Antibacterial Effects of Er:YAG Laser Irradiation on Candida–Streptococcal Biofilms
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation
- -
- Candida spp.: incubated aerobically on Sabouraud Dextrose Broth (Biomaxima, Lublin, Poland) at 37 °C for 48 h.
- -
- S. mutans: grown on Brain Heart Infusion (BHI) agar (Biomaxima, Lublin, Poland) at 37 °C for 48 h under an atmosphere enriched with 5% CO2.
2.2. Sample Preparation Methods
- (a)
- Planktonic cell solutions: Microbial suspensions were adjusted to a 0.5 McFarland density following these preparations:
- -
- Single-species cultures: 100 µL of microbial suspension (C. albicans, C. glabrata and S. mutans) was mixed with 900 µL of BHI broth containing 5% sucrose.
- -
- Mixed cultures: combination of 100 µL of each microorganism was added to 800 µL of BHI broth to create the following:
- C. albicans + S. mutans (CASM);
- C. glabrata + S. mutans (CGSM);
- C. albicans + C. glabrata (CACG).
- (b)
- Biofilm formation
- -
- Single-species biofilm: each well received 100 µL of microorganism suspension (0.5 McFarland density) (C. albicans, C. glabrata or S. mutans) along with 150 µL of BHI broth containing 5% sucrose, bringing the total well volume to 250 µL per well.
- -
- Dual-species biofilm: 100 µL of each different microorganism suspension (0.5 McFarland density) was mixed, along with 50 µL of BHI broth containing 5% sucrose, making a total volume of 250 µL.
2.3. Laser Application
Experimental Groups
2.4. Measurement of Microbial Load
2.4.1. Immediate and 24 Post-Irradiation Reduction in CFU/mL (Colony-Forming Units) (Planktonic Cultures)
2.4.2. Assessment of Biomass Reduction in Biofilms (Quantitative Method—CFU/mL)
2.4.3. Biofilm Biomass Measurement (Crystal Violet Assay)
2.5. Statistical Analysis
3. Results
3.1. Microbial CFU Reduction in Single-Species Planktonic Cultures
3.2. Microbial CFU Reduction in Dual-Species Planktonic Cultures
3.3. Microbial CFU Reduction in Single-Species Biofilm Cultures
3.4. Microbial CFU Reduction in Dual-Species Biofilm Cultures
3.5. Biofilm Biomass Reduction (Crystal Violet Assay)
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Koo, H.; Andes, D.R.; Krysan, D.J. Candida-streptococcal interactions in biofilm-associated oral diseases. PLoS Pathog. 2018, 14, e1007342. [Google Scholar] [CrossRef] [PubMed]
- Abrantes, P.M.D.S.; Africa, C.W.J. Measuring Streptococcus mutans, Streptococcus sanguinis and Candida albicans biofilm formation using a real-time impedance-based system. J. Microbiol. Methods. 2020, 169, 105815. [Google Scholar] [CrossRef]
- O’Donnell, L.E.; Millhouse, E.; Sherry, L.; Kean, R.; Malcolm, J.; Nile, C.J.; Ramage, G. Polymicrobial Candida biofilms: Friends and foe in the oral cavity. FEMS Yeast Res. 2015, 15, fov077. [Google Scholar] [CrossRef]
- Allison, D.L.; Willems, H.M.E.; Jayatilake, J.A.M.S.; Bruno, V.M.; Peters, B.M.; Shirtliff, M.E. Candida-Bacteria Interactions: Their Impact on Human Disease. Microbiol. Spectr. 2016, 4, 103–136. [Google Scholar] [CrossRef]
- Desai, J.P.; Nair, R.U. Oral Health Factors Related to Rapid Oral Health Deterioration among Older Adults: A Narrative Review. J. Clin. Med. 2023, 12, 3202. [Google Scholar] [CrossRef]
- Lafuente-Ibáñez de Mendoza, I.; Cayero-Garay, A.; Quindós-Andrés, G.; Aguirre-Urizar, J.M. A systematic review on the implication of Candida in peri-implantitis. Int. J. Implant. Dent. 2021, 7, 73. [Google Scholar] [CrossRef] [PubMed]
- Wint, W.Y.; Miyanohara, M.; Terada-Ito, C.; Yamada, H.; Ryo, K.; Murata, T. Effects of Sucrose and Farnesol on Biofilm Formation by Streptococcus mutans and Candida albicans. Microorganisms 2024, 12, 1737. [Google Scholar] [CrossRef] [PubMed]
- Contaldo, M.; Romano, A.; Mascitti, M.; Fiori, F.; Della Vella, F.; Serpico, R.; Santarelli, A. Association between denture stomatitis, candida species and diabetic status. J. Biol. Regul. Homeost. Agents 2019, 33 (Suppl. S1), 35–41. [Google Scholar]
- Pokrowiecki, R.; Mielczarek, A.; Zaręba, T.; Tyski, S. Oral microbiome and peri-implant diseases: Where are we now? Ther. Clin. Risk Manag. 2017, 13, 1529–1542. [Google Scholar] [CrossRef]
- El Mobadder, M.; Nammour, S.; Grzech-Leśniak, Z.; Grzech-Leśniak, K. Efficacy of the Adjunct Use of Povidone-Iodine or Sodium Hypochlorite with Non-Surgical Management of Periodontitis: A Systematic Review and Meta-Analysis. J. Clin. Med. 2022, 11, 6593. [Google Scholar] [CrossRef]
- Afrasiabi, S.; Benedicenti, S.; Signore, A.; Arshad, M.; Chiniforush, N. Simultaneous Dual-Wavelength Laser Irradiation against Implant-Adherent Biofilms of Staphylococcus aureus, Escherichia coli, and Candida albicans for Improved Antimicrobial Photodynamic Therapy. Bioengineering 2024, 11, 48. [Google Scholar] [CrossRef] [PubMed]
- Tavares, L.J.; Pavarina, A.C.; Vergani, C.E.; de Avila, E.D. The impact of antimicrobial photodynamic therapy on peri-implant disease: What mechanisms are involved in this novel treatment? Photodiagnosis Photodyn. Ther. 2017, 17, 236–244. [Google Scholar] [CrossRef]
- El Mobadder, M.; Grzech-Lesniak, Z.; El Mobadder, W.; Rifai, M.; Ghandour, M.; Nammour, S. Management of Medication-Related Osteonecrosis of the Jaw with Photobiomodulation and Minimal Surgical Intervention. Dent. J. 2023, 11, 127. [Google Scholar] [CrossRef] [PubMed]
- Ali, D.; Alsalman, J. Efficacy of mechanical debridement with adjunct antimicrobial photodynamic therapy against peri-implant subgingival oral yeasts colonization: A systematic review and meta-analysis. Photodiagnosis Photodyn. Ther. 2024, 50, 104399. [Google Scholar] [CrossRef] [PubMed]
- Almeslet, A.S.; ALOsaimi, M.M.; Jhugroo, C.; Alshammari, A.F.; Divakar, D.D.; Soman, C. Efficacy of non-surgical mechanical debridement with and without adjunct antimicrobial photodynamic therapy in the treatment of peri-implantitis among patients undergoing chemotherapy. Photodiagnosis Photodyn. Ther. 2025, 52, 104476. [Google Scholar] [CrossRef]
- Shetty, B.; Ali, D.; Ahmed, S.; Ibraheem, W.I.; Preethanath, R.S.; Vellappally, S.; Divakar, D.D. Role of antimicrobial photodynamic therapy in reducing subgingival oral yeasts colonization in patients with peri-implant mucositis. Photodiagnosis Photodyn. Ther. 2022, 38, 102803. [Google Scholar] [CrossRef]
- Malik, N.K.A.; Alkadhi, O.H. Effectiveness of mechanical debridement with and without antimicrobial photodynamic therapy against oral yeasts in children with gingivitis undergoing fixed orthodontic therapy. Photodiagnosis Photodyn. Ther. 2020, 31, 101768. [Google Scholar] [CrossRef]
- Rocha, A.R.; Inada, N.M.; da Silva, A.P.; Bagnato, V.S.; Buzzá, H.H. Photodynamic inactivation strategies for maximizing antifungal effect against Sporothrix spp. and Candida albicans in an in vitro investigation. PLoS Negl. Trop. Dis. 2024, 18, e0012637. [Google Scholar] [CrossRef]
- Deeb, J.G.; Grzech-Leśniak, K.; Weaver, C.; Matys, J.; Bencharit, S. Retrieval of Glass Fiber Post Using Er:YAG Laser and Conventional Endodontic Ultrasonic Method: An In Vitro Study. J. Prosthodont. 2019, 28, 1024–1028. [Google Scholar] [CrossRef]
- Elkharashi, A.; Grzech-Leśniak, K.; Deeb, J.G.; Abdulmajeed, A.A.; Bencharit, S. Exploring the use of pulsed erbium lasers to retrieve a zirconia crown from a zirconia implant abutment. PLoS ONE 2020, 15, e0233536. [Google Scholar] [CrossRef]
- Deeb, J.G.; Skrjanc, L.; Kanduti, D.; Carrico, C.; Saturno, A.M.; Grzech-Leśniak, K. Evaluation of Er:YAG and Er,Cr:YSGG laser irradiation for the debonding of prefabricated zirconia crowns. Adv. Clin. Exp. Med. 2021, 30, 7–15. [Google Scholar] [CrossRef] [PubMed]
- da Costa Ribeiro, C.E.V.; Lena, I.M.; Santi, S.S.; Malta, C.P.; Zanatta, F.B.; Morgental, R.D. Effects of laser treatment on bond strength of epoxy resin and calcium silicate-based sealers: A systematic review and meta-analysis of in vitro studies. Clin. Oral. Investig. 2024, 28, 644. [Google Scholar] [CrossRef] [PubMed]
- Gufran, K.; Alqahtani, A.S.; Alasqah, M.; Alsakr, A.; Alkharaan, H.; Ghurmallah Alzahrani, H.; Almutairi, A. Effect of Er: YAG laser therapy in non-surgical periodontal treatment: An umbrella review. BMC Oral. Health 2024, 24, 1347. [Google Scholar] [CrossRef]
- Jafari Semnani, S.; Moghadam, K.N.; Jafari, Z.; Chiniforush, N. Comparative effects of the conventional, ultrasonic, and laser-activated irrigation on penetration depth of three photosensitizers in the root canal system. Photodiagnosis Photodyn. Ther. 2024, 49, 104286. [Google Scholar] [CrossRef]
- Xu, P.; Ren, C.; Jiang, Y.; Yan, J.; Wu, M. Clinical application of Er:YAG laser and traditional dental turbine in caries removal in children. J. Clin. Pediatr. Dent. 2024, 48, 183–188. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, R.; Kobayashi, K.; Onuma, K.; Yamamoto, R.; Chiba Ohkuma, R.; Karakida, T.; Yamakawa, S.; Hosoya, N.; Yamazaki, Y.; Yamakoshi, Y. Enhancement of Differentiation and Mineralization of Human Dental Pulp Stem Cells via TGF-β Signaling in Low-Level Laser Therapy Using Er:YAG Lasers. J. Oral. Biosci. 2025, 18, 100617. [Google Scholar] [CrossRef]
- Grzech-Leśniak, K.; Matys, J. The Effect of Er:YAG Lasers on the Reduction of Aerosol Formation for Dental Workers. Materials 2021, 14, 2857. [Google Scholar] [CrossRef]
- Kurtzman, G.M.; Horowitz, R.A.; Johnson, R.; Prestiano, R.A.; Klein, B.I. The systemic oral health connection: Biofilms. Medicine 2022, 101, e30517. [Google Scholar] [CrossRef]
- Das, A.; Patro, S.; Simnani, F.Z.; Singh, D.; Sinha, A.; Kumari, K.; Rao, P.V.; Singh, S.; Kaushik, N.K.; Panda, P.K.; et al. Biofilm modifiers: The disparity in paradigm of oral biofilm ecosystem. Biomed. Pharmacother. 2023, 164, 114966. [Google Scholar] [CrossRef]
- Czarnowski, M.; Słowińska, M.; Sawieljew, M.; Wnorowska, U.; Daniluk, T.; Król, G.; Karasiński, M.; Okła, S.; Savage, P.B.; Piktel, E.; et al. Efficacy of Ceragenins in Controlling the Growth of Oral Microorganisms: Implications for Oral Hygiene Management. Pharmaceuticals 2024, 17, 204. [Google Scholar] [CrossRef]
- Tian, S.; Ding, T.; Li, H. Oral microbiome in human health and diseases. Life 2024, 3, 367–383. [Google Scholar] [CrossRef] [PubMed]
- Do, Q.L.; Gaudin, A. The Efficiency of the Er: YAG Laser and PhotonInduced Photoacoustic Streaming (PIPS) as an Activation Method in Endodontic Irrigation: A Literature Review. J. Lasers Med. Sci. 2020, 11, 316–334. [Google Scholar] [CrossRef] [PubMed]
- Lukač, N.; Jezeršek, M. Amplification of pressure waves in laser-assisted endodontics with synchronized delivery of Er:YAG laser pulses. Lasers Med. Sci. 2018, 33, 823–833. [Google Scholar] [CrossRef] [PubMed]
- Hill, R.A.; Stern, D.; Lesiecki, M.L.; Hsia, J.; Berns, M.W. Effects of pulse width on erbium:YAG laser photothermal trabecular ablation (LTA). Lasers Surg. Med. 1993, 13, 440–446. [Google Scholar] [CrossRef]
- Zhao, A.; Sun, J.; Liu, Y. Understanding bacterial biofilms: From definition to treatment strategies. Front. Cell Infect. Microbiol. 2023, 13, 1137947. [Google Scholar] [CrossRef]
- Matys, J.; Grzech-Leśniak, K.; Flieger, R.; Dominiak, M. Assessment of an Impact of a Diode Laser Mode with Wavelength of 980 nm on a Temperature Rise Measured by Means of k-02 Thermocouple: Preliminary Results. Dent. Med. Probl. 2016, 53, 345–351. [Google Scholar] [CrossRef]
- Reddy, N.; Golob Deeb, J.; Kitten, T.; Carrico, C.K.; Grzech-Leśniak, K. The In Vitro Effect of Laser Irradiation (Er:YAG and CO2) and Chemical Reagents (Hydrogen Peroxide, Sodium Hypochlorite, Chlorhexidine, or Sodium Fluoride) Alone or in Combination on Reducing Root Caries Bacteria. Int. J. Mol. Sci. 2022, 23, 15732. [Google Scholar] [CrossRef]
- Golob Deeb, J.; Smith, J.; Belvin, B.R.; Lewis, J.; Grzech-Leśniak, K. Er:YAG Laser Irradiation Reduces Microbial Viability When Used in Combination with Irrigation with Sodium Hypochlorite, Chlorhexidine, and Hydrogen Peroxide. Microorganisms 2019, 7, 612. [Google Scholar] [CrossRef]
- Yao, W.; Kuan, E.C.; Francis, N.C.; St John, M.A.; Grundfest, W.S.; Taylor, Z.D. Laser-generated shockwaves enhance antibacterial activity against biofilms in vitro. Lasers Surg. Med. 2017, 49, 539–547. [Google Scholar] [CrossRef]
- Mamone, L.; Tomás, R.; Di Venosa, G.; Gándara, L.; Durantini, E.; Buzzola, F.; Casas, A. Laser NIR Irradiation Enhances Antimicrobial Photodynamic Inactivation of Biofilms of Staphylococcus aureus. Lasers Surg. Med. 2024, 56, 783–795. [Google Scholar] [CrossRef]
- Grzech-Leśniak, Z.; Szwach, J.; Lelonkiewicz, M.; Migas, K.; Pyrkosz, J.; Szwajkowski, M.; Kosidło, P.; Pajączkowska, M.; Wiench, R.; Matys, J.; et al. Effect of Nd:YAG Laser Irradiation on the Growth of Oral Biofilm. Microorganisms 2024, 12, 2231. [Google Scholar] [CrossRef]
- Grzech-Leśniak, K.; Nowicka, J.; Pajączkowska, M.; Matys, J.; Szymonowicz, M.; Kuropka, P.; Rybak, Z.; Dobrzyński, M.; Dominiak, M. Effects of Nd:YAG laser irradiation on the growth of Candida albicans and Streptococcus mutans: In vitro study. Lasers Med. Sci. 2019, 34, 129–137. [Google Scholar] [CrossRef] [PubMed]
- Han, S.Y.; Jung, H.I.; Kwon, H.K.; Kim, B.I. Combined effects of Er:YAG laser and nano-carbonate apatite dentifrice on dentinal tubule occlusion: In vitro study. Photomed. Laser Surg. 2013, 31, 342–348. [Google Scholar] [CrossRef] [PubMed]
- Volk, M.; Molan, K.; Šavli, D.; Terlep, S.; Levičnik-Höfferle, Š.; Gašpirc, B.; Lukač, M.; Jezeršek, M.; Stopar, D. Biofilm removal from Difficult-to-Reach places via secondary cavitation within a constrained geometry mimicking a Periodontal/Peri-Implant pocket. Ultrason. Sonochem. 2024, 104, 106832. [Google Scholar] [CrossRef]
- Meire, M.A.; Coenye, T.; Nelis, H.J.; De Moor, R.J. In vitro inactivation of endodontic pathogens with Nd:YAG and Er:YAG lasers. Lasers Med. Sci. 2012, 27, 695–701. [Google Scholar] [CrossRef] [PubMed]
- Nagahashi, T.; Yahata, Y.; Handa, K.; Nakano, M.; Suzuki, S.; Kakiuchi, Y.; Tanaka, T.; Kanehira, M.; Suresh Venkataiah, V.; Saito, M. Er:YAG laser-induced cavitation can activate irrigation for the removal of intraradicular biofilm. Sci. Rep. 2022, 12, 4897. [Google Scholar] [CrossRef]
- Terlep, S.; Dogsa, I.; Pajk, F.; Stopar, D. Biofilm Removal from In Vitro Narrow Geometries Using Single and Dual Pulse Er:YAG Laser Photoacoustic Irrigation. Microorganisms 2023, 11, 2102. [Google Scholar] [CrossRef]
- Meire, M.; De Moor, R.J.G. Principle and antimicrobial efficacy of laser-activated irrigation: A narrative review. Int. Endod. J. 2024, 57, 841–860. [Google Scholar] [CrossRef]
- Golob Deeb, J.; Reddy, N.; Kitten, T.; Carrico, C.K.; Grzech-Leśniak, K. Viability of Bacteria Associated with Root Caries after Nd:YAG Laser Application in Combination with Various Antimicrobial Agents: An In Vitro Study. Dent. Med. Probl. 2023, 60, 649–655. [Google Scholar] [CrossRef]
- Cohen, J.; Featherstone, J.D.; Le, C.Q.; Steinberg, D.; Feuerstein, O. Effects of CO2 laser irradiation on tooth enamel coated with biofilm. Lasers Surg. Med. 2014, 46, 216–223. [Google Scholar] [CrossRef]
- Gryzinska, M.; Kot, B.; Dudzinska, E.; Biernasiuk, A.; Jakubczak, A.; Malm, A.; Andraszek, K. Changes in the Level of DNA Methylation in Candida albicans under the Influence of Physical and Chemical Factors. Int. J. Mol. Sci. 2023, 24, 15873. [Google Scholar] [CrossRef] [PubMed]
- Rechmann, P.; Rechmann, B.M.; Groves, W.H., Jr.; Le, C.Q.; Rapozo-Hilo, M.L.; Kinsel, R.; Featherstone, J.D. Caries inhibition with a CO2 9.3 μm laser: An in vitro study. Lasers Surg. Med. 2016, 48, 546–554. [Google Scholar] [CrossRef] [PubMed]
- Featherstone, J.D.; Barrett-Vespone, N.A.; Fried, D.; Kantorowitz, Z.; Seka, W. CO2 laser inhibitor of artificial caries-like lesion progression in dental enamel. J. Dent. Res. 1998, 77, 1397–1403. [Google Scholar] [CrossRef]
- Feng, Z.; Yuan, R.; Cheng, L.; Fan, H.; Si, M.; Hao, Z. Effect of Er:YAG Laser Irradiation on Preventing Enamel Caries: A Systematic Review and Meta-Analysis. Int. Dent. J. 2024, 74, 679–687. [Google Scholar] [CrossRef] [PubMed]
- Wiench, R.; Paliga, D.; Mertas, A.; Bobela, E.; Kuśka-Kiełbratowska, A.; Bordin-Aykroyd, S.; Kawczyk-Krupka, A.; Grzech-Leśniak, K.; Lukomska-Szymanska, M.; Lynch, E.; et al. Red/Orange Autofluorescence in Selected Candida Strains Exposed to 405 nm Laser Light. Dent. J. 2024, 12, 48. [Google Scholar] [CrossRef]
- Valenti, C.; Pagano, S.; Bozza, S.; Ciurnella, E.; Lomurno, G.; Capobianco, B.; Coniglio, M.; Cianetti, S.; Marinucci, L. Use of the Er:YAG Laser in Conservative Dentistry: Evaluation of the Microbial Population in Carious Lesions. Materials 2021, 14, 2387. [Google Scholar] [CrossRef]
- Asnaashari, M.; Safavi, N. Disinfection of Contaminated Canals by Different Laser Wavelengths, while Performing Root Canal Therapy. J. Lasers Med. Sci. 2013, 4, 8–16. [Google Scholar]
- Misischia, W.P.; Xenoudi, P.; Yukna, R.A.; Schurr, M.J. Correction to: Bacterial reduction effect of four different dental lasers on titanium surfaces in vitro. Lasers Med. Sci. 2021, 36, 1769, Erratum in Lasers Med. Sci. 2021, 36, 1759–1767. [Google Scholar] [CrossRef]
- Aoki, A.; Mizutani, K.; Schwarz, F.; Sculean, A.; Yukna, R.A.; Takasaki, A.A.; Romanos, G.E.; Taniguchi, Y.; Sasaki, K.M.; Zeredo, J.L.; et al. Periodontal and peri-implant wound healing following laser therapy. Periodontol. 2000 2015, 68, 217–269. [Google Scholar] [CrossRef]
- Barry, A.L.; Craig, W.A.; Nadler, H.; Reller, L.B.; Sanders, C.C.; Swenson, J.M. Methods for Determining Bactericidial Acivity of Antimicrobial Agents: Approved Guidelines, NCCLS Document M26-A12; Clinical and Laboratory Standards Institute: Berwyn, PA, USA, 1999; Volume 19, Available online: https://clsi.org/media/1462/m26a_sample.pdf (accessed on September 1999).
- Bjarnsholt, T.; Alhede, M.; Alhede, M.; Eickhardt-Sørensen, S.R.; Moser, C.; Kühl, M.; Jensen, P.Ø.; Høiby, N. The in vivo biofilm. Trends Microbiol. 2013, 21, 466–474. [Google Scholar] [CrossRef]
- Coenye, T.; Nelis, H.J. In vitro and in vivo model systems to study microbial biofilm formation. J. Microbiol. Methods 2010, 83, 89–105. [Google Scholar] [CrossRef] [PubMed]
- Young, T.; Alshanta, O.A.; Kean, R.; Bradshaw, D.; Pratten, J.; Williams, C.; Woodall, C.; Ramage, G.; Brown, J.L. Candida albicans as an Essential “Keystone” Component within Polymicrobial Oral Biofilm Models? Microorganisms 2020, 9, 59. [Google Scholar] [CrossRef] [PubMed]
- Polak, D.; Shani-Kdoshim, S.; Alias, M.; Shapira, L.; Stabholz, A. The In Vitro Efficacy of Biofilm Removal from Titanium Surfaces Using Er:YAG Laser: Comparison of Treatment Protocols and Ablation Parameters. J. Periodontol. 2022, 93, 100–109. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.Y.; Lee, B.S.; Jhang, Y.T.; Ma, K.S.; Huang, C.P.; Fu, K.L.; Lai, C.H.; Tseng, W.Y.; Kuo, M.Y.; Chen, Y.W. Er:YAG laser irradiation enhances bacterial and lipopolysaccharide clearance and human gingival fibroblast adhesion on titanium discs. Sci. Rep. 2021, 11, 23954. [Google Scholar] [CrossRef]
- Huang, P.; Chen, X.; Chen, Z.; Chen, M.; He, J.; Peng, L. Efficacy of Er:YAG laser irradiation for decontamination and its effect on biocompatibility of different titanium surfaces. BMC Oral. Health 2021, 21, 649. [Google Scholar] [CrossRef]
- Assery, N.; Alomeir, N.; Zeng, Y.; Xiao, J.; Tsigarida, A. The effect of Er:YAG laser treatment on biofilm formation on titanium and zirconia disc surfaces. J. Periodontol. 2023, 94, 344–353. [Google Scholar] [CrossRef]
- AlMoharib, H.S.; Steffensen, B.; Zoukhri, D.; Finkelman, M.; Gyurko, R. The efficacy of Er:YAG laser in biofilm removal from titanium surfaces: An in vitro study. J. Periodontol. 2021, 92, 593–600. [Google Scholar] [CrossRef]
Control Group | Test Group (T1) | Test Group (T2) |
---|---|---|
No laser irradiation | Power: 0.15 W | Power: 1.6 W |
Frequency: 2 Hz | Frequency: 40 Hz | |
Tip diameter: 1.3 mm | Tip diameter: 1.3 mm | |
Irradiation time: 30 s | Irradiation time: 30 s | |
Pulse duration: 300 µs | Pulse duration: 300 µs | |
Energy: 75 mJ | Energy: 40 mJ | |
Fluence: 5.65 J/cm2 | Fluence: 3.01 J/cm2 | |
Irradiance: 11.3 W/cm2 | Irradiance: 120.54 W/cm2 |
Microorganism | Time | Handpiece | Mean %CFU Reduction (SD) | p-Value T1 vs. T2 | |
---|---|---|---|---|---|
T1 | T2 | ||||
Candida albicans (C.a.) | DAI | H14 | 58.4% (±3.9%) | 60.9% (±12.2) | 0.804 |
24AI | 69.2% (±2.0) | 79.4% (±11.5) | 0.340 | ||
p-value DAI vs. 24AI | 0.072 | 0.258 | x | ||
Candida glabrata (C.g.) | DAI | H14 | 77.1% (±6.2) | 62.2% (±4.8) | 0.116 |
24AI | 92.6% (±4.2) | 88.5% (±4.7) | 0.454 | ||
p-value DAI vs. 24AI | 0.101 | 0.032 | x | ||
Streptococcus mutans (S.m.) | DAI | H14 | 80.0% (±6.1) | 41.4% (±4.2) | 0.018 |
24AI | 0.0% (±0.0) | 0.0% (±0.0) | 0.293 | ||
p-value DAI vs. 24AI | 0.003 | 0.005 | x |
Microorganisms | Mixture | Time | Handpiece | Mean %CFU Reduction (SD) | p-Value T1 vs. T2 | |
---|---|---|---|---|---|---|
T1 | T2 | |||||
Candida albicans (C.a.) | CACG | DAI | H14 | 8.7% (±12.2%) | 8.4% (±11.8%) | 0.982 |
24AI | 26.3% (±14.4%) | 55.1% (±21.3%) | 0.254 | |||
p-value DAI vs. 24AI | 0.318 | 0.113 | x | |||
CASM | DAI | H14 | 81.5% (±2.3%) | 29.9% (±14.4%) | 0.037 | |
24AI | 71.2% (±1.8%) | 10.0% (±14.1%) | 0.026 | |||
p-value DAI vs. 24AI | 0.040 | 0.296 | x | |||
Candida glabrata (C.g.) | CGCA | DAI | H14 | 33.0% (±21.1%) | 19.6% (±17.5%) | 0.559 |
24AI | 36.2% (±3.0%) | 3.2% (±4.5%) | 0.013 | |||
p-value DAI vs. 24AI | 0.851 | 0.327 | x | |||
CGSM | DAI | H14 | 18.1% (±1.9%) | 10.8% (±13.0%) | 0.517 | |
24AI | 66.3% (±16.3%) | 34.7% (±11.5%) | 0.155 | |||
p-value DAI vs. 24AI | 0.054 | 0.192 | x | |||
Streptococcus mutans (S.m.) | CASM | DAI | H14 | 0.0% (±0.0%) | 44.2% (±2.6%) | 0.002 |
24AI | 20.0% (±1.6%) | 1.7% (±2.3%) | 0.012 | |||
p-value DAI vs. 24AI | 0.003 | 0.003 | x | |||
CGSM | DAI | H14 | 47.5% (±31.8%) | 0.0% (±0.0%) | 0.169 | |
24AI | 58.0% (±19.0%) | 18.8% (±3.0%) | 0.103 | |||
p-value DAI vs. 24AI | 0.033 | 0.012 | x |
Microorganisms | Time | Handpiece | Mean CFU Reduction % (SD) | p-Value T1 vs. T2 | |
---|---|---|---|---|---|
T1 | T2 | ||||
Candida albicans (C.a.) | DAI | H14 | 95.3% (±2.8%) | 56.1% (±8.6%) | 0.026 |
Candida glabrata (C.g.) | DAI | H14 | 65.5% (±25.6%) | 98.4% (±1.3%) | 0.212 |
Streptococcus mutans (S.m.) | DAI | H14 | 80.4% (±21.9%) | 96.1% (±5.3%) | 0.430 |
Microorganisms | Mixture | Time | Handpiece | Mean Reduction in %CFU (SD) | p-Value T1 vs. T2 | |
---|---|---|---|---|---|---|
T1 | T2 | |||||
Candida albicans (C.a.) | CACG | DAI | H14 | 99.0% (±0.2%) | 99.9% (±0.1%) | 0.030 |
CASM | DAI | H14 | 96.5% (±0.2%) | 99.9% (±0.1%) | 0.002 | |
Candida glabrata (C.g.) | CACG | DAI | H14 | 79.9% (±9.9%) | 98.8% (±0.6%) | 0.114 |
CGSM | DAI | H14 | 39.1% (±8.8%) | 100.0% (±0.0%) | 0.010 | |
Streptococcus mutans (S.m.) | CASM | DAI | H14 | 96.9% (±1.8%) | 99.9% (±0.0%) | 0.147 |
CGSM | DAI | H14 | 47.3% (±10.4%) | 100.0% (±0.0%) | 0.019 |
Mixture of Microorganisms | Reduction Biomass in % | T1 vs. T2 p-Value | |
---|---|---|---|
T1 (SD) | T2 (SD) | ||
CASM | 33.7 (1.1) | 4.8 (5.2) | p = 0.016 |
CGSM | 21.8 (3.1) | 2.15 (3.0) | p = 0.023 |
CACG | 16.4 (12.1) | 0 (0) | p = 0.196 |
ANOVA: | p = 0.192 | p = 0.438 | × |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grzech-Leśniak, Z.; Pyrkosz, J.; Szwach, J.; Kosidło, P.; Matys, J.; Wiench, R.; Pajączkowska, M.; Nowicka, J.; Dominiak, M.; Grzech-Leśniak, K. Antibacterial Effects of Er:YAG Laser Irradiation on Candida–Streptococcal Biofilms. Life 2025, 15, 474. https://doi.org/10.3390/life15030474
Grzech-Leśniak Z, Pyrkosz J, Szwach J, Kosidło P, Matys J, Wiench R, Pajączkowska M, Nowicka J, Dominiak M, Grzech-Leśniak K. Antibacterial Effects of Er:YAG Laser Irradiation on Candida–Streptococcal Biofilms. Life. 2025; 15(3):474. https://doi.org/10.3390/life15030474
Chicago/Turabian StyleGrzech-Leśniak, Zuzanna, Jakub Pyrkosz, Jagoda Szwach, Patrycja Kosidło, Jacek Matys, Rafał Wiench, Magdalena Pajączkowska, Joanna Nowicka, Marzena Dominiak, and Kinga Grzech-Leśniak. 2025. "Antibacterial Effects of Er:YAG Laser Irradiation on Candida–Streptococcal Biofilms" Life 15, no. 3: 474. https://doi.org/10.3390/life15030474
APA StyleGrzech-Leśniak, Z., Pyrkosz, J., Szwach, J., Kosidło, P., Matys, J., Wiench, R., Pajączkowska, M., Nowicka, J., Dominiak, M., & Grzech-Leśniak, K. (2025). Antibacterial Effects of Er:YAG Laser Irradiation on Candida–Streptococcal Biofilms. Life, 15(3), 474. https://doi.org/10.3390/life15030474