A Fusion Deep Learning Model for Predicting Adverse Drug Reactions Based on Multiple Drug Characteristics
Abstract
:1. Introduction
2. Materials and Methods
2.1. Datasets
2.2. Multiple Characterization Inputs for Drugs
2.2.1. SMILES
2.2.2. Two-Dimensional Molecular Map
2.2.3. ECFPs
2.3. Overview of the Framework
2.3.1. Transformer Is Used to Extract One-Dimensional Sequence Information of Drugs
2.3.2. GAT-GCN Is Used to Learn Two-Dimensional Structural Information of Drugs
2.3.3. GCN Used to Extract Drug–Protein Interaction Characteristics
2.3.4. Tanimoto Coefficient to Calculate Drug–Drug Similarity
2.3.5. Multi-Label Probabilistic Predictor for Drug Characteristics and Adverse Reaction Probability Estimation
3. Results
3.1. Evaluation Metrics
3.2. Experimental Setup
3.3. Model Comparison
3.3.1. Comparison of Model Performance for Different Lengths of Sequences in SMILES
3.3.2. Comparison of Model Performance for Different Data Partition Methods
3.3.3. Performance Comparison with Traditional Multi-Label Classification Prediction Models
3.3.4. Comparison with Existing State-of-the-Art Multi-Label Prediction Models
3.4. Ablation Experiments
- Remove transformer: we removed the transformer module and used only the molecular structure map embedding learned from GAT-GCN as the drug representation.
- Remove GAT-GCN: we removed GAT-GCN from the interaction module and used only the one-dimensional substructure sequence information of the drug molecule, extracted from the transformer, as the drug representation.
- Removal of drug–protein interactions: we further removed the GCN module from the model and extracted only the characteristic information of the drug.
- Removal of drug–drug similarities: we extracted only the structural information of the drug and drug–protein interaction information.
4. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wester, K.; Jonsson, A.K.; Spigset, O.; Druid, H.; Hagg, S. Incidence of fatal adverse drug reactions: A population based study. Br. J. Clin. Pharmacol. 2008, 65, 573–579. [Google Scholar] [CrossRef]
- Cocos, A.; Fiks, A.G.; Masino, A.J. Deep learning for pharmacovigilance: Recurrent neural network architectures for labeling adverse drug reactions in Twitter posts. J. Am. Med. Inform. Assoc. 2017, 24, 813–821. [Google Scholar] [CrossRef]
- Sultana, J.; Cutroneo, P.; Trifiro, G. Clinical and economic burden of adverse drug reactions. J. Pharmacol. Pharmacother. 2013, 4 (Suppl. S1), S73–S77. [Google Scholar] [CrossRef]
- Xu, R.; Wang, Q. Large-scale combining signals from both biomedical literature and the FDA Adverse Event Reporting System. BMC Bioinform. 2014, 15, 17. [Google Scholar] [CrossRef]
- Zhang, T.; Lin, H.; Ren, Y.; Yang, L.; Xu, B.; Yang, Z.; Wang, J.; Zhang, Y. Adverse drug reaction detection via a multihop self-attention mechanism. BMC Bioinform. 2019, 20, 479. [Google Scholar] [CrossRef]
- Gurulingappa, H.; Rajput, A.M.; Roberts, A.; Fluck, J.; Hofmann-Apitius, M.; Toldo, L. Development of a benchmark corpus to support the automatic extraction of drugrelated adverse effects from medical case reports. J. Biomed. Inform. 2012, 45, 885–892. [Google Scholar] [CrossRef]
- Santiso, S.; Casillas, A.; Perez, A. The class imbalance problem detecting adverse drug reactions in electronic health records. Health Inform. J. 2019, 25, 1768–1778. [Google Scholar] [CrossRef]
- Alvaro, N.; Miyao, Y.; Collier, N. TwiMed: Twitter and PubMed Comparable Corpus of Drugs, Diseases, Symptoms, and Their Relations. JMIR Public Health Surveill. 2017, 3, e24. [Google Scholar] [CrossRef]
- Zhang, C.; Lu, Y.; Zang, T. CNN-DDI: A learning-based method for predicting drug-drug interactions using convolution neural networks. BMC Bioinform. 2022, 23 (Suppl. S1), 88. [Google Scholar] [CrossRef] [PubMed]
- Jiang, M.; Li, Z.; Zhang, S.; Wang, S.; Wang, X.; Yuan, Q.; Wei, Z. Drug-target affinity prediction using graph neural network and contact maps. RSC Adv. 2020, 10, 20701–20712. [Google Scholar] [CrossRef]
- Li, Y.; Qiao, G.; Wang, K.; Wang, G. Drug-target interaction predication via multi-channel graph neural networks. Brief. Bioinform. 2022, 23, bbab346. [Google Scholar] [CrossRef] [PubMed]
- Dey, S.; Luo, H.; Fokoue, A.; Hu, J.; Zhang, P. Predicting adverse drug reactions through interpretable deep learning framework. BMC Bioinform. 2018, 19 (Suppl. S21), 476. [Google Scholar] [CrossRef]
- Mantripragada, A.S.; Teja, S.P.; Katasani, R.R.; Joshi, P.; Masilamani, V.; Ramesh, R. Prediction of adverse drug reactions using drug convolutional neural networks. J. Bioinform. Comput. Biol. 2021, 19, 2050046. [Google Scholar] [CrossRef]
- Lin, J.; He, Y.; Ru, C.; Long, W.; Li, M.; Wen, Z. Advancing Adverse Drug Reaction Prediction with Deep Chemical Language Model for Drug Safety Evaluation. Int. J. Mol. Sci. 2024, 25, 4516. [Google Scholar] [CrossRef]
- Campillos, M.; Kuhn, M.; Gavin, A.-C.; Jensen, L.J.; Bork, P. Drug Target Identification Using Side-Effect Similarity. Science 2008, 321, 263–266. [Google Scholar] [CrossRef]
- Mizutani, S.; Pauwels, E.; Stoven, V.; Goto, S.; Yamanishi, Y. Relating drug-protein interaction network with drug side effects. Bioinformatics 2012, 28, i522–i528. [Google Scholar] [CrossRef]
- Yamanishi, Y.; Kotera, M.; Moriya, Y.; Sawada, R.; Kanehisa, M.; Goto, S. DINIES: Drug-target interaction network inference engine based on supervised analysis. Nucleic Acids Res. 2014, 42, W39–W45. [Google Scholar] [CrossRef]
- LaBute, M.X.; Zhang, X.; Lenderman, J.; Bennion, B.J.; Wong, S.E.; Lightstone, F.C. Adverse drug reaction prediction using scores produced by large-scale drug-protein target docking on high-performance computing machines. PLoS ONE 2014, 9, e106298. [Google Scholar] [CrossRef]
- Das, P.; Yogita; Pal, V. Integrative analysis of chemical properties and functions of drugs for adverse drug reaction prediction based on multi-label deep neural network. J. Integr. Bioinform. 2022, 19, 20220007. [Google Scholar] [CrossRef]
- Zhou, F.; Khushi, M.; Brett, J.; Uddin, S. Graph neural network-based subgraph analysis for predicting adverse drug events. Comput. Biol. Med. 2024, 183, 109282. [Google Scholar] [CrossRef]
- Zhao, X.; Chen, L.; Lu, J. A similarity-based method for prediction of drug side effects with heterogeneous information. Math. Biosci. 2018, 306, 136–144. [Google Scholar] [CrossRef]
- Pauwels, E.; Stoven, V.; Yamanishi, Y. Predicting drug side-effect profiles: A chemical fragment-based approach. BMC Bioinform. 2011, 12, 169. [Google Scholar] [CrossRef]
- Zheng, Y.; Peng, H.; Ghosh, S.; Lan, C.; Li, J. Inverse similarity and reliable negative samples for drug side-effect prediction. BMC Bioinform. 2019, 19 (Suppl. S13), 554. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.; Gao, K.; Nguyen, D.D.; Chen, X.; Jiang, Y.; Wei, G.W.; Pan, F. Algebraic graph-assisted bidirectional transformers for molecular property prediction. Nat. Commun. 2021, 12, 3521. [Google Scholar] [CrossRef]
- Nguyen, T.; Le, H.; Quinn, T.P.; Nguyen, T.; Le, T.D.; Venkatesh, S. GraphDTA: Predicting drug-target binding affinity with graph neural networks. Bioinformatics 2021, 37, 1140–1147. [Google Scholar] [CrossRef]
- Kipf, T.N.; Welling, M.J. Semi-Supervised Classification with Graph Convolutional Networks. arXiv 2016, arXiv:1609.02907. Available online: https://ui.adsabs.harvard.edu/abs/2016arXiv160902907K (accessed on 1 September 2016).
- Vilar, S.; Harpaz, R.; Uriarte, E.; Santana, L.; Rabadan, R.; Friedman, C. Drug-drug interaction through molecular structure similarity analysis. J. Am. Med. Inform. Assoc. 2012, 19, 1066–1074. [Google Scholar] [CrossRef]
- Kim, S.; Chen, J.; Cheng, T.; Gindulyte, A.; He, J.; He, S.; Li, Q.; Shoemaker, B.A.; Thiessen, P.A.; Yu, B.; et al. PubChem in 2021: New data content and improved web interfaces. Nucleic Acids Res. 2021, 49, D1388–D1395. [Google Scholar] [CrossRef]
- Kuhn, M.; Campillos, M.; Letunic, I.; Jensen, L.J.; Bork, P. A side effect resource to capture phenotypic effects of drugs. Mol. Syst. Biol. 2010, 6, 343. [Google Scholar] [CrossRef]
- Cai, M.C.; Xu, Q.; Pan, Y.J.; Pan, W.; Ji, N.; Li, Y.B.; Jin, H.J.; Liu, K.; Ji, Z.L. ADReCS: An ontology database for aiding standardization and hierarchical classification of adverse drug reaction terms. Nucleic Acids Res. 2015, 43, D907–D913. [Google Scholar] [CrossRef]
- Liu, T.; Lin, Y.; Wen, X.; Jorissen, R.N.; Gilson, M.K. BindingDB: A web-accessible database of experimentally determined protein-ligand binding affinities. Nucleic Acids Res. 2007, 35, D198–D201. [Google Scholar] [CrossRef]
- Davis, M.I.; Hunt, J.P.; Herrgard, S.; Ciceri, P.; Wodicka, L.M.; Pallares, G.; Hocker, M.; Treiber, D.K.; Zarrinkar, P.P. Comprehensive analysis of kinase inhibitor selectivity. Nat. Biotechnol. 2011, 29, 1046–1051. [Google Scholar] [CrossRef]
- Rogers, D.; Hahn, M. Extended-connectivity fingerprints. J. Chem. Inf. Model. 2010, 50, 742–754. [Google Scholar] [CrossRef]
- Chen, J.; Gao, J.; Lyu, T.; Oloulade, B.M.; Hu, X. AutoMSR: Auto Molecular Structure Representation Learning for Multi-label Metabolic Pathway Prediction. IEEE/ACM Trans. Comput. Biol. Bioinform. 2023, 20, 3430–3439. [Google Scholar] [CrossRef]
- Sun, M.; Xing, J.; Wang, H.; Chen, B.; Zhou, J. MoCL: Data-driven Molecular Fingerprint via Knowledge-aware Contrastive Learning from Molecular Graph. KDD 2021, 2021, 3585–3594. [Google Scholar]
- Li, S.; Zhou, J.; Xu, T.; Dou, D.; Xiong, H.J. GeomGCL: Geometric Graph Contrastive Learning for Molecular Property Prediction. arXiv 2021, arXiv:2109.11730. Available online: https://ui.adsabs.harvard.edu/abs/2021arXiv210911730L (accessed on 1 September 2021). [CrossRef]
- Liu, S.; Wang, H.; Liu, W.; Lasenby, J.; Guo, H.; Tang, J.J. Pre-training Molecular Graph Representation with 3D Geometry. arXiv 2021, arXiv:2110.07728. Available online: https://ui.adsabs.harvard.edu/abs/2021arXiv211007728L (accessed on 1 October 2021).
- Avram, S.; Bora, A.; Halip, L.; Curpan, R. Modeling Kinase Inhibition Using Highly Confident Data Sets. J. Chem. Inf. Model. 2018, 58, 957–967. [Google Scholar] [CrossRef]
- Sawada, R.; Kotera, M.; Yamanishi, Y. Benchmarking a Wide Range of Chemical Descriptors for Drug-Target Interaction Prediction Using a Chemogenomic Approach. Mol. Inform. 2014, 33, 719–731. [Google Scholar] [CrossRef]
- Axen, S.D.; Huang, X.P.; Caceres, E.L.; Gendelev, L.; Roth, B.L.; Keiser, M.J. A Simple Representation of Three-Dimensional Molecular Structure. J. Med. Chem. 2017, 60, 7393–7409. [Google Scholar] [CrossRef]
- Yan, H.; Deng, B.; Li, X.; Qiu, X.J. TENER: Adapting Transformer Encoder for Named Entity Recognition. arXiv 2019, arXiv:1911.04474. Available online: https://ui.adsabs.harvard.edu/abs/2019arXiv191104474Y (accessed on 1 November 2019).
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 1 June 2016; p. 1. [Google Scholar]
- Veličković, P.; Cucurull, G.; Casanova, A.; Romero, A.; Liò, P.; Bengio, Y.J. Graph Attention Networks. arXiv 2017, arXiv:1710.10903. Available online: https://ui.adsabs.harvard.edu/abs/2017arXiv171010903V (accessed on 1 October 2017).
- Yu, L.; Cheng, M.; Qiu, W.; Xiao, X.; Lin, W. idse-HE: Hybrid embedding graph neural network for drug side effects prediction. J. Biomed. Inform. 2022, 131, 104098. [Google Scholar] [CrossRef]
- Cheng, X.; Cheng, M.; Yu, L.; Xiao, X. iADRGSE: A Graph-Embedding and Self-Attention Encoding for Identifying Adverse Drug Reaction in the Earlier Phase of Drug Development. Int. J. Mol. Sci. 2022, 23, 16216. [Google Scholar] [CrossRef]
- Uner, O.C.; Gokberk Cinbis, R.; Tastan, O.; Cicek, A.E. DeepSide: A Deep Learning Framework for Drug Side Effect Prediction. IEEE/ACM Trans. Comput. Biol. Bioinform. 2022, 20, 330–339. [Google Scholar] [CrossRef]
- Timilsina, M.; Tandan, M.; d’Aquin, M.; Yang, H. Discovering Links Between Side Effects and Drugs Using a Diffusion Based Method. Sci. Rep. 2019, 9, 10436. [Google Scholar] [CrossRef]
- Chen, Y.H.; Shih, Y.T.; Chien, C.S.; Tsai, C.S. Predicting adverse drug effects: A heterogeneous graph convolution network with a multi-layer perceptron approach. PLoS ONE 2022, 17, e0266435. [Google Scholar] [CrossRef]
- Qaddoura, R.; Al-Zoubi, A.M.; Faris, H.; Almomani, I. A Multi-Layer Classification Approach for Intrusion Detection in IoT Networks Based on Deep Learning. Sensors 2021, 21, 2987. [Google Scholar] [CrossRef]
- Liu, M.; Wu, Y.; Chen, Y.; Sun, J.; Zhao, Z.; Chen, X.W.; Matheny, M.E.; Xu, H. Large-scale prediction of adverse drug reactions using chemical, biological, and phenotypic properties of drugs. J. Am. Med. Inform. Assoc. 2012, 19, e28–e35. [Google Scholar] [CrossRef]
- Zhang, W.; Liu, F.; Luo, L.; Zhang, J. Predicting drug side effects by multi-label learning and ensemble learning. BMC Bioinform. 2015, 16, 365. [Google Scholar] [CrossRef]
- Zhang, W.; Chen, Y.; Tu, S.; Liu, F.; Qu, Q. Drug side effect prediction through linear neighborhoods and multiple data source integration. In Proceedings of the IEEE International Conference on Bioinformatics and Biomedicine (BIBM), Shenzhen, China, 15–18 December 2016; pp. 427–434. [Google Scholar]
- Emir Muñoz, V.N. Pierre-Yves Vandenbussche Using Drug Similarities for Discovery of Possible Adverse Reactions. Am. Med. Inform. Assoc. Annu. Symp. 2017, 2019, 924–933. [Google Scholar]
- Davis, J.; Goadrich, M. The relationship between Precision-Recall and ROC curves. In Proceedings of the 23rd International Conference on Machine Learning, Association for Computing Machinery, Pittsburgh, PA, USA, 25–29 June 2006; pp. 233–240. [Google Scholar]
Data Partition Methods | F1-Score | ROC-AUC | AUPR |
---|---|---|---|
5-fold cross-validation | 0.5486 | 0.6004 | 0.5724 |
10-fold cross-validation | 0.5781 | 0.6381 | 0.6091 |
Multi-label stratified 5-fold | 0.6330 | 0.7002 | 0.6619 |
Multi-label stratified 10-fold | 0.6298 | 0.6993 | 0.6620 |
Models | F1-Score | ROC-AUC | AUPR |
---|---|---|---|
Decision Trees | 0.5142 | 0.5445 | 0.4938 |
Random Forests | 0.5080 | 0.6540 | 0.6240 |
KNN | 0.5901 | 0.6617 | 0.6064 |
SVM | 0.4392 | 0.6644 | 0.6402 |
Our model | 0.6330 | 0.7002 | 0.6619 |
Models | ROC-AUC | AUPR |
---|---|---|
Liu’s method | 0.8772 | 0.1766 |
FS-MLKNN | 0.8722 | 0.3109 |
LNSM-SMI | 0.8786 | 0.3465 |
LNSM-CMI | 0.8852 | 0.3332 |
KG-SIM-PROP | 0.8892 | 0.2855 |
Our model | 0.7237 | 0.6882 |
Methods | F1-Score | ROC-AUC | AUPR |
---|---|---|---|
Remove transformer | 0.5624 | 0.6147 | 0.5975 |
Remove GAT-GCN | 0.5662 | 0.6150 | 0.5981 |
Remove drug–protein interaction | 0.5633 | 0.6154 | 0.5978 |
Remove drug–drug similarities | 0.5603 | 0.6092 | 0.5930 |
Ensemble model | 0.6330 | 0.7002 | 0.6619 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ou, Q.; Jiang, X.; Guo, Z.; Jiang, J.; Gan, Z.; Han, F.; Cai, Y. A Fusion Deep Learning Model for Predicting Adverse Drug Reactions Based on Multiple Drug Characteristics. Life 2025, 15, 436. https://doi.org/10.3390/life15030436
Ou Q, Jiang X, Guo Z, Jiang J, Gan Z, Han F, Cai Y. A Fusion Deep Learning Model for Predicting Adverse Drug Reactions Based on Multiple Drug Characteristics. Life. 2025; 15(3):436. https://doi.org/10.3390/life15030436
Chicago/Turabian StyleOu, Qing, Xikun Jiang, Zhetong Guo, Jiayi Jiang, Zhanpeng Gan, Fangfang Han, and Yongming Cai. 2025. "A Fusion Deep Learning Model for Predicting Adverse Drug Reactions Based on Multiple Drug Characteristics" Life 15, no. 3: 436. https://doi.org/10.3390/life15030436
APA StyleOu, Q., Jiang, X., Guo, Z., Jiang, J., Gan, Z., Han, F., & Cai, Y. (2025). A Fusion Deep Learning Model for Predicting Adverse Drug Reactions Based on Multiple Drug Characteristics. Life, 15(3), 436. https://doi.org/10.3390/life15030436