Comparison of Methods for Isolating Exosomes from Plasma Subjects with Normal and High Fat Percentages †
Abstract
1. Introduction
2. Materials and Methods
2.1. Samples
2.2. Exosome Isolation and Characterization
2.2.1. Isolation by Differential Centrifugation (DC)
2.2.2. Isolation by Size Exclusion Chromatography (SEC)
2.2.3. Isolation by Precipitation with a Commercial Kit (CK)
2.2.4. Characterization by Dynamic Light Scattering (DLS)
2.2.5. Characterization by Cryo-TEM and TEM
2.2.6. Characterization by Western Blot
2.3. MicroRNA Isolation
2.4. Statistical and Image Analyses
3. Results
3.1. The Exosome Isolation Methods Showed Equal Performances in Total Protein and microRNA Concentration, While an Inverse Pattern Was Observed Among Individuals with High Fat Mass Contents
3.2. The Morphology and Quality of the Three Exosome Isolation Methods Were as Expected, with Inconsistencies in Purity
3.3. CD9 and CD81 Do Not Differ Between Normal- and High-Fat-Percentage Individuals in SEC Fractions
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Groups | Normal Fat Percentage | High Fat Percentage | p-Value |
---|---|---|---|
n | 59 | 59 | |
Sex (Men–Women) | 26:33 | 21:38 | |
Age | 32 ± 9 | 38 ± 10 | |
Lipid Profile | |||
TC (mg/dL) | 173.4 ± 32.8 | 191.4 ± 44.5 | 0.01 * |
Triglycerides (mg/dL) | 95.6 ± 49.5 | 199.7 ± 202.3 | <0.0001 **** |
Insulin Resistance Status | |||
Fasting glucose (mg/dL) | 75.6 ± 17.3 | 88.7 ± 42.7 | 0.01 * |
Fasting insulin (uUI/mL) | 12.5 ± 9.8 | 21.9 ± 11.5 | <0.0001 **** |
Evaluation of Body Adiposity Status | |||
BMI (kg/m2) | 24.5 ± 2.9 | 34.0 ± 5.4 | <0.0001 **** |
Fat % | 24.5 ± 6.4 | 38.8 ± 7.7 | <0.0001 **** |
AVI (cm2) | 14.2 ± 6.3 | 22.8 ± 7.7 | <0.0001 **** |
VAI | 1.4 ± 3.3 | 0.2 ± 0.1 | <0.0001 **** |
WC | 81.6 ± 14.1 | 103.2 ± 21.1 | <0.0001 **** |
References
- Thery, C.; Amigorena, S.; Raposo, G.; Clayton, A. Isolation and characterization of exosomes from cell culture supernatants and biological fluids. Curr. Protoc. Cell Biol. 2006, 3, 3–22. [Google Scholar] [CrossRef] [PubMed]
- Abdulmalek, O.; Husain, K.; AlKhalifa, H.; Alturani, M.; Butler, A.; Moin, A. Therapeutic Applications of Stem Cell-Derived Exosomes. Int. J. Mol. Sci. 2024, 25, 3562. [Google Scholar] [CrossRef] [PubMed]
- Welsh, J.A.; Goberdhan, D.C.I.; O’Driscoll, L.; Buzas, E.I.; Blenkiron, C.; Bussolati, B.; Cai, H.; Di Vizio, D.; Driedonks, T.A.P.; Erdbrugger, U.; et al. Minimal information for studies of extracellular vesicles (MISEV2023): From basic to advanced approaches. J. Extracell. Vesicles 2024, 13, e12404. [Google Scholar] [CrossRef] [PubMed]
- Lei, L.M.; Lin, X.; Xu, F.; Shan, S.K.; Guo, B.; Li, F.X.; Zheng, M.H.; Wang, Y.; Xu, Q.S.; Yuan, L.Q. Exosomes and Obesity-Related Insulin Resistance. Front. Cell Dev. Biol. 2021, 9, 651996. [Google Scholar] [CrossRef]
- Dance, A. The body’s tiny cargo carriers. Knowable Magazine, 8 May 2019. [Google Scholar]
- Jiang, X.; You, L.; Zhang, Z.; Cui, X.; Zhong, H.; Sun, X.; Ji, C.; Chi, X. Biological Properties of Milk-Derived Extracellular Vesicles and Their Physiological Functions in Infant. Front. Cell Dev. Biol. 2021, 9, 693534. [Google Scholar] [CrossRef]
- Ragusa, M.; Barbagallo, C.; Statello, L.; Caltabiano, R.; Russo, A.; Puzzo, L.; Avitabile, T.; Longo, A.; Toro, M.D.; Barbagallo, D.; et al. miRNA profiling in vitreous humor, vitreal exosomes and serum from uveal melanoma patients: Pathological and diagnostic implications. Cancer Biol. Ther. 2015, 16, 1387–1396. [Google Scholar] [CrossRef]
- Jan, A.T.; Rahman, S.; Badierah, R.; Lee, E.J.; Mattar, E.H.; Redwan, E.M.; Choi, I. Expedition into Exosome Biology: A Perspective of Progress from Discovery to Therapeutic Development. Cancers 2021, 13, 1157. [Google Scholar] [CrossRef]
- Mei, R.; Qin, W.; Zheng, Y.; Wan, Z.; Liu, L. Role of Adipose Tissue Derived Exosomes in Metabolic Disease. Front. Endocrinol. 2022, 13, 873865. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, C.; Wei, M.; Yang, G.; Yuan, L. Multifaceted Roles of Adipose Tissue-Derived Exosomes in Physiological and Pathological Conditions. Front. Physiol. 2021, 12, 669429. [Google Scholar] [CrossRef]
- Ji, C.; Guo, X. The clinical potential of circulating microRNAs in obesity. Nat. Rev. Endocrinol. 2019, 15, 731–743. [Google Scholar] [CrossRef]
- Bond, S.T.; Calkin, A.C.; Drew, B.G. Adipose-Derived Extracellular Vesicles: Systemic Messengers and Metabolic Regulators in Health and Disease. Front. Physiol. 2022, 13, 837001. [Google Scholar] [CrossRef] [PubMed]
- Camino, T.; Lago-Baameiro, N.; Pardo, M. Extracellular Vesicles as Carriers of Adipokines and Their Role in Obesity. Biomedicines 2023, 11, 422. [Google Scholar] [CrossRef] [PubMed]
- Fasshauer, M.; Bluher, M. Adipokines in health and disease. Trends Pharmacol. Sci. 2015, 36, 461–470. [Google Scholar] [CrossRef] [PubMed]
- Zhao, R.; Zhao, T.; He, Z.; Cai, R.; Pang, W. Composition, isolation, identification and function of adipose tissue-derived exosomes. Adipocyte 2021, 10, 587–604. [Google Scholar] [CrossRef]
- Yang, X.X.; Sun, C.; Wang, L.; Guo, X.L. New insight into isolation, identification techniques and medical applications of exosomes. J. Control. Release 2019, 308, 119–129. [Google Scholar] [CrossRef]
- Muller, L.; Hong, C.S.; Stolz, D.B.; Watkins, S.C.; Whiteside, T.L. Isolation of biologically-active exosomes from human plasma. J. Immunol. Methods 2014, 411, 55–65. [Google Scholar] [CrossRef]
- Cheng, Y.; Qu, X.; Dong, Z.; Zeng, Q.; Ma, X.; Jia, Y.; Li, R.; Jiang, X.; Williams, C.; Wang, T.; et al. Comparison of serum exosome isolation methods on co-precipitated free microRNAs. PeerJ 2020, 8, e9434. [Google Scholar] [CrossRef]
- Chen, J.; Li, P.; Zhang, T.; Xu, Z.; Huang, X.; Wang, R.; Du, L. Review on Strategies and Technologies for Exosome Isolation and Purification. Front. Bioeng. Biotechnol. 2021, 9, 811971. [Google Scholar] [CrossRef]
- Rech, J.; Getinger-Panek, A.; Gałka, S.; Bednarek, I. Origin and Composition of Exosomes as Crucial Factors in Designing Drug Delivery Systems. Appl. Sci. 2022, 12, 12259. [Google Scholar] [CrossRef]
- Koritzinsky, E.H.; Street, J.M.; Star, R.A.; Yuen, P.S. Quantification of Exosomes. J. Cell. Physiol. 2017, 232, 1587–1590. [Google Scholar] [CrossRef]
- Whitehead, C.; Luwor, R.; Morokoff, A.; Kaye, A.; Stylli, S. Cancer exosomes in cerebrospinal fluid. Transl. Cancer Res. 2017, 6 (Suppl. S8), S1352–S1370. [Google Scholar] [CrossRef]
- Deng, F.Y.; Miller, J. A review on protein markers of exosome from different bio-resources and the antibodies used for characterization. J. Histotechnol. 2019, 42, 226–239. [Google Scholar] [CrossRef] [PubMed]
- Chernyshev, V.S.; Rachamadugu, R.; Tseng, Y.H.; Belnap, D.M.; Jia, Y.; Branch, K.J.; Butterfield, A.E.; Pease, L.F., 3rd; Bernard, P.S.; Skliar, M. Size and shape characterization of hydrated and desiccated exosomes. Anal. Bioanal. Chem. 2015, 407, 3285–3301. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Luo, H.; Ruan, H.; Chen, Z.; Chen, S.; Wang, B.; Xie, Y. Isolation and identification of exosomes from feline plasma, urine and adipose-derived mesenchymal stem cells. BMC Vet. Res. 2021, 17, 272. [Google Scholar] [CrossRef]
- Alvarez, M.L.; Khosroheidari, M.; Ravi, R.K.; DiStefano, J.K. Comparison of protein, microRNA, and mRNA yields using different methods of urinary exosome isolation for the discovery of kidney disease biomarkers. Kidney Int. 2012, 82, 1024–1032. [Google Scholar] [CrossRef]
- Tang, Y.T.; Huang, Y.Y.; Zheng, L.; Qin, S.H.; Xu, X.P.; An, T.X.; Xu, Y.; Wu, Y.S.; Hu, X.M.; Ping, B.H.; et al. Comparison of isolation methods of exosomes and exosomal RNA from cell culture medium and serum. Int. J. Mol. Med. 2017, 40, 834–844. [Google Scholar] [CrossRef]
- Lobb, R.J.; Becker, M.; Wen, S.W.; Wong, C.S.; Wiegmans, A.P.; Leimgruber, A.; Moller, A. Optimized exosome isolation protocol for cell culture supernatant and human plasma. J. Extracell. Vesicles 2015, 4, 27031. [Google Scholar] [CrossRef]
- Fortina, P.; Londin, E.R.; Park, J.Y.; Kricka, L.J. Acute Myeloid Leukemia—Methods and Protocols; Methods in Molecular Biology Series; Humana: New York, NY, USA, 2017; Volume 1633, pp. 258–266. [Google Scholar]
- Palmieri, V.; Lucchetti, D.; Gatto, I.; Maiorana, A.; Marcantoni, M.; Maulucci, G.; Papi, M.; Pola, R.; De Spirito, M.; Sgambato, A. Dynamic light scattering for the characterization and counting of extracellular vesicles: A powerful noninvasive tool. J. Nanopart. Res. 2014, 16, 2583. [Google Scholar] [CrossRef]
- Rikkert, L.G.; Nieuwland, R.; Terstappen, L.; Coumans, F.A.W. Quality of extracellular vesicle images by transmission electron microscopy is operator and protocol dependent. J. Extracell. Vesicles 2019, 8, 1555419. [Google Scholar] [CrossRef]
- Pernice, M.C.; Closa, D.; Garces, E. Cryo-electron microscopy of extracellular vesicles associated with the marine toxic dinoflagellate Alexandrium minutum. Harmful Algae 2023, 123, 102389. [Google Scholar] [CrossRef]
- World Obesity Federation. World Obesity Atlas. 2024. Available online: https://data.worldobesity.org/publications/WOF-Obesity-Atlas-v7.pdf (accessed on 13 August 2024).
- Zhou, C.; Huang, Y.Q.; Da, M.X.; Jin, W.L.; Zhou, F.H. Adipocyte-derived extracellular vesicles: Bridging the communications between obesity and tumor microenvironment. Discov. Oncol. 2023, 14, 92. [Google Scholar] [CrossRef] [PubMed]
- Delgadillo-Velázquez, J.; Alday, E.; Aguirre-García, M.M.; Canett-Romero, R.; Astiazaran-Garcia, H. The association between the size of adipocyte-derived extracellular vesicles and fasting serum triglyceride-glucose index as proxy measures of adipose tissue insulin resistance in a rat model of early-stage obesity. Front. Nutr. 2024, 11, 1387521. [Google Scholar] [CrossRef] [PubMed]
- Coughlan, C.; Bruce, K.D.; Burgy, O.; Boyd, T.D.; Michel, C.R.; Garcia-Perez, J.E.; Adame, V.; Anton, P.; Bettcher, B.M.; Chial, H.J.; et al. Exosome Isolation by Ultracentrifugation and Precipitation and Techniques for Downstream Analyses. Curr. Protoc. Cell Biol. 2020, 88, e110. [Google Scholar] [CrossRef] [PubMed]
- Caradec, J.; Kharmate, G.; Hosseini-Beheshti, E.; Adomat, H.; Gleave, M.; Guns, E. Reproducibility and efficiency of serum-derived exosome extraction methods. Clin. Biochem. 2014, 47, 1286–1292. [Google Scholar] [CrossRef]
- Aziz, M.A.; Seo, B.; Hussaini, H.M.; Hibma, M.; Rich, A.M. Comparing Two Methods for the Isolation of Exosomes. J. Nucleic Acids 2022, 2022, 8648373. [Google Scholar] [CrossRef]
- Wang, Y.; Wu, Y.; Yang, S.; Chen, Y. Comparison of Plasma Exosome Proteomes Between Obese and Non-Obese Patients with Type 2 Diabetes Mellitus. Diabetes Metab. Syndr. Obes. 2023, 16, 629–642. [Google Scholar] [CrossRef]
- Kwan, H.Y.; Chen, M.; Xu, K.; Chen, B. The impact of obesity on adipocyte-derived extracellular vesicles. Cell Mol. Life Sci. 2021, 78, 7275–7288. [Google Scholar] [CrossRef]
- Son, T.; Jeong, I.; Park, J.; Jun, W.; Kim, A.; Kim, O.-K. Adipose tissue-derived exosomes contribute to obesity-associated liver diseases in long-term high-fat diet-fed mice, but not in short-term. Front. Nutr. 2023, 10, 1162992. [Google Scholar] [CrossRef]
- Lai, J.J.; Chau, Z.L.; Chen, S.Y.; Hill, J.J.; Korpany, K.V.; Liang, N.W.; Lin, L.H.; Lin, Y.H.; Liu, J.K.; Liu, Y.C.; et al. Exosome Processing and Characterization Approaches for Research and Technology Development. Adv. Sci. 2022, 9, e2103222. [Google Scholar] [CrossRef]
- Dilsiz, N. A comprehensive review on recent advances in exosome isolation and characterization: Toward clinical applications. Transl. Oncol. 2024, 50, 102121. [Google Scholar] [CrossRef]
- Davidson, S.M.; Boulanger, C.M.; Aikawa, E.; Badimon, L.; Barile, L.; Binder, C.J.; Brisson, A.; Buzas, E.; Emanueli, C.; Jansen, F.; et al. Methods for the identification and characterization of extracellular vesicles in cardiovascular studies: From exosomes to microvesicles. Cardiovasc. Res. 2023, 119, 45–63. [Google Scholar] [CrossRef] [PubMed]
- Sakha, S.; Muramatsu, T.; Ueda, K.; Inazawa, J. Exosomal microRNA miR-1246 induces cell motility and invasion through the regulation of DENND2D in oral squamous cell carcinoma. Sci. Rep. 2016, 6, 38750. [Google Scholar] [CrossRef] [PubMed]
- Akbar, N.; Pinnick, K.E.; Paget, D.; Choudhury, R.P. Isolation and Characterization of Human Adipocyte-Derived Extracellular Vesicles using Filtration and Ultracentrifugation. J. Vis. Exp. 2021, 170, e61979. [Google Scholar] [CrossRef] [PubMed]
- Sharif, S.; Mozaffari-Jovin, S.; Alizadeh, F.; Mojarrad, M.; Baharvand, H.; Nouri, M.; Abbaszadegan, M.R. Isolation of plasma small extracellular vesicles by an optimized size-exclusion chromatography-based method for clinical applications. J. Drug Deliv. Sci. Technol. 2023, 87, 104796. [Google Scholar] [CrossRef]
- Noboa, J.; León, J.; Castro, J.; Fletes, A.; Madrigal, P.; Álvarez, I.; Navarro, R. Comparing three methods for the isolation of exosomes from plasma in subjects with overweight and 3T3-L1 cell culture. In Proceedings of the European Congress of Immunology, Dublin, Ireland, 1–4 September 2024. [Google Scholar]
Isolation Method | Advantage | Disadvantage |
---|---|---|
Commercial kit (CK) | Fast procedure Many samples can be tested at the same time (centrifugation rotor tube capacity) Small volumes of samples Does not require expensive or complicated equipment Easy technique High yield Exosome integrity is maintained | Relative price Kit stability Does not have a high purity (for further proteomic analysis) |
Size exclusion chromatography (SEC) | Economical material Non-destructive High yield Exosome integrity is maintained | More time-consuming procedure Sample quantity is limited in order to test them at the same time High volumes of sample |
Differential centrifugation (DC) | Purity (exosome size) Many samples can be tested at the same time (ultracentrifugation rotor tube capacity) Small volumes of samples (miniultracentrifuge) High yield | More time-consuming procedure High volumes of sample (conventional ultracentrifuge) Expensive equipment Pressure damages the exosomes’ integrity Induces aggregation of exosomes |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Noboa-Velástegui, J.; León, J.C.; Castro, J.; Fletes, A.; Madrigal, P.; Álvarez, I.; Navarro, R. Comparison of Methods for Isolating Exosomes from Plasma Subjects with Normal and High Fat Percentages. Life 2025, 15, 410. https://doi.org/10.3390/life15030410
Noboa-Velástegui J, León JC, Castro J, Fletes A, Madrigal P, Álvarez I, Navarro R. Comparison of Methods for Isolating Exosomes from Plasma Subjects with Normal and High Fat Percentages. Life. 2025; 15(3):410. https://doi.org/10.3390/life15030410
Chicago/Turabian StyleNoboa-Velástegui, Jacqueline, Juan Carlos León, Jorge Castro, Ana Fletes, Perla Madrigal, Iñaki Álvarez, and Rosa Navarro. 2025. "Comparison of Methods for Isolating Exosomes from Plasma Subjects with Normal and High Fat Percentages" Life 15, no. 3: 410. https://doi.org/10.3390/life15030410
APA StyleNoboa-Velástegui, J., León, J. C., Castro, J., Fletes, A., Madrigal, P., Álvarez, I., & Navarro, R. (2025). Comparison of Methods for Isolating Exosomes from Plasma Subjects with Normal and High Fat Percentages. Life, 15(3), 410. https://doi.org/10.3390/life15030410