured in commercial fish farm of Natore, Bangladesh and possible health risk evaluation. Emerg. Contam. 2023, 9, 100254. [Google Scholar] [CrossRef]
- Azadeh, A.; Takdastan, A.; Fard, N.J.H.; Babaei, A.A.; Alivan, S. Determination of heavy metals including Hg, Pb, Cd, and Cr in edible fishes Liza abu, Brachirus orientalis and attributed cancer and non-cancer risk assessment. Environ. Health Eng. Manag. J. 2022, 9, 157–164. [Google Scholar] [CrossRef]
- Oni, A.A.; Babalola, S.O.; Adeleye, A.D.; Olagunju, T.E.; Amama, I.A.; Omole, E.O.; Adegboye, E.A.; Ohore, O.G. non-carcinogenic and carcinogenic health risks associated with heavy metals and polycyclic aromatic hydrocarbons in well-water samples from an automobile junk market in Ibadan, SW-Nigeria. Heliyon 2022, 8, e106888. [Google Scholar] [CrossRef]
- Osuna, F.P.; Tiznado, M.E.B.; Castañeda, G.V.; López, M.G.F.; Cañedo, J.A.L.; Sañudo, J.F.F.; Rochín, J.R. Mercury and selenium in three fish species from a dam 20 months after a mine tailing spill in the SE Gulf of California ecoregion, Mexico. Environ. Sci. Pollut. Res. 2024, 31, 5399–5414. [Google Scholar] [CrossRef] [PubMed]
- Akalın, S.; İlhan, D.; Ünlüoğlu, A.; Tosunoğlu, Z. Length-weight relationship and metric-meristic characteristics of two scorpion fishes (Scorpaena notata and Scorpaena porcus) in İzmir Bay. J. FisheriesSci. 2011, 5, 291–299. [Google Scholar] [CrossRef]
- Piórewicz, A.P.; Strekopytov, S.; Williams, E.H.; Kuklinski, P. The patterns of elemental concentration (Ca, Na, Sr, Mg, Mn, Ba, Cu, Pb, V, Y, U and Cd) in shells of invertebrates representing different CaCO3 polymorphs: A case study from the brackish Gulf of Gdansk (the Baltic Sea). Biogeosciences 2021, 18, 707–728. [Google Scholar] [CrossRef]
- Bat, L.; Öztekin, Y.; Arici, E. Assessment of heavy metal concentrations in Scophthalmus maximus (Linnaeus, 1758) from the Black Sea coast: Implications for food safety and human health. J. Hazard. Mater. Adv. 2023, 12, 100384. [Google Scholar] [CrossRef]
- Stamatis, N.; Kamidis, N.; Pigada, P.; Stergiou, D.; Kallianiotis, A. Bioaccumulation levels and potential health risks of mercury, cadmium, and lead in albacore (Thunnus alalunga, Bonnaterre, 1788) from the Aegean Sea, Greece. Int. J. Environ. Res. Public Health 2019, 16, 821. [Google Scholar] [CrossRef]
- Verep, B.; Mutlu, T. Heavy metal concentrations and health risk assessment in Sarda sarda (Bloch, 1793) caught in the Turkish Black Sea coasts. Acta Aquat. Turc. 2022, 18, 208–216. [Google Scholar] [CrossRef]
- Abd-Elghany, S.M.; Sayed-Ahmed, M.Z.; Rahmo, H.M.; Zakaria, A.I.; Ahmad, S.; Alam, N.; Ali, M.; Sallam, K.I. Carcinogenic and non-carcinogenic health risks associated with the consumption of fishes contaminated with heavy metals from Manzala Lake, Egypt. Mar. Pollut. Bull. 2024, 202, 116391. [Google Scholar] [CrossRef]
- Nielsen, F.H. The metabolism, nutritional essentiality, and clinical importance of chromium—Clarity emerging after 60 years of research. In The Nutritional Biochemistry of Chromium (III), 2nd ed.; Elsevier: Amsterdam, The Netherland, 2019; pp. 361–370. [Google Scholar]
- Hefnawy, A.; Elkhaiat, H. The importance of copper and the effects of its deficiency and toxicity in animal health. Int. J. Livest. Res. 2015, 5, 1–20. [Google Scholar] [CrossRef]
- Uslu, B.; Aktaç, Ş. Zinc, its functions and role in the immune system. J. Health Sci. 2021, 30, 83–86. [Google Scholar] [CrossRef]
- Abbaspour, N.; Hurrell, R.; Kelishadi, R. Review on iron and its importance for human health. J. Res. Med. Sci. 2014, 19, 164–174. [Google Scholar]
- Özkan, E.Y. A New Assessment of heavy metal contaminations in an Eutrophicated Bay (Inner Izmir Bay, Turkey). Turk. J. Fish. Aquat. Sci. 2012, 12, 135–147. [Google Scholar] [CrossRef] [PubMed]
- Tsuji, P.A.; Canter, J.A.; Rosso, L.E. Trace minerals and trace elements. Encycl. Food Health 2016, 331–338. [Google Scholar] [CrossRef]
- Kontas, A. Trace metals (Cu, Mn, Ni, Zn, Fe) Contamination in marine sediment and zooplankton samples from Izmir Bay. (Aegean Sea, Turkey). Water Air Soil Pollut. 2008, 188, 323–333. [Google Scholar] [CrossRef]
- Kumar, A.; Jigyasu, D.K.; Kumar, A.; Subrahmanyam, G.; Mondal, R.; Shabnam, A.A.; Cabral-Pinto, M.M.S.; Malyan, S.K.; Chaturvedi, A.K.; Gupta, D.K.; et al. Nickel in terrestrial biota: Comprehensive review on contamination, toxicity, tolerance, and its remediation approaches. Chemosphere 2022, 275, 129996. [Google Scholar] [CrossRef] [PubMed]
- Çelebi, Ş.; Dumlu, B.; Özdemir, V.F. Some properties of selenium and its effects on human health. Food Sci. Eng. Res. 2023, 2, 6–10. [Google Scholar] [CrossRef]
- Rosli, M.N.R.; Samat, S.B.; Yasır, M.S.; Yusof, M.F.M. Analysis of heavy metal accumulation in fish at Terengganu Coastal Area, Malaysia. Sains Malays. 2018, 47, 1277–1283. [Google Scholar] [CrossRef]
- Dirican, S. Comparison of heavy metal accumulation levels in abdominal muscles of crayfish (Astacus leptodactylus Esch., 1823) from Kılıçkaya Reservoir, Sivas, Turkey. Pol. J. Environ. Stud. 2025, 34, 1–8. [Google Scholar] [CrossRef]
- Pourang, N.; Dennis, J.H.; Ghourchiani, H. Distribution of heavy metals in Penaeus semisulcatus from Persian Gulf and possible role of metallothionein in their redistribution during storage. Environ. Monit. Assess. 2005, 100, 71. [Google Scholar] [CrossRef]
- Krishna, P.V.; Jyothirmayi, V.; Rao, K.M. Human health risk assessment of heavy metal accumulation through fish consumption, from Machilipatnam Coast, Andhra Pradesh, India. Int. Res. J. Public Environ. Health 2014, 1, 121. [Google Scholar]
- Ahmed, Q.; Bat, L.; Yousuf, F. Heavy metals in Terapon puta (Cuvier, 1829) from Karachi coasts, Pakistan. J. Mar. Sci. 2015, 2015, 132768. [Google Scholar] [CrossRef]
- Bat, L.; Öztekin, A.; Sahin, F. Heavy metal detection in Scorpaena porcus Linnaeus, 1758 from Sinop Coast of the Black Sea and potential risks to human health. Curr. Agric. Res. J. 2018, 6, 255–260. [Google Scholar] [CrossRef]
- Ateş, A.; Türkmen, M.; Tepe, Y. Assessment of heavy metal in fourteen fish species from Turkish seas. Indian J. Geo-Mar. Sci. 2015, 44, 49–55. [Google Scholar]
- Kuplulu, O.; Iplikcioglu Cil, G.; Korkmaz, S.; Aykut, O.; Ozansoy, G. Determination of metal contamination in seafood from the Black, Marmara, Aegean, and Mediterranean Sea. J. Hell. Vet. Med. Soc. 2018, 69, 749–758. [Google Scholar] [CrossRef]
- Ergönül, B.; Aktaş, A.; Ergönül, P.G.; Kundakçı, A. Heavy metal levels in several fish species from Turkey. Arch. Lebensm. Hyg. 2015, 66, 79–82. [Google Scholar] [CrossRef]
- Yabanlı, M.; Alparslan, Y. Potential health hazard assessment in terms of some heavy metals determined in demersal fishes caught in Eastern Aegean Sea. Bull. Environ. Contam. Toxicol. 2015, 95, 494–498. [Google Scholar] [CrossRef]
- Topal, T.; Onac, C. Determination of heavy metals and pesticides in different types of fish samples collected from four different locations of Aegean and Marmara Sea. J. Food Qual. 2020, 2020, 8101532. [Google Scholar] [CrossRef]
- Döndü, M.; Özdemir, N.; Demirak, A.; Keskin, F.; Zeynalova, N. Bioaccumulation and human health risk assessment of some heavy metals in sediments, Sparus aurata and Salicornia europaea in Güllük Lagoon, the south of Aegean Sea. Environ. Sci. Pollut. Res. 2023, 30, 18227–18243. [Google Scholar] [CrossRef]
- Yabanlı, M.; Alparslan, Y.; Hasanhocaoglu, H.Y.; Yapıcı, S.; Yozukmaz, A. Determination of heavy metal content in commercial marine fish hunted from Southeast Aegean Sea (Turkey) and their potential risk for public health. Casp. J. Environ. Sci. 2016, 14, 1–13. [Google Scholar]
- Erdem, M.E.; Köstekli, B.; Keskin, İ.; Kocatepe, D.; Kaya, Y. Mineral matter content and heavy metal contamination of anchovy (Engraulis encrasicolus Linnaeus 1758) captured from different seas. KSU J. Agric. Nat. 2021, 24, 285–292. [Google Scholar] [CrossRef]
- Almafrachi, H.A.A.; Gümüş, N.E.; Öcal, İ.Ç. Heavy metal bioaccumulation in fish: Implications for human health risk assessment in ten commercial fish species from Konya, Türkiye. Int. J. Environ. Sci. Technol. 2024, 22, 4065–4074. [Google Scholar] [CrossRef]
- Roy, T.K.; Nag, S.; Antu, U.B.; Hossain, S.K.; Bakky, A.I.; Anjum, M.T.; Sarker, B.C.; Ullah, M.R.; Farzana, F.; Mahiddin, N.A.; et al. A Comprehensive Assessment of Health Risks Associated with Heavy Metal Through Ingestion of Two Predominant Fish Species in a Developing Country. Biol. Trace. Elem. Res. 2025. [Google Scholar] [CrossRef] [PubMed]
- Zaghloul, G.Y.; Eissa, H.A.; Zaghloul, A.Y.; Kelany, M.S.; Hamed, M.A.; Moselhy, K.M. Impact of some heavy metal accumulation in different organs on fish quality from Bardawil Lake and human health risks assessment. Geochem. Trans. 2024, 25, 1. [Google Scholar] [CrossRef] [PubMed]
- Omar, W.A.; Mikhail, W.Z.A.; Abdo, H.M.; Defan, T.A.A.E.; Poraas, M.M. Ecological risk assessment of metal pollution along Greater Cairo Sector of the river Nile, Egypt, using nile tilapia, Oreochromis niloticus, as bioindicator. J. Toxicol. 2015, 97, 167319. [Google Scholar] [CrossRef] [PubMed]
- Kalipci, E.; Cüce, H.; Ustaoglu, F.; Dereli, M.A.; Türkmen, M. Toxicological health risk analysis of hazardous trace elements accumulation in the edible fish species of the Black Sea in Türkiye using multivariate statistical and spatial assessment. Environ. Toxicol. Pharmacol. 2023, 97, 104028. [Google Scholar] [CrossRef]
Statement (Factors; Unit) | Value for Adult |
---|---|
Exposure frequency (EF; days per year) | 365 |
Exposure duration (ED; Years) | 70 |
Food ingestion rate (FIR; g/person/day) | 3.31 |
Metal concentration (C; mg kg−1) | Present study |
Body weight (BW; Kg) | 70 |
Average exposure time for non-carcinogenic effects (ATn; days per year × ED) | 365 × 70 |
Oral reference dose (RfDs; mg kg−1/day) | Cd = 0.001; Cr = 0.003; Cu = 0.04; Fe = 0.7; Hg = 0.0001; Mn = 0.14; Ni = 0.02; Pb = 0.0035; Se = 0.005; Zn = 0.3 |
Gender | Seasons | Weight (g) | Total Length (cm) |
---|---|---|---|
♀ | Autumn (8) | 228.00 ± 62.33 | 22.50 ± 1.87 |
♂ | Autumn (5) | 258.67 ± 106.23 | 22.83 ± 3.33 |
♀ | Winter (9) | 363.33 ± 102.26 | 26.45 ± 3.71 |
♂ | Winter (4) | 309.83 ± 55.16 | 25.75 ± 2.38 |
♀ | Spring (6) | 222.33 ± 74.84 | 23.33 ± 2.31 |
♂ | Spring (7) | 340.00 ± 80.00 | 26.33 ± 2.08 |
♀ | Summer (5) | 271.22 ± 62.33 | 24.36 ± 2.50 |
♂ | Summer (8) | 302.83 ± 96.23 | 24.97 ± 2.82 |
Elements | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Gender | Seasons | Cd | Cr | Cu | Fe | Hg | Mn | Ni | Pb | Se | Zn |
♀ | Autumn | 0.042 ± 0.001 a | 0.213 ± 0.001 b | 0.539 ± 0.005 ab | 29.189 ± 0.0109 a | 0.131 ± 0.001 a | 0.890 ± 0.023 ab | 0.212 ± 0.001 a | 0.323 ± 0.001 a | 0.508 ± 0.004 b | 4.206 ± 0.003 bc |
♂ | 0.038 ± 0.004 a | 0.474 ± 0.002 b | 0.492 ± 0.004 ab | 34.452 ± 0.087 a | 0.324 ± 0.005 a | 1.056 ± 0.003 ab | 0.645 ± 0.002 a | 0.380 ± 0.017 a | 0.622 ± 0.001 b | 3.520 ± 0.023 bc | |
♀ | Winter | 0.033 ± 0.001 a | 0.183 ± 0.001 ab | 0.245 ± 0.001 a | 57.281 ± 0.006 b | 0.074 ± 0.002 a | 0.559 ± 0.005 a | 0.172 ± 0.001 a | 0.371 ± 0.001 b | 0.302 ± 0.001 a | 2.582 ± 0.001 a |
♂ | 0.040 ± 0.001 a | 0.239 ± 0.001 ab | 0.292 ± 0.001 a | 58.685 ± 0.001 b | 0.379 ± 0.006 a | 0.676 ± 0.016 a | 2.494 ± 0.011 a | 0.398 ± 0.002 b | 0.416 ± 0.022 a | 2.806 ± 0.001 a | |
♀ | Spring | 0.034 ± 0.002 a | 0.457 ± 0.003 ab | 0.977 ± 0.004 b | 58.670 ± 0.040 b | 0.157 ± 0.004 a | 1.976 ± 0.002 b | 1.464 ± 0.002 a | 0.429 ± 0.005 c | 0.456 ± 0.003 ab | 3.453 ± 0.001 c |
♂ | 0.044 ± 0.002 a | 0.144 ± 0.002 ab | 0.295 ± 0.002 b | 49.44 ± 0.023 b | 0.106 ± 0.003 a | 0.577 ± 0.004 b | 0.190 ± 0.011 a | 0.404 ± 0.002 c | 0.497 ± 0.003 ab | 5.741 ± 0.001 c | |
♀ | Summer | 0.027 ± 0.001 a | 0.097 ± 0.001 a | 0.237 ± 0.003 ab | 20.829 ± 0.016 a | 1.482 ± 0.002 b | 0.196 ± 0.003 a | 0.691 ± 0.002 a | 0.349 ± 0.002 a | 0.631 ± 0.001 c | 3.526 ± 0.003 ab |
♂ | 0.039 ± 0.020 a | 0.213 ± 0.001 a | 0.605 ± 0.002 ab | 47.798 ± 0.004 a | 0.435 ± 0.002 b | 1.001 ± 0.003 a | 0.923 ± 0.004 a | 0.376 ± 0.003 a | 0.952 ± 0.002 c | 2.955 ± 0.002 ab | |
PL | 0.500 | - | 20 | 100 | 1.00 | 1.00 | - | 0.300 | - | 40 | |
(IDL) | 0.018 | 0.011 | 0.011 | 0.041 | 0.002 | 0.038 | 0.019 | 0.004 | 0.101 | 0.086 |
Metals | Species | Concentrations | References | Present Study |
---|---|---|---|---|
Cd | Serranus cabrilla | 0.20 ± 0.07 | [57] | max. 0.044 min. 0.027 |
Diplodus sargus | 0.18 ± 0.06 | [57] | ||
Sardina pilchardus | 0.10 ± 0.04 | [57] | ||
Spicara maena | 0.06 ± 0.02 | [57] | ||
Oblada melanura | 0.03 ± 0.00 | [57] | ||
Merluccius merluccius | 0.08 ± 0.03 | [57] | ||
0.025 | [58] | |||
Sardina pilchardus | 0.03 ± 0.01 | [59] | ||
Mullus barbatus | 0.03 ± 0.01 | [60] | ||
Mullus surmuletus | 0.03 ± 0.01 | [60] | ||
Lithognathus mormyrus | 0.03 ± 0.01 | [60] | ||
Pagellus erythrinus | 0.03 ± 0.01 | [60] | ||
Diplodus vulgaris | 0.03 ± 0.01 | [60] | ||
Mugil soiuy | 0.037 | [58] | ||
Alosa fallax | 0.015 | [58] | ||
Merlangius euxmus | 0.009 | [58] | ||
Thunnus alalunga | 0.021–0.669 | [37] | ||
Pomatomus saltatrix | 0.011 | [58] | ||
5.15 ± 0.27 | [61] | |||
Dicentrarchus labrax | 0.005 | [58] | ||
0.24 ± 0.01 | [61] | |||
Mugil cephalus | 5.40 ± 0.25 | [61] | ||
Sparus aurata | 0.06 ± 0.03 | [59] | ||
0.027 | [58] | |||
4.96 ± 0.24 | [61] | |||
0.01 ± 0.01 | [62] | |||
Cr | Serranus cabrilla | 0.15 ± 0.06 | [57] | max. 0.474 min. 0.097 |
Diplodus sargus | 0.52 ± 0.21 | [57] | ||
Sardina pilchardus | 0.38 ± 0.15 | [57] | ||
Spicara maena | 0.09 ± 0.01 | [57] | ||
Oblada melanura | 0.11 ± 0.04 | [57] | ||
Merluccius merluccius | 0.29 ± 0.0 | [57] | ||
Mullus barbatus | 0.28 ± 0.07 | [60] | ||
Mullus surmuletus | 0.27 ± 0.10 | [60] | ||
Lithognathus mormyrus | 0.38 ± 0.11 | [60] | ||
0.38 ± 0.11 | [63] | |||
Pagellus erythrinus | 0.31 ± 0.14 | [60] | ||
0.39 ± 0.07 | [63] | |||
Diplodus vulgaris | 0.39 ± 0.07 | [60] | ||
0.31 ± 0.14 | [63] | |||
E. encrasicolus | 0.03 ± 0.00 | [59] | ||
Cu | Serranus cabrilla | 1.20 ± 0.27 | [57] | max. 0.977 min. 0.237 |
Diplodus sargus | 9.86 ± 3.81 | [57] | ||
Sardina pilchardus | 4.79 ± 1.66 | [57] | ||
Spicara maena | 1.31 ± 0.52 | [57] | ||
Oblada melanura | 0.25 ± 0.04 | [57] | ||
Merluccius merluccius | 10.7 ± 4.62 | [57] | ||
Diplodus vulgaris | 0.21 ± 0.03 | [60] | ||
0.22 ± 0.14 | [53] | |||
Mullus surmuletus | 0.18 ± 0.05 | [60] | ||
Lithognathus mormyrus | 0.17 ± 0.05 | [60] | ||
0.17 ± 0.05 | [63] | |||
Dicentrarchus labrax | 8.09 ± 1.13 | [61] | ||
Engraulis encrasicolus | 0.88 ± 0.01 | [64] | ||
1.54 ± 0.23/5.28 ± 0.85 | [29] | |||
Sphyraena sphyraena | 0.80 ± 0.66/5.82 ± 0.58 | [29] | ||
Sardinella aurita | 1.26 ± 0.22/3.16 ± 0.53 | [29] | ||
Mugil cephalus | 0.94 ± 0.08/3.44 ± 1.40 | [29] | ||
Mullus barbatus | 0.13 ± 0.04 | [60] | ||
0.96 ± 0.22/4.41 ± 0.93 | [29] | |||
Pagellus erythrinus | 0.22 ± 0.14 | [60] | ||
0.21 ± 0.03 | [63] | |||
0.97 ± 0.15/3.03 ± 1.54 | [29] | |||
Sparus aurata | 3.39 ± 0.20 | [61] | ||
1.31 ± 2.30 | [62] | |||
Belone belone | 0.346 ± 0.040/0.454 ± 0.052 | [2] | ||
Sphyraena sphyraena | 0.309 ± 0.036/0.263 ± 0.030 | [2] | ||
Lophius piscatorius | 0.158 ± 0.018/0.181 ± 0.021 | [2] | ||
Fe | Serranus cabrilla | 80.2 ± 22.6 | [57] | max. 58.685 min. 20.829 |
Diplodus sargus | 71.3 ± 20.2 | [57] | ||
Sardina pilchardus | 97.2 ± 26.2 | [57] | ||
Spicara maena | 37.1 ± 10.6 | [57] | ||
Oblada melanura | 42.8 ± 18.9 | [57] | ||
Merluccius merluccius | 115 ± 30.2 | [57] | ||
Engraulis encrasicolus | 13.6 ± 0.01 | [64] | ||
Sparus aurata | 3.43 ± 0.75 | [62] | ||
Belone belone | 2.354 ± 0.248/5.044 ± 0.531 | [2] | ||
Sphyraena sphyraena | 1.13 ± 0.090/1.936 ± 0.204 | [2] | ||
Lophius piscatorius | 1.025 ± 0.250/1.244 ± 0.131 | [2] | ||
Mn | Serranus cabrilla | 1.44 ± 0.53 | [57] | max. 1.976 min. 0.196 |
Diplodus sargus | 2.80 ± 0.48 | [57] | ||
S. pilchardus | 3.62 ± 1.19 | [57] | ||
Spicara maena | 0.81 ± 0.22 | [57] | ||
Oblada melanura | 0.17 ± 0.07 | [57] | ||
Merluccius merluccius | 1.46 ± 0.49 | [57] | ||
Pomatomus saltatrix | 2.22 ± 0.15 | [61] | ||
Dicentrarchus labrax | 6.79 ± 0.13 | [61] | ||
Mugil cephalus | 4.16 ± 0.29 | [61] | ||
Engraulis encrasicolus | 0.57 ± 0.02 | [59] | ||
Sparus aurata | 4.71 ± 0.84 | [61] | ||
1.80 ± 1.12 | [62] | |||
Lophius piscatorius | 0.182 ± 0.024/0.106 ± 0.014 | [2] | ||
Ni | Serranus cabrilla | 1.12 ± 0.16 | [57] | max. 2.494 min. 0.172 |
Diplodus sargus | 2.90 ± 1.07 | [57] | ||
S. pilchardus | 0.68 ± 0.33 | [57] | ||
Spicara maena | 0.70 ± 0.17 | [57] | ||
Oblada melanura | 0.27 ± 0.07 | [57] | ||
Merluccius merluccius | 0.60 ± 0.19 | [57] | ||
Pomatomus saltatrix | 1.85 ± 0.03 | [61] | ||
Dicentrarchus labrax | 11.025 ± 0.56 | [61] | ||
Mugil cephalus | 1.66 ± 0.03 | [61] | ||
Sparus aurata | 4.036 ± 0.68 | [61] | ||
Engraulis encrasicolus | 0.14 ± 0.22 | [64] | ||
Belone belone | 0.126 ± 0.019/0.138 ± 0.021 | [2] | ||
Lophius piscatorius | 0.147 ± 0.022 | [2] | ||
Pb | Serranus cabrilla | 0.85 ± 0.39 | [57] | max. 0.429 min. 0.323 |
Diplodus sargus | 1.09 ± 0.50 | [57] | ||
Sardina pilchardus | 0.90 ± 0.42 | [57] | ||
Spicara maena | 0.28 ± 0.06 | [57] | ||
Oblada melanura | 0.29 ± 0.04 | [57] | ||
Merluccius merluccius | 1.15 ± 0.36 | [57] | ||
0.025 | [58] | |||
Mugil soiuy | 0.078 | [58] | ||
Alosa fallax | 0.046 | [58] | ||
Merlangius euxmus | 0.059 | [58] | ||
Scophthalmus maximus | 0.139 | [58] | ||
Pomatomus saltatrix | 0.049 | [58] | ||
Thunnus alalunga | 0.020–0.557 | [39] | ||
Pomatomus saltatrix | 0.34 ± 0.06 | [61] | ||
Dicentrarchus labrax | 0.04 | [58] | ||
0.11 ± 0.008 | [61] | |||
Engraulis encrasicolus | 0.70 ± 0.37 | [29] | ||
Sardinella aurita | 0.41 ± 0.28/0.46 ± 0.23 | [29] | ||
Sphyraena sphyraena | 0.21 ± 0.10/0.98 ± 0.54 | [29] | ||
Mugil cephalus | 2.34 ± 0.04 | [61] | ||
0.28 ± 0.10/1.30 ± 0.49 | [29] | |||
Mullus barbatus | 0.0099 | [58] | ||
0.10 ± 0.02 | [60] | |||
0.21 ± 0.10/0.78 ± 0.19 | [29] | |||
Mullus surmuletus | 0.10 ± 0.02 | [60] | ||
Lithognathus mormyrus | 0.10 ± 0.02 | [60] | ||
0.11 ± 0.03 | [63] | |||
Pagellus erythrinus | 0.10 ± 0.02 | [60] | ||
0.10 ± 0.02 | [63] | |||
0.20 ± 0.15/0.92 ± 0.15 | [29] | |||
Diplodus vulgaris | 0.10 ± 0.02 | [60] | ||
0.12 ± 0.05 | [63] | |||
Sparus aurata | 0.077 | [63] | ||
2.38 ± 0.14 | [61] | |||
Zn | Serranus cabrilla | 7.76 ± 1.08 | [57] | max. 5.741 min. 2.582 |
Diplodus sargus | 21.7 ± 7.07 | [57] | ||
Sardina pilchardus | 10.9 ± 3.80 | [57] | ||
Spicara maena | 4.54 ± 0.39 | [57] | ||
Oblada melanura | 3.74 ± 0.37 | [57] | ||
Merluccius merluccius | 9.80 ± 1.57 | [57] | ||
Lithognathus mormyrus | 5.01 ± 0.15 | [63] | ||
Diplodus vulgaris | 4.95 ± 0.16 | [63] | ||
Pagellus erythrinus | 5.04 ± 0.27 | [63] | ||
18.94 ± 2.55/32.64 ± 3.99 | [29] | |||
Pomatomus saltatrix | 64.94 ± 9.09 | [61] | ||
Dicentrarchus labrax | 59.25 ± 7.70 | [61] | ||
Engraulis encrasicolus | 20.03 ± 0.11 | [64] | ||
39.44 ± 2.18/41.60 ± 8.41 | [29] | |||
Sardinella aurita | 26.06 ± 6.05/32.30 ± 1.42 | [29] | ||
Sphyraena sphyraena | 13.09 ± 1.19/21.15 ± 3.01 | [29] | ||
Mugil cephalus | 50.14 ± 7.01 | [61] | ||
25.63 ± 2.43/39.69 ± 6.01 | [29] | |||
Mullus barbatus | 26.63 ± 4.89/41.38 ± 2.67 | [29] | ||
Sparus aurata | 67.09 ± 9.39 | [61] | ||
1.01 ± 0.24 | [62] | |||
Belone belone | 7.071 ± 0.768/9.731 ± 1.057 | [2] | ||
Sphyraena sphyraena | 3.297 ± 0.358/3.702 ± 0.402 | [2] | ||
Lophius piscatorius | 3.999 ± 0.434/7.958 ± 0.864 | [2] | ||
Hg | Mullus surmuletus | 0.09 ± 0.03 | [60] | max. 1.482 min. 0.074 |
Lithognathus mormyrus | 0.10 ± 0.03 | [60] | ||
0.10 ± 0.03 | [63] | |||
Pagellus erythrinus | 0.09 ± 0.03 | [60] | ||
0.09 ± 0.03 | [63] | |||
Diplodus vulgaris | 0.09 ± 0.02 | [60] | ||
0.09 ± 0.03 | [63] | |||
Mugil soiuy | 0.014 | [58] | ||
Alosa fallax | 0.028 | [58] | ||
Merluccius merluccius | 0.034 | [58] | ||
Merlangius euxmus | 0.063 | [58] | ||
Scophthalmus maximus | 0.045 | [58] | ||
Pomatomus saltatrix | 0.025 | [58] | ||
Thunnus alalunga | 0.141–0.938 | [39] | ||
Belone belone | 0.025 ± 0.005/0.024 ± 0.005 | [2] | ||
Sphyraena sphyraena | 0.069 ± 0.014/0.088 ± 0.018 | [2] | ||
Lophius piscatorius | 1.109 ± 0.225/0.211 ± 0.043 | [2] |
Cd | Cr | Cu | Fe | Hg | Mn | Ni | Pb | Se | Zn | ||
PTWI | 0.007 | 0.0233 | 3.5 | 5.6 | 0.025 | 2.5 | 0.035 | 0.025 | 0.066 | 7 | |
EWI | |||||||||||
♀ | Autumn | 0.0139 | 0.0705 | 0.1784 | 9.6616 | 0.0434 | 0.2946 | 0.0702 | 0.1069 | 0.1681 | 1.3922 |
♂ | 0.0126 | 0.1569 | 0.1629 | 11.4036 | 0.1072 | 0.3495 | 0.2135 | 0.1258 | 0.2059 | 1.1651 | |
♀ | Winter | 0.0109 | 0.0606 | 0.0811 | 18.9600 | 0.0245 | 0.1850 | 0.0569 | 0.1228 | 0.1000 | 0.8546 |
♂ | 0.0129 | 0.0788 | 0.0947 | 19.4247 | 0.1258 | 0.2284 | 0.8288 | 0.1311 | 0.1314 | 0.9288 | |
♀ | Spring | 0.0113 | 0.1513 | 0.3234 | 19.4198 | 0.0520 | 0.6541 | 0.4846 | 0.1420 | 0.1509 | 1.1429 |
♂ | 0.0146 | 0.0477 | 0.0976 | 16.3646 | 0.0351 | 0.1910 | 0.0629 | 0.1337 | 0.1645 | 1.9003 | |
♀ | Summer | 0.0089 | 0.0321 | 0.0784 | 6.8944 | 0.4905 | 0.0649 | 0.2287 | 0.1155 | 0.2089 | 1.1671 |
♂ | 0.0129 | 0.0705 | 0.2003 | 15.8211 | 0.1440 | 0.3313 | 0.3055 | 0.1245 | 0.3151 | 0.9781 |
Cd | Cr | Cu | Fe | Hg | Mn | Ni | Pb | Se | Zn | |||
THQ | ∑THQ | |||||||||||
♀ | Autmun | 1.986 ×10−3 | 3.3572 × 10−3 | 6.3717 ×10−4 | 1.9717 ×10−3 | 6.1944 ×10−2 | 3.0060 ×10−4 | 5.0122 ×10−4 | 4.3637 ×10−3 | 4.8042 ×10−3 | 6.6294 ×10−4 | 0.0805 |
♂ | 1.7968 ×10−3 | 7.4711 × 10−3 | 5.8161 ×10−4 | 2.3272 ×10−3 | 1.5320 ×10−1 | 3.5666 ×10−4 | 1.5249 ×10−3 | 5.1338 ×10−3 | 5.8823 ×10−3 | 5.5481 ×10−4 | 0.1788 | |
♀ | Winter | 1.5604 ×10−3 | 2.8844 × 10−3 | 2.8962 ×10−4 | 3.8693 ×10−3 | 3.4991 ×10−2 | 1.8880 ×10−4 | 4.0665 ×10−4 | 5.0122 ×10−3 | 2.8560 ×10−3 | 4.0697 ×10−4 | 0.0525 |
♂ | 1.8441 ×10−3 | 3.7513 × 10−3 | 3.3809 ×10−4 | 3.9642 ×10−3 | 1.7968 ×10−1 | 2.3305 ×10−4 | 5.9201 ×10−3 | 5.3500 ×10−3 | 3.7544 ×10−3 | 4.4227 ×10−4 | 0.2053 | |
♀ | Spring | 1.6077 ×10−3 | 7.2031 × 10−3 | 1.1549 ×10−3 | 3.9632 ×10−3 | 7.42381 ×10−2 | 6.6740 ×10−4 | 3.4613 ×10−3 | 5.7958 ×10−3 | 4.3124 ×10−3 | 5.4425 ×10−4 | 0.1029 |
♂ | 2.0805 ×10−3 | 2.2697 × 10−3 | 3.4873 ×10−4 | 3.3397 ×10−3 | 5.0122 ×10−2 | 1.9488 ×10−4 | 4.4921 ×10−4 | 5.4581 ×10−3 | 4.7002 ×10−3 | 9.0489 ×10−4 | 0.0699 | |
♀ | Summer | 1.2767 ×10−3 | 1.5289 × 10−3 | 2.8016 ×10−4 | 1.4070 ×10−3 | 7.0077 ×10−1 | 6.62 E−5 | 1.6337 ×10−3 | 4.7150 ×10−3 | 5.9674 ×10−3 | 5.5576 ×10−4 | 0.7182 |
♂ | 1.8441 ×10−3 | 3.3572 × 10−3 | 7.1519 ×10−4 | 3.2288 ×10−3 | 2.0569 ×10−1 | 3.3809 ×10−4 | 2.1822 ×10−3 | 5.0798 ×10−3 | 9.0032 ×10−3 | 4.6576 ×10−4 | 0.2319 |
Gender | Seasons | Cd | Cr | Ni | Pb |
---|---|---|---|---|---|
♀ | Autumn | 7.5 × 10−4 | 5.0 × 10−3 | 9.1 × 10−3 | 1.3 × 10−4 |
♂ | Autumn | 6.8 × 10−4 | 1.12 × 10−2 | 2.78 × 10−2 | 1.5 × 10−4 |
♀ | Winter | 5.9 × 10−4 | 4.3 × 10−3 | 7.4 × 10−3 | 1.5 × 10−4 |
♂ | Winter | 7.0 × 10−4 | 5.6 × 10−3 | 1.08 × 10−1 | 1.6 × 10−4 |
♀ | Spring | 6.1 × 10−4 | 1.08 × 10−2 | 6.30 × 10−2 | 1.7 × 10−4 |
♂ | Spring | 7.9 × 10−4 | 3.4 × 10−3 | 8.2 × 10−3 | 1.6 × 10−4 |
♀ | Summer | 4.9 × 10−4 | 2.3 × 10−3 | 2.97 × 10−2 | 1.4 × 10−4 |
♂ | Summer | 7.0 × 10−4 | 5.0 × 10−3 | 3.97 × 10−2 | 1.5 × 10−4 |
Gender | Seasons | MPI | HBVSe |
---|---|---|---|
♀ | Autumn | 0.547 | 0.46 |
♂ | Autumn | 0.750 | 0.45 |
♀ | Winter | 0.421 | 0.28 |
♂ | Winter | 0.734 | 0.02 |
♀ | Spring | 0.878 | 0.40 |
♂ | Spring | 0.512 | 0.47 |
♀ | Summer | 0.538 | −1.63 |
♂ | Summer | 0.796 | 0.76 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Olgunoglu, M.P.; Olgunoglu, I.A.; Artar, E. Seasonal Variability and Sex-Specific Accumulation of Trace Metals in Black Scorpionfish (Scorpaena porcus Linnaeus, 1758) from Izmir Bay (Aegean Sea), Türkiye: Implications for Human Health Risk Assessment. Life 2025, 15, 501. https://doi.org/10.3390/life15030501
Olgunoglu MP, Olgunoglu IA, Artar E. Seasonal Variability and Sex-Specific Accumulation of Trace Metals in Black Scorpionfish (Scorpaena porcus Linnaeus, 1758) from Izmir Bay (Aegean Sea), Türkiye: Implications for Human Health Risk Assessment. Life. 2025; 15(3):501. https://doi.org/10.3390/life15030501
Chicago/Turabian StyleOlgunoglu, Mine Percin, Ilkan Ali Olgunoglu, and Engin Artar. 2025. "Seasonal Variability and Sex-Specific Accumulation of Trace Metals in Black Scorpionfish (Scorpaena porcus Linnaeus, 1758) from Izmir Bay (Aegean Sea), Türkiye: Implications for Human Health Risk Assessment" Life 15, no. 3: 501. https://doi.org/10.3390/life15030501
APA StyleOlgunoglu, M. P., Olgunoglu, I. A., & Artar, E. (2025). Seasonal Variability and Sex-Specific Accumulation of Trace Metals in Black Scorpionfish (Scorpaena porcus Linnaeus, 1758) from Izmir Bay (Aegean Sea), Türkiye: Implications for Human Health Risk Assessment. Life, 15(3), 501. https://doi.org/10.3390/life15030501