Genetic Variants of Interleukin-8 and Interleukin-16 and Their Association with Cervical Cancer Risk
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Participant Characteristics
2.2. DNA Extraction and Genotyping
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
n | Percent | |
---|---|---|
Histology | ||
Squamous | 101 | 80.2% |
Adenocarcinoma | 18 | 14.3% |
Adenosquamous | 5 | 4% |
Missing | 2 | 1.6% |
Grading | ||
G1 | 10 | 7.9% |
G2 | 53 | 42.1% |
G3 | 40 | 31.8% |
G-X | 23 | 18.3% |
Pelvic lymph nodes | ||
Positive | 36 | 28.6% |
Negative | 72 | 57.1% |
No PLND | 18 | 14.3% |
Paraaortic lymph nodes | ||
Positive | 3 | 2.4% |
Negative | 85 | 67.5% |
No PALND | 38 | 30.2% |
FIGO (2018) | ||
I A | 12 | 9.5% |
I B | 36 | 28.6% |
II A | 2 | 1.6% |
II B | 25 | 19.8% |
III A | 5 | 4% |
III B | 6 | 4.8% |
III C | 32 | 25.4% |
IV A | 3 | 2.4% |
IV B | 2 | 1.6% |
Missing | 3 | 2.4% |
Treatment | ||
Surgery alone | 38 | 30.2% |
Surgery followed by R(CH)T | 22 | 17.5% |
LN-staging followed by R(CH)T | 48 | 38.1% |
R(CH)T alone | 3 | 2.4% |
Neoadjuvant CHT followed by surgery | 4 | 3.2% |
RT followed by surgery | 1 | 0.8% |
CHT alone | 1 | 0.8% |
Missing | 9 | 7.1% |
References
- Bray, F.; Laversanne, M.; Sung, H.; Ferlay, J.; Siegel, R.L.; Soerjomataram, I.; Jemal, A. Global Cancer Statistics 2022: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2024, 74, 229–263. [Google Scholar] [CrossRef]
- Wang, M.; Huang, K.; Wong, M.C.S.; Huang, J.; Jin, Y.; Zheng, Z.-J. Global Cervical Cancer Incidence by Histological Subtype and Implications for Screening Methods. J. Epidemiol. Glob. Health 2024, 14, 94–101. [Google Scholar] [CrossRef]
- Cui, P.; Cong, X.; Chen, C.; Yang, L.; Liu, Z. Adenosquamous Carcinoma of the Cervix: A Population-Based Analysis. Front. Oncol. 2021, 11, 652850. [Google Scholar] [CrossRef]
- Watrowski, R.; Striepecke, E.; Jäger, C.; Bauknecht, T.; Horst, C. Papillary-Serous Adenocarcinoma of the Uterine Cervix during Tamoxifen Therapy after Bilateral Breast Cancer. Anticancer Res. 2012, 32, 5075–5078. [Google Scholar] [PubMed]
- Jung, L.; Klamminger, G.G.; Bier, B.; Eltze, E. From Satirical Poems and Invisible Poisons to Radical Surgery and Organized Cervical Cancer Screening-A Historical Outline of Cervical Carcinoma and Its Relation to HPV Infection. Life 2024, 14, 307. [Google Scholar] [CrossRef]
- Kostov, S.; Kornovski, Y.; Watrowski, R.; Yordanov, A.; Slavchev, S.; Ivanova, Y.; Yalcin, H.; Ivanov, I.; Selcuk, I. Revisiting Querleu-Morrow Radical Hysterectomy: How to Apply the Anatomy of Parametrium and Pelvic Autonomic Nerves to Cervical Cancer Surgery? Cancers 2024, 16, 2729. [Google Scholar] [CrossRef] [PubMed]
- Mangone, L.; Marinelli, F.; Bisceglia, I.; Roncaglia, F.; Mastrofilippo, V.; Morabito, F.; Neri, A.; Aguzzoli, L.; Mandato, V.D. Trends in Cervical Cancer: A Decade-long Analysis of Incidence, Survival and Demographic Disparities in a Northern Italian Province. Mol. Clin. Oncol. 2024, 21, 71. [Google Scholar] [CrossRef] [PubMed]
- Castellsagué, X. Natural History and Epidemiology of HPV Infection and Cervical Cancer. Gynecol. Oncol. 2008, 110, S4–S7. [Google Scholar] [CrossRef] [PubMed]
- Crosbie, E.J.; Einstein, M.H.; Franceschi, S.; Kitchener, H.C. Human Papillomavirus and Cervical Cancer. Lancet 2013, 382, 889–899. [Google Scholar] [CrossRef]
- Gardella, B.; Pasquali, M.F.; La Verde, M.; Cianci, S.; Torella, M.; Dominoni, M. The Complex Interplay between Vaginal Microbiota, HPV Infection, and Immunological Microenvironment in Cervical Intraepithelial Neoplasia: A Literature Review. Int. J. Mol. Sci. 2022, 23, 7174. [Google Scholar] [CrossRef] [PubMed]
- Vänskä, S.; Luostarinen, T.; Lagheden, C.; Eklund, C.; Kleppe, S.N.; Andrae, B.; Sparén, P.; Sundström, K.; Lehtinen, M.; Dillner, J. Differing Age-Specific Cervical Cancer Incidence Between Different Types of Human Papillomavirus: Implications for Predicting the Impact of Elimination Programs. Am. J. Epidemiol. 2021, 190, 506–514. [Google Scholar] [CrossRef] [PubMed]
- Sharma, C.; Deutsch, I.; Horowitz, D.P.; Hershman, D.L.; Lewin, S.N.; Lu, Y.-S.; Neugut, A.I.; Herzog, T.J.; Chao, C.K.; Wright, J.D. Patterns of Care and Treatment Outcomes for Elderly Women with Cervical Cancer. Cancer 2012, 118, 3618–3626. [Google Scholar] [CrossRef] [PubMed]
- Jaisamrarn, U.; Castellsagué, X.; Garland, S.M.; Naud, P.; Palmroth, J.; Del Rosario-Raymundo, M.R.; Wheeler, C.M.; Salmerón, J.; Chow, S.-N.; Apter, D.; et al. Natural History of Progression of HPV Infection to Cervical Lesion or Clearance: Analysis of the Control Arm of the Large, Randomised PATRICIA Study. PLoS ONE 2013, 8, e79260. [Google Scholar] [CrossRef]
- Muntinga, C.L.P.; de Vos van Steenwijk, P.J.; Bekkers, R.L.M.; van Esch, E.M.G. Importance of the Immune Microenvironment in the Spontaneous Regression of Cervical Squamous Intraepithelial Lesions (cSIL) and Implications for Immunotherapy. J. Clin. Med. 2022, 11, 1432. [Google Scholar] [CrossRef] [PubMed]
- Bowden, S.J.; Bodinier, B.; Kalliala, I.; Zuber, V.; Vuckovic, D.; Doulgeraki, T.; Whitaker, M.D.; Wielscher, M.; Cartwright, R.; Tsilidis, K.K.; et al. Genetic Variation in Cervical Preinvasive and Invasive Disease: A Genome-Wide Association Study. Lancet Oncol. 2021, 22, 548–557. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Jiang, J.; Shen, H.; Hu, Z. Genetic Susceptibility of Cervical Cancer. J. Biomed. Res. 2011, 25, 155–164. [Google Scholar] [CrossRef] [PubMed]
- Carrero, Y.N.; Callejas, D.E.; Mosquera, J.A. In Situ Immunopathological Events in Human Cervical Intraepithelial Neoplasia and Cervical Cancer: Review. Transl. Oncol. 2021, 14, 101058. [Google Scholar] [CrossRef]
- Chen, D.; Cui, T.; Ek, W.E.; Liu, H.; Wang, H.; Gyllensten, U. Analysis of the Genetic Architecture of Susceptibility to Cervical Cancer Indicates That Common SNPs Explain a Large Proportion of the Heritability. Carcinogenesis 2015, 36, 992–998. [Google Scholar] [CrossRef]
- Grimm, C.; Watrowski, R.; Baumühlner, K.; Natter, C.; Tong, D.; Wolf, A.; Zeillinger, R.; Leodolter, S.; Reinthaller, A.; Hefler, L. Genetic Variations of Interleukin-1 and -6 Genes and Risk of Cervical Intraepithelial Neoplasia. Gynecol. Oncol. 2011, 121, 537–541. [Google Scholar] [CrossRef]
- Karimi-Zarchi, M.; Abbasi, H.; Javaheri, A.; Hadadan, A.; Meibodi, B.; Tabatabaei, R.S.; Ghelmani, Y.; Neamatzadeh, H. Association of IL-12B Rs3212227 and IL-6 Rs1800795 Polymorphisms with Susceptibility to Cervical Cancer: A Systematic Review and Meta-Analysis. Asian Pac. J. Cancer Prev. 2020, 21, 1197–1206. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.; Hu, G.; Chen, J.; Xie, G. Interleukin 1β and Interleukin 1 Receptor Antagonist Gene Polymorphisms and Cervical Cancer: A Meta-Analysis. Int. J. Gynecol. Cancer 2014, 24, 984–990. [Google Scholar] [CrossRef]
- Das, A.P.; Saini, S.; Agarwal, S.M. A Comprehensive Meta-Analysis of Non-Coding Polymorphisms Associated with Precancerous Lesions and Cervical Cancer. Genomics 2022, 114, 110323. [Google Scholar] [CrossRef] [PubMed]
- Akdis, M.; Aab, A.; Altunbulakli, C.; Azkur, K.; Costa, R.A.; Crameri, R.; Duan, S.; Eiwegger, T.; Eljaszewicz, A.; Ferstl, R.; et al. Interleukins (from IL-1 to IL-38), Interferons, Transforming Growth Factor β, and TNF-α: Receptors, Functions, and Roles in Diseases. J. Allergy Clin. Immunol. 2016, 138, 984–1010. [Google Scholar] [CrossRef] [PubMed]
- Waugh, D.J.J.; Wilson, C. The Interleukin-8 Pathway in Cancer. Clin. Cancer Res. 2008, 14, 6735–6741. [Google Scholar] [CrossRef] [PubMed]
- Qazi, B.S.; Tang, K.; Qazi, A. Recent Advances in Underlying Pathologies Provide Insight into Interleukin-8 Expression-Mediated Inflammation and Angiogenesis. Int. J. Inflam. 2011, 2011, 908468. [Google Scholar] [CrossRef]
- Dakal, T.C.; Kala, D.; Dhiman, G.; Yadav, V.; Krokhotin, A.; Dokholyan, N.V. Predicting the Functional Consequences of Non-Synonymous Single Nucleotide Polymorphisms in IL8 Gene. Sci. Rep. 2017, 7, 6525. [Google Scholar] [CrossRef]
- Wang, Z.; Liu, Y.; Yang, L.; Yin, S.; Zang, R.; Yang, G. The Polymorphism Interleukin-8 -251A/T Is Associated with a Significantly Increased Risk of Cancers from a Meta-Analysis. Tumour Biol. 2014, 35, 7115–7123. [Google Scholar] [CrossRef] [PubMed]
- Lee, W.-P.; Tai, D.-I.; Lan, K.-H.; Li, A.F.-Y.; Hsu, H.-C.; Lin, E.-J.; Lin, Y.-P.; Sheu, M.-L.; Li, C.-P.; Chang, F.-Y.; et al. The -251T Allele of the Interleukin-8 Promoter Is Associated with Increased Risk of Gastric Carcinoma Featuring Diffuse-Type Histopathology in Chinese Population. Clin. Cancer Res. 2005, 11, 6431–6441. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Zhang, B.; Zhang, M.; Han, Y.; Zhao, Y.; Meng, Z.; Li, X.; Kang, J.; Yan, C. Interleukin-8 Gene Polymorphism Is Associated with Acute Coronary Syndrome in the Chinese Han Population. Cytokine 2011, 56, 188–191. [Google Scholar] [CrossRef] [PubMed]
- Charrad, R.; Kaabachi, W.; Rafrafi, A.; Berraies, A.; Hamzaoui, K.; Hamzaoui, A. IL-8 Gene Variants and Expression in Childhood Asthma. Lung 2017, 195, 749–757. [Google Scholar] [CrossRef]
- Ulhaq, Z.S.; Soraya, G.V. Roles of IL-8 -251A/T and +781C/T Polymorphisms, IL-8 Level, and the Risk of Age-Related Macular Degeneration. Arch. Soc. Esp. Oftalmol. (Engl. Ed.) 2021, 96, 476–487. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Mao, P.; Xie, C.; Xie, W.; Wang, M.; Jiang, H. Association between Interleukin 8-251 T/A and +781 C/T Polymorphisms and Glioma Risk. Diagn. Pathol. 2015, 10, 138. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Yang, Y.; Liu, S.; Zhu, S.; Jiang, H.; Ding, J. Association between Interleukin 8 -251 A/T and +781 C/T Polymorphisms and Osteosarcoma Risk in Chinese Population: A Case-Control Study. Tumour Biol. 2016, 37, 6191–6196. [Google Scholar] [CrossRef] [PubMed]
- Li, C.-H.; Yang, Y.-C.; Hsia, T.-C.; Shen, T.-C.; Shen, Y.-C.; Chang, W.-S.; Wang, Y.-C.; Tsai, C.-W.; Bau, D.-T. Association of Interleukin-8 Promoter Genotypes with Taiwan Lung Cancer Risk. Anticancer. Res. 2022, 42, 1229–1236. [Google Scholar] [CrossRef] [PubMed]
- Chien, M.-H.; Yeh, C.-B.; Li, Y.-C.; Wei, L.-H.; Chang, J.-H.; Peng, Y.-T.; Yang, S.-F.; Kuo, W.-H. Relationship of Interleukin-8 Gene Polymorphisms with Hepatocellular Carcinoma Susceptibility and Pathological Development. J. Surg. Oncol. 2011, 104, 798–803. [Google Scholar] [CrossRef]
- Huang, C.-Y.; Chang, W.-S.; Tsai, C.-W.; Hsia, T.-C.; Shen, T.-C.; Bau, D.-T.; Shui, H.-A. The Contribution of Interleukin-8 Genotypes and Expression to Nasopharyngeal Cancer Susceptibility in Taiwan. Medicine 2018, 97, e12135. [Google Scholar] [CrossRef]
- Koensgen, D.; Bruennert, D.; Ungureanu, S.; Sofroni, D.; Braicu, E.I.; Sehouli, J.; Sümnig, A.; Delogu, S.; Zygmunt, M.; Goyal, P.; et al. Polymorphism of the IL-8 Gene and the Risk of Ovarian Cancer. Cytokine 2015, 71, 334–338. [Google Scholar] [CrossRef] [PubMed]
- Watrowski, R.; Schuster, E.; Hofstetter, G.; Fischer, M.B.; Mahner, S.; Van Gorp, T.; Polterauer, S.; Zeillinger, R.; Obermayr, E. Association of Four Interleukin-8 Polymorphisms (−251 A>T, +781 C>T, +1633 C>T, +2767 A>T) with Ovarian Cancer Risk: Focus on Menopausal Status and Endometriosis-Related Subtypes. Biomedicines 2024, 12, 321. [Google Scholar] [CrossRef]
- Cruikshank, W.W.; Center, D.M.; Nisar, N.; Wu, M.; Natke, B.; Theodore, A.C.; Kornfeld, H. Molecular and Functional Analysis of a Lymphocyte Chemoattractant Factor: Association of Biologic Function with CD4 Expression. Proc. Natl. Acad. Sci. USA 1994, 91, 5109–5113. [Google Scholar] [CrossRef]
- Cruikshank, W.W.; Kornfeld, H.; Center, D.M. Interleukin-16. J. Leukoc. Biol. 2000, 67, 757–766. [Google Scholar] [CrossRef] [PubMed]
- Wilson, K.C.; Center, D.M.; Cruikshank, W.W. The Effect of Interleukin-16 and Its Precursor on T Lymphocyte Activation and Growth. Growth Factors 2004, 22, 97–104. [Google Scholar] [CrossRef] [PubMed]
- Glass, W.G.; Sarisky, R.T.; Vecchio, A.M.D. Not-so-Sweet Sixteen: The Role of IL-16 in Infectious and Immune-Mediated Inflammatory Diseases. J. Interferon Cytokine Res. 2006, 26, 511–520. [Google Scholar] [CrossRef]
- Richmond, J.; Tuzova, M.; Cruikshank, W.; Center, D. Regulation of Cellular Processes by Interleukin-16 in Homeostasis and Cancer. J. Cell Physiol. 2014, 229, 139–147. [Google Scholar] [CrossRef] [PubMed]
- Hridi, S.U.; Franssen, A.J.P.M.; Jiang, H.-R.; Bushell, T.J. Interleukin-16 Inhibits Sodium Channel Function and GluA1 Phosphorylation via CD4- and CD9-Independent Mechanisms to Reduce Hippocampal Neuronal Excitability and Synaptic Activity. Mol. Cell Neurosci. 2019, 95, 71–78. [Google Scholar] [CrossRef] [PubMed]
- Kurschner, C.; Yuzaki, M. Neuronal Interleukin-16 (NIL-16): A Dual Function PDZ Domain Protein. J. Neurosci. 1999, 19, 7770–7780. [Google Scholar] [CrossRef] [PubMed]
- Burkart, K.M.; Barton, S.J.; Holloway, J.W.; Yang, I.A.; Cakebread, J.A.; Cruikshank, W.; Little, F.; Jin, X.; Farrer, L.A.; Clough, J.B.; et al. Association of Asthma with a Functional Promoter Polymorphism in the IL16 Gene. J. Allergy Clin. Immunol. 2006, 117, 86–91. [Google Scholar] [CrossRef]
- Skundric, D.S.; Cruikshank, W.W.; Montgomery, P.C.; Lisak, R.P.; Tse, H.Y. Emerging Role of IL-16 in Cytokine-Mediated Regulation of Multiple Sclerosis. Cytokine 2015, 75, 234–248. [Google Scholar] [CrossRef]
- Zeinalzadeh, S.; Kheradmand, N.; Rasouli, G.; Esmaeilzadeh, E.; Pakzad, B.; Behroozi, J.; Chamanara, M.; Zoshk, M.Y.; Ehtesham, N.; Sabet, M.N. Association of a miRNA-Binding Site Polymorphism in IL-16 Gene with Disease Risk and Clinical Characteristics of Rheumatoid Arthritis and Systemic Lupus Erythematosus. Clin. Rheumatol. 2022, 41, 2189–2196. [Google Scholar] [CrossRef] [PubMed]
- Almulla, A.F.; Abbas Abo Algon, A.; Tunvirachaisakul, C.; Al-Hakeim, H.K.; Maes, M. T Helper-1 Activation via Interleukin-16 Is a Key Phenomenon in the Acute Phase of Severe, First-Episode Major Depressive Disorder and Suicidal Behaviors. J. Adv. Res. 2024, 64, 171–181. [Google Scholar] [CrossRef]
- de Souza, V.H.; de Alencar, J.B.; Tiyo, B.T.; Alves, H.V.; Vendramini, E.C.L.; Sell, A.M.; Visentainer, J.E.L. Association of Functional IL16 Polymorphisms with Cancer and Cardiovascular Disease: A Meta-Analysis. Oncotarget 2020, 11, 3405–3417. [Google Scholar] [CrossRef]
- Tang, Y.-J.; Wang, J.-L.; Xie, K.-G.; Lan, C.-G. Association of Interleukin 16 Gene Polymorphisms and Plasma IL16 Level with Osteosarcoma Risk. Sci. Rep. 2016, 6, 34607. [Google Scholar] [CrossRef] [PubMed]
- Qin, X.; Peng, Q.; Lao, X.; Chen, Z.; Lu, Y.; Lao, X.; Mo, C.; Sui, J.; Wu, J.; Zhai, L.; et al. The Association of Interleukin-16 Gene Polymorphisms with IL-16 Serum Levels and Risk of Nasopharyngeal Carcinoma in a Chinese Population. Tumour Biol. 2014, 35, 1917–1924. [Google Scholar] [CrossRef] [PubMed]
- Wu, M.-F.; Wang, Y.-C.; Shen, T.-C.; Chang, W.-S.; Li, H.-T.; Liao, C.-H.; Gong, C.-L.; Wang, Z.-H.; Tsai, C.-W.; Hsia, T.-C.; et al. Significant Association of Interleukin-16 Genetic Variations to Taiwanese Lung Cancer. In Vivo 2020, 34, 1117–1123. [Google Scholar] [CrossRef]
- Shih, L.-C.; Chang, W.-S.; Lee, H.-T.; Wang, Y.-C.; Wang, Z.-H.; Chao, C.-Y.; Yu, C.-C.; Lin, H.-Y.; Shen, T.-C.; Kuo, C.-C.; et al. Interaction of Interleukin-16 Genotypes with Betel Quid Chewing Behavior on Oral Cancer in Taiwan. In Vivo 2020, 34, 1759–1764. [Google Scholar] [CrossRef] [PubMed]
- Gao, L.-B.; Rao, L.; Wang, Y.-Y.; Liang, W.-B.; Li, C.; Xue, H.; Zhou, B.; Sun, H.; Li, Y.; Lv, M.-L.; et al. The Association of Interleukin-16 Polymorphisms with IL-16 Serum Levels and Risk of Colorectal and Gastric Cancer. Carcinogenesis 2009, 30, 295–299. [Google Scholar] [CrossRef] [PubMed]
- Fu, C.-K.; Mong, M.-C.; Tzeng, H.-E.; Yang, M.-D.; Chen, J.-C.; Hsia, T.-C.; Hsia, N.-Y.; Tsai, C.-W.; Chang, W.-S.; Chen, C.-P.; et al. The Significant Contribution of Interleukin-16 Genotypes, Smoking, Alcohol Drinking, and Helicobacter Pylori Infection to Gastric Cancer. In Vivo 2024, 38, 90–97. [Google Scholar] [CrossRef]
- Azimzadeh, P.; Khorram Khorshid, H.R.; Akhondi, M.M.; Shirazi, A. Association of Interleukin-16 Polymorphisms with Disease Progression and Susceptibility in Endometriosis. Int. J. Immunogenet. 2016, 43, 297–302. [Google Scholar] [CrossRef] [PubMed]
- Matalliotakis, M.; Zervou, M.I.; Eliopoulos, E.; Matalliotaki, C.; Rahmioglu, N.; Kalogiannidis, I.; Zondervan, K.; Spandidos, D.A.; Matalliotakis, I.; Goulielmos, G.N. The Role of IL-16 Gene Polymorphisms in Endometriosis. Int. J. Mol. Med. 2018, 41, 1469–1476. [Google Scholar] [CrossRef]
- Xue, H.; Gao, L.; Wu, Y.; Fang, W.; Wang, L.; Li, C.; Li, Y.; Liang, W.; Zhang, L. The IL-16 Gene Polymorphisms and the Risk of the Systemic Lupus Erythematosus. Clin. Chim. Acta 2009, 403, 223–225. [Google Scholar] [CrossRef]
- Zhang, X.; Xue, L.; Sun, X.; Jin, J.; Bai, X.; Xie, A. Association of IL-16 Gene Polymorphisms with Sporadic Parkinson’s Disease in a Han Chinese Population. Neurosci. Lett. 2020, 724, 134877. [Google Scholar] [CrossRef]
- Anvar, N.E.; Saliminejad, K.; Ohadi, M.; Kamali, K.; Daneshmand, P.; Khorshid, H.R.K. Association between Polymorphisms in Interleukin-16 Gene and Risk of Late-Onset Alzheimer’s Disease. J. Neurol. Sci. 2015, 358, 324–327. [Google Scholar] [CrossRef] [PubMed]
- Kashfi, S.M.H.; Behboudi Farahbakhsh, F.; Nazemalhosseini Mojarad, E.; Mashayekhi, K.; Azimzadeh, P.; Romani, S.; Derakhshani, S.; Malekpour, H.; Asadzadeh Aghdaei, H.; Zali, M.R. Interleukin-16 Polymorphisms as New Promising Biomarkers for Risk of Gastric Cancer. Tumour Biol. 2016, 37, 2119–2126. [Google Scholar] [CrossRef]
- Yang, S.X.; Chen, F.; Zhang, J.W.; Sun, Z.Q.; Chen, B.P. IL-16 Rs4778889 Polymorphism Contribution to the Development of Renal Cell Cancer in a Chinese Population. Genet. Mol. Res. 2016, 15, 1–7. [Google Scholar] [CrossRef]
- Gan, X.-L.; Lin, Y.-H.; Zhang, Y.; Yu, T.-H.; Hu, L.-N. Association of an Interleukin-16 Gene Polymorphism with the Risk and Pain Phenotype of Endometriosis. DNA Cell Biol. 2010, 29, 663–667. [Google Scholar] [CrossRef] [PubMed]
- Babah, O.A.; Ojewunmi, O.O.; Onwuamah, C.K.; Udenze, I.C.; Osuntoki, A.A.; Afolabi, B.B. Serum Concentrations of IL-16 and Its Genetic Polymorphism Rs4778889 Affect the Susceptibility and Severity of Endometriosis in Nigerian Women. BMC Womens Health 2023, 23, 253. [Google Scholar] [CrossRef]
- Mi, Y.; Wang, L.; Zong, L.; Pei, M.; Lu, Q.; Huang, P. Genetic Variants in microRNA Target Sites of 37 Selected Cancer-Related Genes and the Risk of Cervical Cancer. PLoS ONE 2014, 9, e86061. [Google Scholar] [CrossRef]
- Azimzadeh, P.; Romani, S.; Mohebbi, S.R.; Mahmoudi, T.; Vahedi, M.; Fatemi, S.R.; Zali, N.; Zali, M.R. Association of Polymorphisms in microRNA-Binding Sites and Colorectal Cancer in an Iranian Population. Cancer Genet. 2012, 205, 501–507. [Google Scholar] [CrossRef] [PubMed]
- Watrowski, R.; Schuster, E.; Van Gorp, T.; Hofstetter, G.; Fischer, M.B.; Mahner, S.; Polterauer, S.; Zeillinger, R.; Obermayr, E. Association of the Single Nucleotide Polymorphisms Rs11556218, Rs4778889, Rs4072111, and Rs1131445 of the Interleukin-16 Gene with Ovarian Cancer. Int. J. Mol. Sci. 2024, 25, 10272. [Google Scholar] [CrossRef]
- Wu, S.; Lu, S.; Tao, H.; Zhang, L.; Lin, W.; Shang, H.; Xie, J. Correlation of Polymorphism of IL-8 and MMP-7 with Occurrence and Lymph Node Metastasis of Early Stage Cervical Cancer. J. Huazhong Univ. Sci. Technol. Med. Sci. 2011, 31, 114–119. [Google Scholar] [CrossRef]
- Kaczmarek, M. The Timing of Natural Menopause in Poland and Associated Factors. Maturitas 2007, 57, 139–153. [Google Scholar] [CrossRef] [PubMed]
- Bhatla, N.; Berek, J.S.; Cuello Fredes, M.; Denny, L.A.; Grenman, S.; Karunaratne, K.; Kehoe, S.T.; Konishi, I.; Olawaiye, A.B.; Prat, J.; et al. Revised FIGO Staging for Carcinoma of the Cervix Uteri. Int. J. Gynaecol. Obstet. 2019, 145, 129–135. [Google Scholar] [CrossRef] [PubMed]
- Lewis, C.M. Genetic Association Studies: Design, Analysis and Interpretation. Brief. Bioinform. 2002, 3, 146–153. [Google Scholar] [CrossRef]
- Horita, N.; Kaneko, T. Genetic Model Selection for a Case-Control Study and a Meta-Analysis. Meta Gene 2015, 5, 1–8. [Google Scholar] [CrossRef]
- JASP, Version 19.0.0; JASP Team: Amsterdam, The Netherlands, 2024. Available online: https://jasp-stats.org/ (accessed on 28 August 2024).
- VassarStats: Website for Statistical Computation. Copyright: Richard Lowry 1998–2023. Available online: http://www.vassarstats.net (accessed on 28 August 2024).
- The Genome Aggregation Database (gnomAD). Available online: https://gnomad.broadinstitute.org (accessed on 4 September 2024).
- dbGaP Allele Frequency Aggregator (ALFA) Database. Available online: https://www.ncbi.nlm.nih.gov/snp/docs/gsr/alfa/ (accessed on 4 September 2024).
- Yugawa, T.; Kiyono, T. Molecular Mechanisms of Cervical Carcinogenesis by High-Risk Human Papillomaviruses: Novel Functions of E6 and E7 Oncoproteins. Rev. Med. Virol. 2009, 19, 97–113. [Google Scholar] [CrossRef]
- Kim, W.; Pyo, J.; Noh, B.-J.; Jeong, J.-W.; Lee, J.; Kim, J.-E. CCAR2 Negatively Regulates IL-8 Production in Cervical Cancer Cells. Oncotarget 2018, 9, 1143–1155. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.-J.; Xue, J.-M.; Li, J.; Wan, L.-H.; Zhu, Y.-X. Identification of Key Genes and Pathways of Diagnosis and Prognosis in Cervical Cancer by Bioinformatics Analysis. Mol. Genet. Genom. Med. 2020, 8, e1200. [Google Scholar] [CrossRef]
- Jia, L.; Li, F.; Shao, M.; Zhang, W.; Zhang, C.; Zhao, X.; Luan, H.; Qi, Y.; Zhang, P.; Liang, L.; et al. IL-8 Is Upregulated in Cervical Cancer Tissues and Is Associated with the Proliferation and Migration of HeLa Cervical Cancer Cells. Oncol. Lett. 2018, 15, 1350–1356. [Google Scholar] [CrossRef]
- Fernandez-Avila, L.; Castro-Amaya, A.M.; Molina-Pineda, A.; Hernández-Gutiérrez, R.; Jave-Suarez, L.F.; Aguilar-Lemarroy, A. The Value of CXCL1, CXCL2, CXCL3, and CXCL8 as Potential Prognosis Markers in Cervical Cancer: Evidence of E6/E7 from HPV16 and 18 in Chemokines Regulation. Biomedicines 2023, 11, 2655. [Google Scholar] [CrossRef] [PubMed]
- Osiagwu, D.D.; Azenabor, A.E.; Osijirin, A.A.; Awopetu, P.I.; Oyegbami, F.R. Evaluation of Interleukin 8 and Interleukin 10 Cytokines in Liquid Based Cervical Cytology Samples. Pan Afr. Med. J. 2019, 32, 148. [Google Scholar] [CrossRef]
- Tjiong, M.Y.; van der Vange, N.; ten Kate, F.J.; Tjong-A-Hung, S.P.; ter Schegget, J.; Burger, M.P.; Out, T.A. Increased IL-6 and IL-8 Levels in Cervicovaginal Secretions of Patients with Cervical Cancer. Gynecol. Oncol. 1999, 73, 285–291. [Google Scholar] [CrossRef]
- Cotrim, A.C.d.M.; França, E.L.; Martins, J.S.; Silva, K.P.G.; Fujimori, M.; Ghalfi, Y.C.; Machado, I.T.; Honorio-França, A.C.; Tozetti, I.A. Correlation between Melatonin Concentration and Cytokines in Cervical Mucus in Positive Samples for the Presence of Human Papillomavirus. Cancer Immunol. Immunother. 2021, 70, 2721–2726. [Google Scholar] [CrossRef]
- Kumar, A.; Cherukumilli, M.; Mahmoudpour, S.H.; Brand, K.; Bandapalli, O.R. ShRNA-Mediated Knock-down of CXCL8 Inhibits Tumor Growth in Colorectal Liver Metastasis. Biochem. Biophys. Res. Commun. 2018, 500, 731–737. [Google Scholar] [CrossRef] [PubMed]
- Chen, R.-J.; Chen, S.-U.; Chou, C.-H.; Lin, M.-C. Lysophosphatidic Acid Receptor 2/3-Mediated IL-8-Dependent Angiogenesis in Cervical Cancer Cells. Int. J. Cancer 2012, 131, 789–802. [Google Scholar] [CrossRef]
- Wu, S.; Shang, H.; Cui, L.; Zhang, Z.; Zhang, Y.; Li, Y.; Wu, J.; Li, R.-K.; Xie, J. Targeted Blockade of Interleukin-8 Abrogates Its Promotion of Cervical Cancer Growth and Metastasis. Mol. Cell Biochem. 2013, 375, 69–79. [Google Scholar] [CrossRef] [PubMed]
- Yan, R.; Shuai, H.; Luo, X.; Wang, X.; Guan, B. The Clinical and Prognostic Value of CXCL8 in Cervical Carcinoma Patients: Immunohistochemical Analysis. Biosci. Rep. 2017, 37, BSR20171021. [Google Scholar] [CrossRef]
- Olukomogbon, T.; Akpobome, B.; Omole, A.; ACCME Research Group; Adebamowo, C.A.; Adebamowo, S.N. Association Between Cervical Inflammatory Mediators and Prevalent Cervical Human Papillomavirus Infection. JCO Glob. Oncol. 2024, 10, e2300380. [Google Scholar] [CrossRef] [PubMed]
- Grimm, C.; Watrowski, R.; Polterauer, S.; Baumühlner, K.; Natter, C.; Rahhal, J.; Heinze, G.; Schuster, E.; Hefler, L.; Reinthaller, A. Vascular Endothelial Growth Factor Gene Polymorphisms and Risk of Cervical Intraepithelial Neoplasia. Int. J. Gynecol. Cancer 2011, 21, 597–601. [Google Scholar] [CrossRef]
- Tabangin, M.E.; Woo, J.G.; Martin, L.J. The Effect of Minor Allele Frequency on the Likelihood of Obtaining False Positives. BMC Proc. 2009, 3 (Suppl. S7), S41. [Google Scholar] [CrossRef]
- Politi, C.; Roumeliotis, S.; Tripepi, G.; Spoto, B. Sample Size Calculation in Genetic Association Studies: A Practical Approach. Life 2023, 13, 235. [Google Scholar] [CrossRef]
- Park, S.L.; Cheng, I.; Haiman, C.A. Genome-Wide Association Studies of Cancer in Diverse Populations. Cancer Epidemiol. Biomark. Prev. 2018, 27, 405–417. [Google Scholar] [CrossRef] [PubMed]
- Watrowski, R.; Castillo-Tong, D.C.; Fabjani, G.; Schuster, E.; Fischer, M.; Zeillinger, R. The 811 C/T Polymorphism in the 3′ Untranslated Region of the Selenoprotein 15-kDa (Sep15) Gene and Breast Cancer in Caucasian Women. Tumour Biol. 2016, 37, 1009–1015. [Google Scholar] [CrossRef] [PubMed]
- Shao, X.; Yang, X.; Liu, Y.; Song, Q.; Pan, X.; Chen, W.; Jiang, W.; Xu, D.; Song, Y.; Chen, R. Genetic Polymorphisms in DNA Repair Genes and Their Association with Risk of Cervical Cancer: A Systematic Review and Meta-Analysis. J. Obstet. Gynaecol. Res. 2022, 48, 2405–2418. [Google Scholar] [CrossRef] [PubMed]
- Lao, O.; Lu, T.T.; Nothnagel, M.; Junge, O.; Freitag-Wolf, S.; Caliebe, A.; Balascakova, M.; Bertranpetit, J.; Bindoff, L.A.; Comas, D.; et al. Correlation between Genetic and Geographic Structure in Europe. Curr. Biol. 2008, 18, 1241–1248. [Google Scholar] [CrossRef] [PubMed]
- Fumagalli, M.; Sironi, M.; Pozzoli, U.; Ferrer-Admetlla, A.; Pattini, L.; Nielsen, R. Signatures of Environmental Genetic Adaptation Pinpoint Pathogens as the Main Selective Pressure through Human Evolution. PLoS Genet. 2011, 7, e1002355. [Google Scholar] [CrossRef]
- Shepherd, R.; Cheung, A.S.; Pang, K.; Saffery, R.; Novakovic, B. Sexual Dimorphism in Innate Immunity: The Role of Sex Hormones and Epigenetics. Front. Immunol. 2020, 11, 604000. [Google Scholar] [CrossRef]
- Ambros, V. MicroRNA-Mediated Gene Regulation and the Resilience of Multicellular Animals. Postepy Biochem. 2024, 70, 62–70. [Google Scholar] [CrossRef]
- Zhao, X.; Fan, X.; Lin, X.; Guo, B.; Yu, Y. Deciphering Age-Specific Molecular Features in Cervical Cancer and Constructing an Angio-Immune Prognostic Model. Medicine 2024, 103, e37717. [Google Scholar] [CrossRef] [PubMed]
- Voutsadakis, I.A. PI3KCA Mutations in Uterine Cervix Carcinoma. J. Clin. Med. 2021, 10, 220. [Google Scholar] [CrossRef]
- McKenna, G.; O’Flatharta, C.; Ranera, B.; Shaw, G.; Barron, V.; Barry, F.; Murphy, M. Investigation of the Role of Interleukin 16 in Chondrogenesis of Mesenchymal Stem Cells and in Osteoarthritis. Osteoarthr. Cartil. 2013, 21, S239–S240. [Google Scholar] [CrossRef]
- Kostov, S.; Kornovski, Y.; Yordanov, A.; Watrowski, R.; Slavchev, S.; Ivanova, Y.; Ganev, T.; Yalçın, H.; Selçuk, I. Surgical Anatomy and Dissection of the Hypogastric Plexus in Nerve-Sparing Radical Hysterectomy. Diagnostics 2023, 14, 83. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.; Sun, H.; Chen, Y.; Wang, L.; Song, O.; Zhang, J.; Li, D.; Liu, X.; Feng, L. Perineural Invasion in Cervical Cancer: A Hidden Trail for Metastasis. Diagnostics 2024, 14, 1517. [Google Scholar] [CrossRef] [PubMed]
- Huang, T.; Wang, Y.; Wang, Z.; Cui, Y.; Sun, X.; Wang, Y. Weighted Gene Co-Expression Network Analysis Identified Cancer Cell Proliferation as a Common Phenomenon During Perineural Invasion. OncoTargets Ther. 2019, 12, 10361–10374. [Google Scholar] [CrossRef]
- Sirico, A.; Simonelli, S.; Pignatiello, S.; Fulgione, C.; Sarno, L.; Chiuso, F.; Maruotti, G.M.; Sansone, M.; Guida, M.; Insabato, L. BDNF and NGF Expression in Preneoplastic Cervical Disease According to HIV Status. Int. J. Mol. Sci. 2023, 24, 10729. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Li, J.; Wang, R.; Chen, H.; Wang, R.; Wang, W.; Yang, X. NGF Signaling Interacts with the Hippo/YAP Pathway to Regulate Cervical Cancer Progression. Front. Oncol. 2021, 11, 688794. [Google Scholar] [CrossRef]
- Long, Y.; Yao, D.-S.; Wei, Y.-S.; Wu, G.-T. Effects of Nerve Growth Factor Expression on Perineural Invasion and Worse Prognosis in Early-Stage Cervical Cancer. Chin. Med. J. 2018, 131, 2360–2363. [Google Scholar] [CrossRef] [PubMed]
- Gao, X.; Wang, Q.; Huang, T.; Xu, C.; Yang, X.; Zhang, L.; Wang, J.; Yang, L.; Zheng, X.; Fan, Q.; et al. Cervical Cancer-Produced Neuromedin-B Reprograms Schwann Cells to Initiate Perineural Invasion. Cell Death Dis. 2024, 15, 636. [Google Scholar] [CrossRef]
- Heer, E.; Harper, A.; Escandor, N.; Sung, H.; McCormack, V.; Fidler-Benaoudia, M.M. Global Burden and Trends in Premenopausal and Postmenopausal Breast Cancer: A Population-Based Study. Lancet Glob. Health 2020, 8, e1027–e1037. [Google Scholar] [CrossRef] [PubMed]
- Phipps, A.I.; Ichikawa, L.; Bowles, E.J.A.; Carney, P.A.; Kerlikowske, K.; Miglioretti, D.L.; Buist, D.S.M. Defining Menopausal Status in Epidemiologic Studies: A Comparison of Multiple Approaches and Their Effects on Breast Cancer Rates. Maturitas 2010, 67, 60–66. [Google Scholar] [CrossRef] [PubMed]
- Montégut, L.; López-Otín, C.; Kroemer, G. Aging and Cancer. Mol. Cancer 2024, 23, 106. [Google Scholar] [CrossRef] [PubMed]
- Xia, S.; Zhang, X.; Zheng, S.; Khanabdali, R.; Kalionis, B.; Wu, J.; Wan, W.; Tai, X. An Update on Inflamm-Aging: Mechanisms, Prevention, and Treatment. J. Immunol. Res. 2016, 2016, 8426874. [Google Scholar] [CrossRef] [PubMed]
- Kerr, J.; Anderson, C.; Lippman, S.M. Physical Activity, Sedentary Behaviour, Diet, and Cancer: An Update and Emerging New Evidence. Lancet Oncol. 2017, 18, e457–e471. [Google Scholar] [CrossRef]
SNP | Primer Sequence | Annealing Temperature | Digestion (Enzyme, Temperature, Duration) | Fragment Size (bp) |
---|---|---|---|---|
IL-8 | ||||
rs4073 (T>A) | Forward: 5′-TCATCCATGATCTTGTTCTAA-3′ Reverse: 5′-GGAAAACGCTGTAGGTCAGA-3′ | 55 °C | Mfe I, 37 °C, 25 min | T/T: 524 A/A: 449 + 75 |
rs2227306 (C>T) | Forward: 5′-CTCTAACTCTTTATATAAGGAATT-3′ Reverse: 5′-GATTGATTTTATCAACAGGCA-3′ | 50 °C | EcoR I, 37 °C, 25 min | T/T: 203 C/C: 184 + 19 |
rs2227543 (C>T) | Forward: 5′-CTGATGGAAGAGAGCTCTGT-3′ Reverse: 5′-TGTTAGAAATGCTCTATATTCTC-3′ | 55 °C | NIa III, 55 °C, 35 min | T/T: 397 C/C: 234 + 163 |
rs1126647 (A>T) | Forward: 5′-CCAGTTAAATTTTCATTTCAGGTA-3′ Reverse: 5′-CAACCAGCAAGAAATTACTAA-3′ | 50 °C | BstZ17I, 37 °C, 25 min | A/A: 222 T/T: 198 + 24 |
IL-16 | ||||
rs4778889 (T>C) | Forward: 5′-CTCCACACTCAAAGCCTTTTGTTCCTATGA-3′ Reverse: 5′-CCATGTCAAAACGGTAGCCTCAAGC-3′ | 60 °C | Ahd I, 37 °C, 25 min | T/T: 280 C/C: 246 + 34 |
rs4072111 (C>T) | Forward: 5′-CACTGTGATCCCGGTCCAGTC-3′ Reverse: 5′-TTCAGGTACAAACCCAGCCAGC-3′ | 67 °C | BsmA I, 55 °C, 35 min | C/C: 164 T/T: 140 + 24 |
rs11556218 (T>G) | Forward: 5′-GCTCAGGTTCACAGAGTGTTTCCATA-3′ Reverse: 5′-TGTGACAATCACAGCTTGCCTG-3′ | 60 °C | Nde I, 37 °C, 25 min | G/G: 171 T/T: 147 + 24 |
rs1131445 (T>C) | Forward: 5′-GAGATCATTCACTCATACATCTGG-3′ Reverse: 5′-TCATATACACGCTGGTTCCTTCTG-3′ | 62 °C | BsaA I, 37 °C, 25 min | T/T: 460 C/C: 300 + 160 |
Model | Definition | Interpretation |
---|---|---|
Co-dominant (=General Test of Association) | AA vs. Aa vs. aa | Compares the impact of each genotype (AA, Aa, aa) on the outcome (all three genotypes are compared simultaneously). |
Heterozygote Comparison | Aa vs. AA | Evaluates whether carrying one minor allele (Aa) affects risk compared to the homozygous major allele (AA). |
Homozygote Comparison | AA vs. aa | Assesses the effect of two copies of the major allele (AA) compared to two copies of the minor allele (aa). |
Dominant | (Aa + aa) vs. AA | Tests the effect of carrying at least one minor allele (Aa + aa) against having only the major allele (AA) |
Recessive | aa vs. (AA + Aa) | Evaluates if two minor alleles (aa) are necessary to observe an effect. |
Over-dominant Model (Heterozygote Superiority) | Aa vs. (AA + aa) | Determines if heterozygotes (Aa) have an effect distinct from both homozygous genotypes (AA and aa). |
Allelic/Multiplicative Model (Allelic Frequency) | a vs. A (or A vs. a) | Assesses the impact of each additional minor allele (a) compared to the major allele (A). “A versus a” indicates whether the major allele alters risk, while “a versus A” shows the effect of the minor allele. |
Parameter | Cases | Controls | p | |
---|---|---|---|---|
Sample size | 126 | 213 | ||
Median age (range) | 45.5 (25–79) | 51 (18–87) | 0.005 | |
Menopausal status | Premenopausal (<51 y.o.) | 77 (61.1%) | 97 (45.5%) | 0.006 |
Postmenopausal (≥51 y.o.) | 49 (38.9%) | 116 (54.5%) | ||
Histology | Squamous | 101 (80.2%) | ||
Non-squamous | 23 (18.3%) | |||
N/a | 2 (1.6%) | |||
Disease stage | Early | 50 (39.7%) | ||
Advanced | 73 (57.9%) | |||
N/a | 3 (2.4%) |
MAF | HWE (p Value) | MAF in gnomAD/dbGaP ALFA | |
---|---|---|---|
IL-8 | |||
rs4073 | A = 0.467 | p = 0.78 | A = 0.449 (gnomAD)/A = 0.454 (ALFA) |
rs2227306 | T = 0.437 | p = 0.4 | T = 0.42 (gnomAD)/T = 0.42 (ALFA) |
rs2227543 | T = 0.427 | p = 1 | T = 0.416 (gnomAD)/T = 0.415 (ALFA) |
rs1126647 | T = 0.411 | p = 0.89 | T = 0.41 (gnomAD)/T = 0.332 (ALFA) |
IL-16 | |||
rs11556218 | G = 0.092 | p = 0.14 | G = 0.074 (gnomAD)/G = 0.079 (ALFA) |
rs4778889 | C = 0.136 | p = 0.26 | C = 0.175 (gnomAD)/C = 0.182 (ALFA) |
rs4072111 | T = 0.103 | p = 0.59 | T = 0.113 (gnomAD)/T = 0.107 (ALFA) |
rs1131445 | C = 0.324 | p = 0.25 | C = 0.347 (gnomAD)/C = 0.349 (ALFA) |
Model | Genotype | Controls | Cases | OR (95% CI) | p Fi | χ2 | p Chi |
---|---|---|---|---|---|---|---|
rs4073 (−251 A>T) | |||||||
Co-dominant | TT | 59 (27.7%) | 35 (27.8%) | 0.94 (df = 2) | 0.626 | ||
Heterozygote | AT | 109 (51.2%) | 59 (46.8%) | 0.91 (0.54–1.54) | 0.789 | 0.12 | 0.729 |
Homozygote | AA | 45 (21.1%) | 32 (25.4%) | 0.83 (0.45–1.55) | 0.637 | 0.33 | 0.566 |
Dominant | AT + AA | 154 (72.3%) | 91 (72.2%) | 0.996 (0.61–1.63) | 1 | 0 | 0.988 |
AT + AA vs. TT | TT | 59 (27.7%) | 35 (27.8%) | ||||
Recessive | AA | 45 (21.1%) | 32 (25.4%) | 1.27 (0.76–2.14) | 0.421 | 0.82 | 0.365 |
AA vs. TT + AT | TT + AT | 168 (78.9%) | 94 (74.6%) | ||||
Overdominant | AT | 109 (51.2%) | 59 (46.8%) | 0.84 (0.54–1.31) | 0.5 | 0.6 | 0.439 |
AT vs. AA + TT | TT + AA | 104 (48.8%) | 67 (53.2%) | ||||
Allele frequency | T | 227 (53.3%) | 129 (51.2%) | 0.92 (0.67–1.26) | 0.633 | 0.28 | 0.597 |
A vs. T | A | 199 (46.7%) | 123 (48.8%) | ||||
rs2227306 (+781 C>T) | |||||||
Co-dominant | CC | 64 (30%) | 33 (26.2%) | 0.58 (df = 2) | 0.749 | ||
Heterozygote | CT | 112 (52.6%) | 70 (55.6%) | 1.21 (0.72–2.03) | 0.516 | 0.54 | 0.462 |
Homozygote | TT | 37 (17.4%) | 23 (18.3%) | 0.83 (0.43–1.62) | 0.610 | 0.3 | 0.584 |
Dominant | TT + CT | 149 (70%) | 93 (73.8%) | 1.21 (0.74–1.98) | 0.459 | 0.58 | 0.446 |
CT + TT vs. CC | CC | 64 (30%) | 33 (26.2%) | ||||
Recessive | TT | 37 (17.4%) | 23 (18.3%) | 1.06 (0.6–1.89) | 0.883 | 0.04 | 0.841 |
TT vs. CT + CC | CT + CC | 176 (82.6%) | 103 (81.7%) | ||||
Overdominant | CT | 112 (52.6%) | 70 (55.6%) | 1.13 (0.72–1.76) | 0.652 | 0.28 | 0.597 |
TT + CC | 101 (47.4%) | 56 (44.4%) | |||||
Allele frequency | C | 240 (56.3%) | 136 (54%) | 1.10 (0.81–1.51) | 0.576 | 0.36 | 0.549 |
T vs. C | T | 186 (43.7%) | 116 (46%) | ||||
rs2227543 (+1633 C>T) | |||||||
Co-dominant | CC | 70 (32.9%) | 41 (32.5%) | 0.03 (df = 2) | 0.986 | ||
Heterozygote | CT | 104 (48.8%) | 61 (48.4%) | 1 (0.61–1.65) | 1 | 0 | 1 |
Homozygote | TT | 39 (18.3%) | 24 (19%) | 0.95 (0.50–1.8) | 1 | 0.02 | 0.887 |
Dominant | TT + CT | 143 (67.6%) | 85 (67.5%) | 1.02 (0.63–1.62) | 1 | 0 | 1 |
CT + TT vs. CC | CC | 70 (32.9%) | 41 (32.5%) | ||||
Recessive | TT | 39 (18.3%) | 24 (19%) | 1.05 (0.6–1.85) | 0.886 | 0.03 | 0.862 |
TT vs. CC + CT | CT + CC | 174 (81.7%) | 102 (81%) | ||||
Overdominant | CT | 104 (48.8%) | 61 (48.4%) | 0.98 (0.63–1.53) | 1 | 0.01 | 0.920 |
CC + TT | 109 (51.2%) | 65 (51.6%) | |||||
Allele frequency | C | 244 (57.3%) | 143 (56.7%) | 0.98 (0.71–1.34) | 0.936 | 0.02 | 0.888 |
T vs. C | T | 182 (42.7%) | 109 (43.3%) | ||||
rs1126647 (+2767 A>T) | |||||||
Co-dominant | AA | 73 (34.3%) | 40 (31.8%) | 0.46 (df = 2) | 0.793 | ||
Heterozygote | AT | 105 (49.3%) | 62 (49.2%) | 0.86 (0.47–1.58) | 0.643 | 0.23 | 0.631 |
Homozygote | TT | 35 (16.4%) | 24 (19%) | 1.25 (0.66–2.39) | 0.511 | 0.46 | 0.498 |
Dominant | AT + TT | 140 (65.7%) | 86 (68.3%) | 1.12 (0.7–1.79) | 0.721 | 0.23 | 0.631 |
AT + TT vs. AA | AA | 73 (34.3%) | 40 (31.7%) | ||||
Recessive | TT | 35 (16.4%) | 24 (19%) | 1.2 (0.67–2.12) | 0.556 | 0.38 | 0.538 |
TT vs. AT + AA | AT + AA | 178 (83.6%) | 102 (81%) | ||||
Overdominant | AT | 105 (49.3%) | 62 (49.2%) | 0.996 (0.64–1.55) | 1 | 0 | 1 |
AA + TT | 108 (50.7%) | 64 (50.8%) | |||||
Allele frequency | A | 251 (58.9%) | 142 (56.3%) | 0.9 (0.66–1.23) | 0.521 | 0.43 | 0.512 |
T vs. A | T | 175 (41.1%) | 110 (43.7%) |
Model | Genotype | Controls | Cases | OR (95% CI) | p Fi | χ2 | p Chi |
---|---|---|---|---|---|---|---|
rs11556218 (T>G) | |||||||
Co-dominant | TT | 174 (81.7%) | 103 (81.75%) | 1.00 (Ref.) | N/a | N/a | |
Heterozygote | GT | 39 (18.3%) | 23 (18.25%) | 0.996 (0.56–1.76) | 1 | 0 | 1 |
Homozygote | GG | 0 (0%) | 0 (0%) | NaN | 1 | NaN | NaN |
Dominant | GG + GT | 39 (18.3%) | 23 (18.25%) | 0.996 (0.56–1.76) | 1 | 0 | 1 |
(GG + GT vs. TT) | TT | 174 (81.7%) | 103 (81.75%) | ||||
Recessive | GG | 0 (0%) | 0 (0%) | NaN | 1 | NaN | NaN |
GG vs. GT + TT | GT + TT | 213 (100%) | 126 (100%) | ||||
Overdominant | GT | 39 (18.3%) | 23 (18.25%) | 0.996 (0.56–1.76) | 1 | 0 | 1 |
(GT vs. TT + GG) | TT + GG | 174 (81.7%) | 103 (81.75%) | ||||
Allele frequency | T | 387 (90.8%) | 229 (90.9%) | 0.997 (0.58–1.71) | 1 | 0 | 1 |
(G vs. T) | G | 39 (9.2%) | 23 (9.1%) | ||||
rs4778889 (T>C) | |||||||
Co-dominant | TT | 157 (73.7%) | 86 (68.3%) | 1.00 (Ref.) | 2.68 (df = 2) | 0.262 | |
Heterozygote | CT | 54 (25.4%) | 40 (31.7%) | 1.35 (0.83–2.2) | 0.259 | 1.49 | 0.222 |
Homozygote | CC | 2 (0.9%) | 0 (0%) | ∞ (NaN–∞) | 0.542 | ||
Dominant | CC + CT | 56 (26.3%) | 40 (31.7%) | 1.3 (0.8–2.12) | 0.319 | 1.16 | 0.281 |
CC + CT vs. TT | TT | 157 (73.7%) | 86 (68.3%) | ||||
Recessive | CC | 2 (0.9%) | 0 (0%) | 0 (0–∞) | 0.532 | ||
CC vs. CT + TT | CT + TT | 211 (99.1%) | 126 (100%) | ||||
Overdominant | CT | 54 (25.4%) | 40 (31.7%) | 1.37 (0.84–2.23) | 0.212 | 1.62 | 0.203 |
CT vs. CC + TT | CC + TT | 159 (74.6%) | 86 (68.3%) | ||||
Allele frequency | T | 368 (86.4%) | 212 (84.1%) | 1.2 (0.77–1.85) | 0.430 | 0.65 | 0.420 |
C vs. T | C | 58 (13.6%) | 40 (15.9%) | ||||
rs4072111 (C>T) | |||||||
Co-dominant | CC | 172 (80.8%) | 93 (73.8%) | 1.00 (Ref.) | 2.32 (df = 2) | 0.314 | |
Heterozygote | CT | 38 (17.8%) | 30 (23.8%) | 1.46 (0.85–2.51) | 0.205 | 1.89 | 0.169 |
Homozygote | TT | 3 (1.4%) | 3 (2.4%) | 0.54 (0.11–2.73) | 0.669 | ||
Dominant | TT + CT | 41 (19.2%) | 33 (26.2%) | 1.49 (0.88–2.51) | 0.173 | 2.24 | 0.134 |
TT + CT vs. CC | CC | 172 (80.8%) | 93 (73.8%) | ||||
Recessive | TT | 3 (1.4%) | 3 (2.4%) | 1.71 (0.34–8.59) | 0.674 | N/a | N/a |
TT vs. CT + CC | CT + CC | 210 (98.6%) | 123 (97.6%) | ||||
Overdominant | CT | 38 (17.8%) | 30 (23.8%) | 1.44 (0.84–2.47) | 0.207 | 1.76 | 0.185 |
CT vs. TT + CC | TT + CC | 175 (82.2%) | 96 (76.2%) | ||||
Allele frequency | C | 382 (89.7%) | 216 (85.7%) | 1.45 (0.90–2.32) | 0.139 | 2.38 | 0.123 |
T vs. C | T | 44 (10.3%) | 36 (14.3%) | ||||
rs1131445 (T>C) | |||||||
Co-dominant | TT | 101 (47.4%) | 55 (43.65%) | 1.00 (Ref.) | 0.465 (df = 2) | 0.792 | |
Heterozygote | TC | 86 (40.4%) | 54 (42.86%) | 1.15 (0.72–1.85) | 0.629 | 0.35 | 0.554 |
Homozygote | CC | 26 (12.2%) | 17 (13.49%) | 0.83 (0.42–1.67) | 0.720 | 0.27 | 0.603 |
Dominant | CC + TC | 112 (52.6%) | 71 (56.35%) | 1.16 (0.75–1.81) | 0.573 | 0.45 | 0.502 |
CC + TC vs. TT | TT | 101 (47.4%) | 55 (43.65%) | ||||
Recessive | CC | 26 (12.2%) | 17 (13.5%) | 1.12 (0.58–2.16) | 0.738 | 0.12 | 0.729 |
CC vs. TC + TT | TC + TT | 187 (87.8%) | 109 (86.5%) | ||||
Overdominant | TC | 86 (40.4%) | 54 (42.9%) | 1.11 (0.71–1.73) | 0.732 | 0.2 | 0.654 |
TC vs. TT + CC | TT + CC | 127 (59.6%) | 72 (57.1%) | ||||
Allele frequency | T | 288 (67.6%) | 164 (65.1%) | 1.12 (0.81–1.56) | 0.555 | 0.45 | 0.502 |
C vs. T | C | 138 (32.4%) | 88 (34.9%) |
Model | Genotype | Controls | Cases | OR (95% CI) | p Fi | χ2 | p Chi |
---|---|---|---|---|---|---|---|
rs 4072111 (C>T) | |||||||
Premenopausal | |||||||
Co-dominant | CC | 82 (84.5%) | 54 (70.1%) | 1.00 (Ref.) | 6.55 | 0.038 | |
Heterozygote | CT | 15 (15.5%) | 21 (27.3%) | 2.13 (1.01–4.48) | 0.059 | 4.02 | 0.045 |
Homozygote | TT | 0 (0%) | 2 (2.6%) | 1 | 0.32 | ||
Dominant | TT + CT | 15 (15.5%) | 23 (29.9%) | 2.33 (1.12–4.86) | 0.026 | 5.22 | 0.022 |
TT + CT vs. CC | CC | 82 (84.5%) | 54 (70.1%) | ||||
Recessive | TT | 0 (0%) | 2 (2.6%) | ∞ (NaN–∞) | 0.78 | 0.379 | |
TT vs. CT + CC | CT + CC | 97 (100%) | 75 (97.4%) | ||||
Overdominant | CT | 15 (15.5%) | 21 (27.3%) | 2.05 (0.97–4.32) | 0.062 | 3.65 | 0.056 |
CT vs. TT + CC | TT + CC | 82 (84.5%) | 56 (72.7%) | ||||
Allele frequency | T | 15 (7.7%) | 25 (16.2%) | 2.31 (1.17–4.56) | 0.017 | 6.1 | 0.014 |
C | 179 (92.3%) | 129 (83.8%) | |||||
Postmenopausal | |||||||
Co-dominant | CC | 90 (77.6%) | 39 (79.6%) | 1.00 (Ref.) | 0.098 | 0.952 | |
Heterozygote | CT | 23 (19.8%) | 9 (18.4%) | 0.90 (0.38–2.13) | 1 | 0.05 | 0.823 |
Homozygote | TT | 3 (2.6%) | 1 (2%) | <0.001 | 1 | ||
Dominant | TT + CT | 26 (22.4%) | 10 (20.4%) | 0.89 (0.39–2.02) | 0.839 | 0.08 | 0.777 |
TT + CT vs. CC | CC | 90 (77.6%) | 39 (79.6%) | ||||
Recessive | TT | 3 (2.6%) | 1 (2%) | 0.78 (0.08–7.74) | 1 | <0.001 | 1 |
TT vs. CT + CC | CT + CC | 113 (97.4%) | 48 (98%) | ||||
Overdominant | CT | 23 (19.8%) | 9 (18.4%) | 0.91 (0.39–2.14) | 1 | 0.05 | 0.823 |
CT vs. TT + CC | TT + CC | 93 (80.2%) | 40 (81.6%) | ||||
Allele frequency | T | 29 (12.5%) | 11 (11.2%) | 0.89 (0.42–1.85) | 0.854 | 0.11 | 0.740 |
T vs. C | C | 203 (87.5%) | 87 (88.8%) | ||||
rs 4778889 (T>C) | |||||||
Premenopausal | |||||||
Co-dominant | TT | 66 (68%) | 54 (70.1%) | 1.00 (Ref.) | NaN | ||
Heterozygote | CT | 31 (32%) | 23 (29.9%) | 0.91 (0.47–1.73) | 0.869 | 0.09 | 0.764 |
Homozygote | CC | 0 (0%) | 0 (0%) | NaN | 1 | NaN | NaN |
Dominant | CC + CT | 31 (32%) | 23 (29.9%) | 0.91 (0.47–1.73) | 0.869 | 0.09 | 0.764 |
CC + CT vs. TT | TT | 66 (68%) | 54 (70.1%) | ||||
Recessive | CC | 0 (0%) | 0 (0%) | NaN | 1 | NaN | NaN |
CC vs. CT + TT | CT + TT | 97 (100%) | 77 (100%) | ||||
Overdominant | CT | 31 (32%) | 23 (29.9%) | 0.91 (0.47–1.73) | 0.869 | 0.09 | 0.764 |
CT vs. CC + TT | CC + TT | 66 (68%) | 54 (70.1%) | ||||
Allele frequency | C | 31 (16%) | 23 (14.9%) | 0.92 (0.51–1.66) | 0.881 | 0.07 | 0.791 |
C vs. T | T | 163 (84%) | 131 (85.1%) | ||||
Postmenopausal | |||||||
Co-dominant | TT | 91 (78.4%) | 32 (65.3%) | 1.00 (Ref.) | 4.78 | 0.091 | |
Heterozygote | CT | 23 (19.8%) | 17 (34.7%) | 2.1 (1–4.42) | 0.073 | 3.9 | 0.048 |
Homozygote | CC | 2 (1.7%) | 0 (0%) | 0 (0–NaN) | 1 | <0.001 | 0.984 |
Dominant | CC + CT | 25 (21.6%) | 17 (34.7%) | 1.93 (0.92–4.04) | 0.082 | 3.14 | 0.077 |
CC + CT vs. TT | TT | 91 (78.4%) | 32 (65.3%) | ||||
Recessive | CC | 2 (1.7%) | 0 (0%) | 0 (0–NaN) | 0.58 | 0.02 | 0.884 |
CC vs. CT + TT | CT + TT | 114 (98.3%) | 49 (100%) | ||||
Overdominant | CT | 23 (19.8%) | 17 (34.7%) | 2.15 (1.02–4.52) | 0.049 | 4.15 | 0.042 |
CT vs. CC + TT | CC + TT | 93 (80.2%) | 32 (65.3%) | ||||
Allele frequency | C | 27 (11.6%) | 17 (17.3%) | 1.59 (0.82–3.08) | 0.214 | 1.94 | 0.164 |
C vs. T | T | 205 (88.4%) | 81 (82.7%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Watrowski, R.; Schuster, E.; Polterauer, S.; Van Gorp, T.; Hofstetter, G.; Fischer, M.B.; Mahner, S.; Zeillinger, R.; Obermayr, E. Genetic Variants of Interleukin-8 and Interleukin-16 and Their Association with Cervical Cancer Risk. Life 2025, 15, 135. https://doi.org/10.3390/life15020135
Watrowski R, Schuster E, Polterauer S, Van Gorp T, Hofstetter G, Fischer MB, Mahner S, Zeillinger R, Obermayr E. Genetic Variants of Interleukin-8 and Interleukin-16 and Their Association with Cervical Cancer Risk. Life. 2025; 15(2):135. https://doi.org/10.3390/life15020135
Chicago/Turabian StyleWatrowski, Rafał, Eva Schuster, Stefan Polterauer, Toon Van Gorp, Gerda Hofstetter, Michael B. Fischer, Sven Mahner, Robert Zeillinger, and Eva Obermayr. 2025. "Genetic Variants of Interleukin-8 and Interleukin-16 and Their Association with Cervical Cancer Risk" Life 15, no. 2: 135. https://doi.org/10.3390/life15020135
APA StyleWatrowski, R., Schuster, E., Polterauer, S., Van Gorp, T., Hofstetter, G., Fischer, M. B., Mahner, S., Zeillinger, R., & Obermayr, E. (2025). Genetic Variants of Interleukin-8 and Interleukin-16 and Their Association with Cervical Cancer Risk. Life, 15(2), 135. https://doi.org/10.3390/life15020135