Impact of a High-Fat High-Carbohydrate (HFHC) Diet at a Young Age on Steroid Hormone Hair Concentrations in Mice: A Comparison with a Control Diet and Nutraceutical Supplementation
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethical Approval
2.2. Experimental Setup
2.2.1. Animal Model
2.2.2. Animal Feeding
2.2.3. Nutraceutically Supplemented Diets
2.3. Hair Sampling
2.4. Hair Sample Preparation
2.5. Hormones Assays
2.6. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sahoo, K.; Sahoo, B.; Choudhury, A.K.; Sofi, N.Y.; Kumar, R.; Bhadoria, A.S. Childhood obesity: Causes and consequences. J. Family Med. Prim. Care 2015, 4, 187–192. [Google Scholar]
- Neri, C.R.; Scapaticci, S.; Chiarelli, F.; Giannini, C. Liver Steatosis: A Marker of Metabolic Risk in Children. Int. J. Mol. Sci. 2022, 23, 4822. [Google Scholar] [CrossRef] [PubMed]
- Nteeba, J.; Ganesan, S.; Keating, A.F. Progressive obesity alters ovarian folliculogenesis with impacts on pro-inflammatory and steroidogenic signaling in female mice. Biol. Reprod. 2014, 91, 86. [Google Scholar] [CrossRef]
- Incollingo Rodriguez, A.C.; Epel, E.S.; White, M.L.; Standen, E.C.; Seckl, J.R.; Tomiyama, A.J. Hypothalamic-pituitary-adrenal axis dysregulation and cortisol activity in obesity: A systematic review. Psychoneuroendocrinology 2015, 62, 301–318. [Google Scholar] [CrossRef] [PubMed]
- Calcaterra, V.; Verduci, E.; Stagi, S.; Zuccotti, G. How the intricate relationship between nutrition and hormonal equilibrium significantly influences endocrine and reproductive health in adolescent girls. Front. Nutr. 2024, 11, 1337328. [Google Scholar] [CrossRef]
- Laru, J.; Nedelec, R.; Koivuaho, E.; Ojaniemi, M.; Järvelin, M.R.; Tapanainen, J.S.; Franks, S.; Tolvanen, M.; Piltonen, T.T.; Sebert, S.; et al. BMI in childhood and adolescence is associated with impaired reproductive function-a population-based cohort study from birth to age 50 years. Hum. Reprod. 2021, 36, 2948–2961. [Google Scholar] [CrossRef]
- Reinehr, T.; Sánchez-Guijo, A.; Lass, N.; Wudy, S.A. Higher steroid sulfation is linked to successful weight loss in obese children. Endocr. Connect. 2018, 7, 1020–1030. [Google Scholar] [CrossRef]
- Chung, S. Growth and Puberty in Obese Children and Implications of Body Composition. J. Obes. Metab. Syndr. 2017, 26, 243–250. [Google Scholar] [CrossRef]
- Burt Solorzano, C.M.; McCartney, C.R. Obesity and the pubertal transition in girls and boys. Reproduction 2010, 140, 399–410. [Google Scholar] [CrossRef] [PubMed]
- Franks, S. Polycystic ovary syndrome in adolescents. Int. J. Obes. 2008, 32, 1035–1041. [Google Scholar] [CrossRef]
- Golub, M.S.; Collman, G.W.; Foster, P.M.; Kimmel, C.A.; Rajpert-De Meyts, E.; Reiter, E.O.; Sharpe, R.M.; Skakkebaek, N.E.; Toppari, J. Public health implications of altered puberty timing. Pediatrics 2008, 121 (Suppl. 3), S218–S230. [Google Scholar] [CrossRef] [PubMed]
- Chu, L.; Shen, K.; Liu, P.; Ye, K.; Wang, Y.; Li, C.; Kang, X.; Song, Y. Increased Cortisol and Cortisone Levels in Overweight Children. Med. Sci. Monit. Basic Res. 2017, 23, 25–30. [Google Scholar] [CrossRef] [PubMed]
- Goddings, A.L.; Viner, R.M.; Mundy, L.; Romaniuk, H.; Molesworth, C.; Carlin, J.B.; Allen, N.B.; Patton, G.C. Growth and adrenarche: Findings from the CATS observational study. Arch. Dis. Child. 2021, 106, 967–974. [Google Scholar] [CrossRef] [PubMed]
- Reinehr, T.; Kulle, A.; Wolters, B.; Lass, N.; Welzel, M.; Riepe, F.; Holterhus, P.M. Steroid hormone profiles in prepubertal obese children before and after weight loss. J. Clin. Endocrinol. Metab. 2013, 98, E1022–E1030. [Google Scholar] [CrossRef]
- Allalou, A.; Peng, J.; Robinson, G.A.; Marruganti, C.; D’Aiuto, F.; Butler, G.; Jury, E.C.; Ciurtin, C. Impact of puberty, sex determinants and chronic inflammation on cardiovascular risk in young people. Front. Cardiovasc. Med. 2023, 10, 1191119. [Google Scholar] [CrossRef]
- Barshop, N.J.; Francis, C.S.; Schwimmer, J.B.; Lavine, J.E. Nonalcoholic fatty liver disease as a comorbidity of childhood obesity. Pediatr. Health 2009, 3, 271–281. [Google Scholar] [CrossRef]
- Marin, V.; Gazzin, S.; Gambaro, S.E.; Dal Ben, M.; Calligaris, S.; Anese, M.; Raseni, A.; Avellini, C.; Giraudi, P.J.; Tiribelli, C.; et al. Effects of Oral Administration of Silymarin in a Juvenile Murine Model of Non-alcoholic Steatohepatitis. Nutrients 2017, 9, 1006. [Google Scholar] [CrossRef]
- Hydes, T.; Alam, U.; Cuthbertson, D.J. The Impact of Macronutrient Intake on Non-alcoholic Fatty Liver Disease (NAFLD): Too Much Fat, Too Much Carbohydrate, or Just Too Many Calories? Front. Nutr. 2021, 8, 640557. [Google Scholar] [CrossRef] [PubMed]
- Sullivan, S. Implications of diet on nonalcoholic fatty liver disease. Curr. Opin. Gastroenterol. 2010, 26, 160–164. [Google Scholar] [CrossRef]
- Fonseca, C.S.M.; Basford, J.E.; Kuhel, D.G.; Konaniah, E.S.; Cash, J.G.; Lima, V.L.M.; Hui, D.Y. Distinct Influence of Hypercaloric Diets Predominant with Fat or Fat and Sucrose on Adipose Tissue and Liver Inflammation in Mice. Molecules 2020, 25, 4369. [Google Scholar] [CrossRef]
- Marin, V.; Rosso, N.; Dal Ben, M.; Raseni, A.; Boschelle, M.; Degrassi, C.; Nemeckova, I.; Nachtigal, P.; Avellini, C.; Tiribelli, C.; et al. An Animal Model for the Juvenile Non-Alcoholic Fatty Liver Disease and Non-Alcoholic Steatohepatitis. PLoS ONE 2016, 11, e0158817. [Google Scholar] [CrossRef]
- Jurek, J.M.; Zablocka-Sowinska, K.; Clavero Mestres, H.; Reyes Gutiérrez, L.; Camaron, J.; Auguet, T. The impact of dietary interventions on metabolic outcomes in metabolic dysfunction-associated steatotic liver disease (MASLD) and comorbid conditions, including obesity and type 2 diabetes. Nutrients 2025, 17, 1257. [Google Scholar] [CrossRef]
- Fernández, T.; Viñuela, M.; Vidal, C.; Barrera, F. Lifestyle changes in patients with non-alcoholic fatty liver disease: A systematic review and meta-analysis. PLoS ONE 2022, 17, e0263931. [Google Scholar] [CrossRef]
- Fiore, G.; Pascuzzi, M.C.; Di Profio, E.; Corsello, A.; Agostinelli, M.; La Mendola, A.; Milanta, C.; Campoy, C.; Calcaterra, V.; Zuccotti, G.; et al. An observational study on the consumption of fruit and vegetable based purées by weaning children: A real-life evaluation. Pharmacol. Res. 2023, 187, 106599. [Google Scholar] [CrossRef] [PubMed]
- Pelczyńska, M.; Moszak, M.; Wesołek, A.; Bogdański, P. The Preventive Mechanisms of Bioactive Food Compounds against Obesity-Induced Inflammation. Antioxidants 2023, 12, 1232. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, Z.; Wu, S.C. Health Benefits of Silybum marianum: Phytochemistry, Pharmacology, and Applications. J. Agric. Food Chem. 2020, 68, 11644–11664. [Google Scholar] [CrossRef] [PubMed]
- Gillessen, A.; Herrmann, W.A.; Kemper, M.; Morath, H.; Mann, K. Einfluss von Silymarin auf Lebergesundheit und Lebensqualität. MMW Fortschr. Med. 2014, 156 (Suppl. 4), 120–126. [Google Scholar] [CrossRef] [PubMed]
- Krecman, V.; Skottova, N.; Walterova, D.; Ulrichova, J.; Simanek, V. Silymarin inhibits the development of diet-induced hypercholesterolemia in rats. Planta Med. 1998, 64, 138–142. [Google Scholar] [CrossRef]
- Deen, A.; Visvanathan, R.; Wickramarachchi, D.; Marikkar, N.; Nammi, S.; Jayawardana, B.C.; Liyanage, R. Chemical composition and health benefits of coconut oil: An overview. J. Sci. Food Agric. 2021, 101, 2182–2193. [Google Scholar] [CrossRef]
- Zeng, Y.Q.; He, J.T.; Hu, B.Y.; Li, W.; Deng, J.; Lin, Q.L.; Fang, Y. Virgin coconut oil: A comprehensive review of antioxidant activity and mechanisms contributed by phenolic compounds. Crit. Rev. Food Sci. Nutr. 2024, 64, 1052–1075. [Google Scholar] [CrossRef]
- Qiu, S.; Cai, Y.; Yao, H.; Lin, C.; Xie, Y.; Tang, S.; Zhang, A. Small molecule metabolites: Discovery of biomarkers and therapeutic targets. Signal Transduct. Target. Ther. 2023, 8, 132. [Google Scholar] [CrossRef] [PubMed]
- Wessells, K.R.; Brown, K.H.; Arnold, C.D.; Barffour, M.A.; Hinnouho, G.M.; Killilea, D.W.; Kounnavong, S.; Hess, S.Y. Plasma and Nail Zinc Concentrations, But Not Hair Zinc, Respond Positively to Two Different Forms of Preventive Zinc Supplementation in Young Laotian Children: A Randomized Controlled Trial. Biol. Trace Elem. Res. 2021, 199, 442–452. [Google Scholar] [CrossRef] [PubMed]
- Elmi, A.; Galligioni, V.; Govoni, N.; Bertocchi, M.; Aniballi, C.; Bacci, M.L.; Sánchez-Morgado, J.M.; Ventrella, D. Quantification of Hair Corticosterone, DHEA and Testosterone as a Potential Tool for Welfare Assessment in Male Laboratory Mice. Animals 2020, 10, 2408. [Google Scholar] [CrossRef] [PubMed]
- Colding-Jørgensen, P.; Hestehave, S.; Abelson, K.S.P.; Kalliokoski, O. Hair glucocorticoids are not a historical marker of stress—Exploring the time-scale of corticosterone incorporation into hairs in a rat model. Gen. Comp. Endocrinol. 2023, 341, 114335. [Google Scholar] [CrossRef]
- Scorrano, F.; Carrasco, J.; Pastor-Ciurana, J.; Belda, X.; Rami-Bastante, A.; Bacci, M.L.; Armario, A. Validation of the long-term assessment of hypothalamic-pituitary-adrenal activity in rats using hair corticosterone as a biomarker. FASEB J. 2015, 29, 859–867. [Google Scholar] [CrossRef]
- Wang, W.H.; Ramos, R.; Tai, K.Y.; Wu, Y.S.; Chang, T.Y.; Yan, J.Y.; Plikus, M.V.; Oh, J.W.; Lin, S.J. Studying Hair Growth Cycle and its Effects on Mouse Skin. J. Invest. Dermatol. 2023, 143, 1638–1645. [Google Scholar] [CrossRef]
- Stalder, T.; Kirschbaum, C. Analysis of cortisol in hair—State of the art and future directions. Brain Behav. Immun. 2012, 26, 1019–1029. [Google Scholar] [CrossRef]
- Veldhorst, M.A.; Noppe, G.; Jongejan, M.H.; Kok, C.B.; Mekic, S.; Koper, J.W.; van Rossum, E.F.; van den Akker, E.L. Increased scalp hair cortisol concentrations in obese children. J. Clin. Endocrinol. Metab. 2014, 99, 285–290. [Google Scholar] [CrossRef] [PubMed]
- Stalder, T.; Kirschbaum, C.; Alexander, N.; Bornstein, S.R.; Gao, W.; Miller, R.; Stark, S.; Bosch, J.A.; Fischer, J.E. Cortisol in hair and the metabolic syndrome. J. Clin. Endocrinol. Metab. 2013, 98, 2573–2580. [Google Scholar] [CrossRef]
- Baudrand, R.; Vaidya, A. Cortisol dysregulation in obesity-related metabolic disorders. Curr. Opin. Endocrinol. Diabetes Obes. 2015, 22, 143–149. [Google Scholar] [CrossRef]
- Wester, V.L.; Staufenbiel, S.M.; Veldhorst, M.A.; Visser, J.A.; Manenschijn, L.; Koper, J.W.; van Rossum, E.F.; van den Akker, E.L. Long-term cortisol levels measured in scalp hair of obese patients. Obesity 2014, 22, 1956–1958. [Google Scholar] [CrossRef]
- Russell, E.; Koren, G.; Rieder, M.; Van Uum, S. Hair cortisol as a biological marker of chronic stress: Current status, future directions and unanswered questions. Psychoneuroendocrinology 2012, 37, 589–601. [Google Scholar] [CrossRef] [PubMed]
- Dutta, S.; Sengupta, P. Men and mice: Relating their ages. Life Sci. 2016, 152, 244–248. [Google Scholar] [CrossRef]
- Porter, R.M. Mouse models for human hair loss disorders. J. Anat. 2003, 202, 125–131. [Google Scholar] [CrossRef]
- Chung, P.S.; Kim, J.W.; Lee, J.O.; Ree, C.K.; Oh, C.H.; Kim, Y.C.; Chung, S.W. The Effect of Low-power Laser on the Murine Hair Growth. Arch. Plast. Surg. 2005, 32, 149–154. [Google Scholar]
- Davenport, M.D.; Tiefenbacher, S.; Lutz, C.K.; Novak, M.A.; Meyer, J.S. Analysis of endogenous cortisol concentrations in the hair of rhesus macaques. Gen. Comp. Endocrinol. 2006, 147, 255–261. [Google Scholar] [CrossRef]
- Sumińska, M.; Podgórski, R.; Fichna, P.; Mazur, A.; Bogdański, P. The Impact of Obesity on the Excretion of Steroid Metabolites in Boys and Girls: A Comparison with Normal-Weight Children. Nutrients 2023, 15, 1734. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.J.; Pramyothin, P.; Karastergiou, K.; Fried, S.K. Deconstructing the roles of glucocorticoids in adipose tissue biology and the development of central obesity. Biochim. Biophys. Acta 2014, 1842, 473–481. [Google Scholar] [CrossRef] [PubMed]
- Sheng, J.A.; Bales, N.J.; Myers, S.A.; Bautista, A.I.; Roueinfar, M.; Hale, T.M.; Handa, R.J. The Hypothalamic-Pituitary-Adrenal Axis: Development, Programming Actions of Hormones, and Maternal-Fetal Interactions. Front. Behav. Neurosci. 2021, 14, 601939. [Google Scholar] [CrossRef]
- Mayes, J.S.; Watson, G.H. Direct effects of sex steroid hormones on adipose tissues and obesity. Obes. Rev. 2004, 5, 197–216. [Google Scholar] [CrossRef]
- Meyer, J.S.; Novak, M.A. Minireview: Hair cortisol: A novel biomarker of hypothalamic-pituitary- adrenocortical activity. Endocrinology 2012, 153, 4120–4127. [Google Scholar] [CrossRef]
- Comin, A.; Montillo, M.; Peric, T.; Gazzin, S.; Corazzin, M.; Prandi, A. Effect of diet on hair cortisol and DHEA concentrations in mouse. In Proceedings of the Atti LXX Convegno SISVET, Palermo, Italy, 13–16 July 2016; pp. 406–407. [Google Scholar]
- Phillips, A.C.; Carroll, D.; Gale, C.R.; Lord, J.M.; Arlt, W.; Batty, G.D. Cortisol, DHEA sulphate, their ratio, and all-cause and cause-specific mortality in the Vietnam Experience Study. Eur. J. Endocrinol. 2010, 163, 285–292. [Google Scholar] [CrossRef] [PubMed]
- Sollberger, S.; Ehlert, U. How to use and interpret hormone ratios. Psychoneuroendocrinology 2016, 63, 385–397. [Google Scholar] [CrossRef] [PubMed]
- Pividori, I.; Peric, T.; Comin, A.; Cotticelli, A.; Corazzin, M.; Prandi, A.; Mascolo, M.D. Hair Cortisol/DHEA-S Ratios in HealthcareWorkers and Their Patients During the COVID-19 Pandemic: A Case Study. Life 2024, 14, 1582. [Google Scholar] [CrossRef] [PubMed]
- Tchernof, A.; Labrie, F. Dehydroepiandrosterone, obesity and cardiovascular disease risk: A review of human studies. Eur. J. Endocrinol. 2004, 151, 1–14. [Google Scholar] [CrossRef]
- Cleary, M.P.; Shepherd, A.; Jenks, B. Effect of dehydroepiandrosterone on growth in lean and obese Zucker rats. J. Nutr. 1984, 114, 1242–1251. [Google Scholar] [CrossRef]
- Cleary, M.P.; Zisk, J.F. Anti-obesity effect of two different levels of dehydroepiandrosterone in lean and obese middle-aged female Zucker rats. Int. J. Obes. 1986, 10, 193–204. [Google Scholar]
- do Vale, S.; Selinger, L.; Martins, J.M.; Bicho, M.; do Carmo, I.; Escera, C. Dehydroepiandrosterone (DHEA) and dehydroepiandrosterone-sulfate (DHEAS) and emotional processing—A behavioral and electrophysiological approach. Horm. Behav. 2015, 73, 94–103. [Google Scholar] [CrossRef]
- De Simone, M.; Verrotti, A.; Iughetti, L.; Palumbo, M.; Farello, G.; Di Cesare, E.; Bernabei, R.; Rosato, T.; Lozzi, S.; Criscione, S. Increased visceral adipose tissue is associated with increased circulating insulin and decreased sex hormone binding globulin levels in massively obese adolescent girls. J. Endocrinol. Investig. 2001, 24, 438–444. [Google Scholar] [CrossRef]
- García-Anguita, A.; Ortega, L.; Garcés, C. Relationship of dehydroepiandrosterone sulfate with overweight and insulin sensitivity in 12–16-year-old Spanish children. Horm. Metab. Res. 2013, 45, 545–547. [Google Scholar] [CrossRef]
- Santos-Silva, R.; Fontoura, M.; Guimarães, J.T.; Barros, H.; Santos, A.C. Association of dehydroepiandrosterone sulfate, birth size, adiposity and cardiometabolic risk factors in 7-year-old children. Pediatr. Res. 2022, 91, 1897–1905. [Google Scholar] [CrossRef]
- Corvalán, C.; Uauy, R.; Mericq, V. Obesity is positively associated with dehydroepiandrosterone sulfate concentrations at 7 y in Chilean children of normal birth weight. Am. J. Clin. Nutr. 2013, 97, 318–325. [Google Scholar] [CrossRef]
- Topsakal, S.; Akin, F.; Yerlikaya, E.; Erurker, T.; Dogu, H. Dehydroepiandrosterone sulfate levels in Turkish obese patients. Eat. Weight. Disord. 2014, 19, 261–265. [Google Scholar] [CrossRef]
- Hernandez-Morante, J.J.; Cerezo, D.; Cruz, R.M.; Larque, E.; Zamora, S.; Garaulet, M. Dehydroepiandrosterone-sulfate modifies human fatty acid composition of different adipose tissue depots. Obes. Surg. 2011, 21, 102–111. [Google Scholar] [CrossRef] [PubMed]
- Mauras, N.; Santen, R.J.; Colón-Otero, G.; Hossain, J.; Wang, Q.; Mesaros, C.; Blair, I.A. Estrogens and Their Genotoxic Metabolites Are Increased in Obese Prepubertal Girls. J. Clin. Endocrinol. Metab. 2015, 100, 2322–2328. [Google Scholar] [CrossRef]
- Hofmann, A.; Peitzsch, M.; Brunssen, C.; Mittag, J.; Jannasch, A.; Frenzel, A.; Brown, N.; Weldon, S.M.; Eisenhofer, G.; Bornstein, S.R.; et al. Elevated Steroid Hormone Production in the db/db Mouse Model of Obesity and Type 2 Diabetes. Horm. Metab. Res. 2017, 49, 43–49. [Google Scholar] [CrossRef]
- Cao, B.; Gong, C.; Wu, D.; Liang, X.; Li, W.; Liu, M.; Su, C.; Qin, M.; Meng, X.; Wei, L. A cross-sectional survey of adrenal steroid hormones among overweight/obese boys according to puberty stage. BMC Pediatr. 2019, 19, 414. [Google Scholar] [CrossRef] [PubMed]
- Vandewalle, S.; De Schepper, J.; Kaufman, J.M. Androgens and obesity in male adolescents. Curr. Opin. Endocrinol. Diabetes Obes. 2015, 22, 230–237. [Google Scholar] [CrossRef] [PubMed]
- Whyte, J.J.; Alexenko, A.P.; Davis, A.M.; Ellersieck, M.R.; Fountain, E.D.; Rosenfeld, C.S. Maternal diet composition alters serum steroid and free fatty acid concentrations and vaginal pH in mice. J. Endocrinol. 2007, 192, 75–81. [Google Scholar] [CrossRef]
- Kuryłowicz, A. Estrogens in Adipose Tissue Physiology and Obesity-Related Dysfunction. Biomedicines 2023, 11, 690. [Google Scholar] [CrossRef]
- Jones, M.E.; McInnes, K.J.; Boon, W.C.; Simpson, E.R. Estrogen and adiposity--utilizing models of aromatase deficiency to explore the relationship. J. Steroid Biochem. Mol. Biol. 2007, 106, 3–7. [Google Scholar] [CrossRef]
- Ji, T.; Fang, B.; Wu, F.; Liu, Y.; Cheng, L.; Li, Y.; Wang, R.; Zhu, L. Diet Change Improves Obesity and Lipid Deposition in High-Fat Diet-Induced Mice. Nutrients 2023, 15, 4978. [Google Scholar] [CrossRef]
- Zhang, W.; Tian, Z.; Qi, X.; Chen, P.; Yang, Q.; Guan, Q.; Ye, J.; Yu, C. Switching from high-fat diet to normal diet ameliorate BTB integrity and improve fertility potential in obese male mice. Sci. Rep. 2023, 13, 14152. [Google Scholar] [CrossRef] [PubMed]
- Magrone, T.; Perez de Heredia, F.; Jirillo, E.; Morabito, G.; Marcos, A.; Serafini, M. Functional foods and nutraceuticals as therapeutic tools for the treatment of diet-related diseases. Can. J. Physiol. Pharmacol. 2013, 91, 387–396. [Google Scholar] [CrossRef] [PubMed]
- Chiurazzi, M.; Cacciapuoti, N.; Di Lauro, M.; Nasti, G.; Ceparano, M.; Salomone, E.; Guida, B.; Lonardo, M.S. The Synergic Effect of a Nutraceutical Supplementation Associated to a Mediterranean Hypocaloric Diet in a Population of Overweight/Obese Adults with NAFLD. Nutrients 2022, 14, 4750. [Google Scholar] [CrossRef] [PubMed]
- Khazaei, R.; Seidavi, A.; Bouyeh, M. A review on the mechanisms of the effect of silymarin in milk thistle (Silybum marianum) on some laboratory animals. Vet. Med. Sci. 2022, 8, 289–301. [Google Scholar] [CrossRef]
- Grigio, V.; Guerra, L.H.A.; Ruiz, T.F.R.; Taboga, S.R.; Vilamaior, P.S.L. Coconut oil reduces steroidogenic enzymes and imbalances estrogen receptors in the adrenal cortex of Mongolian gerbils. Food Chem. Toxicol. 2025, 196, 115248. [Google Scholar] [CrossRef]
- Radko, L.; Cybulski, W. Application of silymarin in human and animal medicine. J. Pre-Clin. Clin. Res. 2007, 1, 22–26. [Google Scholar]

| Hormone | Antibody Dilution | Immunized Animal | Antibody Source | Cross-Reactivities (%) | Assay Sensitivity (pg/mL) | Intra-Assay CV (%) | Inter-Assay CV (%) | Standard Curve Equation | r |
|---|---|---|---|---|---|---|---|---|---|
| Cortisol | 1:20,000 | Rabbit | Biogenesis (Poole, UK) Cat No 2330–5109 Lot 24120652 | Cortisol 100%; corticosterone 1.8%; aldosterone < 0.02% | 24.6 | 3.7 | 10.1 | y = 0.97x + 1.15 | 0.99 |
| DHEA | 1:80,000 | Rabbit | Analytical Antibodies (Bologna, Italy) Lot RC/14/06 | DHEA 100%; 5-androsten-3β,17β-diol 9.2%; epiandrosterone 2.8%; pregnenolone 1.8%; 5α-androstane-3β,17β-diol 0.6%; cholesterol 0.2%; testosterone 0.1%; androstenedione 0.1%; DHEA sulfate 0.04%; cortisol < 0.001% | 12.4 | 3.8 | 10.6 | y = 0.97x + 1.38 | 0.99 |
| DHEA-S | 1:80,000 | Rabbit | Analytical Antibodies (Bologna, Italy) Lot RE/96/710 | DHEA-S 100%; DHEA glucuronide 13.9%; androstenedione 8.9%; pregnenolone 2.2%; epiandrosterone glucuronide 0.5%; androsterone sulfate 0.4%; cortisone < 0.001% | 10.8 | 3.2 | 11.8 | y = 0.90x + 3.74 | 0.99 |
| Progesterone (P4) | 1:8000 | Rabbit | In-house (laboratory) Lot 1 | 11β-OH-progesterone 46%; 17α-OH-progesterone 0.4%; 20α-OH-progesterone 0.04%; testosterone 0.08%; cortisol < 0.01%; 17β-estradiol < 0.01%; 17α-estradiol < 0.01%; estrone < 0.01% | 11.2 | 3.4 | 8.2 | y = 0.97x + 0.75 | 0.99 |
| Estradiol (E2) | 1:80,000 | Rabbit | In-house (laboratory) Lot 1 | 17β-estradiol 100%; estrone 2.5%; estriol 0.12%; DHEA 0.007%; 17α-estradiol < 0.004%; progesterone < 0.004%; testosterone < 0.004%; androstenedione < 0.004% | 15.4 | 3.7 | 12.1 | y = 0.98x + 1.69 | 0.99 |
| Testosterone | 1:160,000 | Rabbit | Analytical Antibodies (Bologna, Italy) Lot RA/86/111 | Testosterone 100%; 5α-dihydrotestosterone 43.2%; 5α-androstanedione 33.1%; 5β-androstanedione 11.4%; 5α-androstan-3α,17β-diol 9.4%; androstenedione 0.4%; progesterone 0.01%; DHEA 0.01%; 17β-estradiol 0.01%; cortisol < 0.001% | 6.6 | 4.4 | 11.5 | y = 1.02x − 3.76 | 0.99 |
| Diet | p-Value | ||
|---|---|---|---|
| CTRL | HFHC | ||
| LW (g) | 20.9 (20.1–21.7) | 23.0 (22.2–23.7) | <0.01 |
| Cortisol (pg/mg of hair) | 1.23 (0.92–1.54) | 1.66 (1.35–1.97) | 0.06 |
| DHEA (pg/mg of hair) | 81.30 (68.85–93.75) | 60.16 (47.72–72.61) | 0.02 |
| Cortisol/DHEA*100 | 1.52 (1.26–1.78) | 2.75 (2.49–3.01) | <0.01 |
| Testosterone (pg/mg of hair) | 5.27 (2.53–8.00) | 8.56 (5.83–11.3) | 0.09 |
| P4 (pg/mg of hair) | 16.10 (10.74–21.46) | 24.37 (19.0–29.73) | 0.04 |
| E2 (pg/mg of hair) | 1.23 (1.06–1.40) | 1.49 (1.32–1.66) | 0.04 |
| DHEA/DHEA-S | 1.97 (1.78–2.15) | 1.22 (1.03–1.40) | <0.01 |
| Diet | p-Value | ||
|---|---|---|---|
| CTRL | HFHC | ||
| LW (g) | 25.3 (19.2–31.5) | 32.8 (26.6–38.9) | 0.09 |
| Cortisol (pg/mg of hair) | 1.39 (1.11–1.67) | 1.72 (1.44–2.00) | 0.09 |
| Cortisol/DHEA*100 | 2.10 (1.53–2.67) | 2.86 (2.29–3.43) | 0.06 |
| P4 (pg/mg of hair) | 17.40 (13.5–21.3) | 24.03 (20.12–27.94) | 0.02 |
| E2 (pg/mg of hair) | 1.27 (1.15–1.39) | 1.45 (1.32–1.58) | 0.05 |
| DHEA/DHEA-S | 1.66 (1.50–1.82) | 1.35 (1.19–1.51) | 0.01 |
| Diet | ||||||
|---|---|---|---|---|---|---|
| CTRL-CTRL | HFHC-CTRL | HFHC-CTRLsil | HFHC-HFHC | HFHC-HFHCco | HFHC-HFHCsil | |
| LW (g) | 26.29 A (23.59–29.00) | 28.57 A (25.44–31.69) | 27.26 A (23.71–30.80) | 39.42 B (36.46–42.38) | 39.94 B (37.11–42.76) | 38.02 B (35.51–40.52) |
| Cortisol (pg/mg of hair) | 1.81 a (1.49–2.12) | 1.96 ab (1.60–2.32) | 2.02 ab (1.61–2.43) | 1.99 ab (1.65–2.33) | 1.70 a (1.38–2.03) | 2.32 b (2.03–2.61) |
| P4 (pg/mg of hair) | 22.89 a (18.15–27.63) | 19.81 a (14.32–25.29) | 28.40 ab (22.18–34.62) | 33.34 bc (28.14–38.53) | 27.32 ab (22.36–32.27) | 40.51 c (36.11–44.91) |
| E2 (pg/mg of hair) | 25.52 c (16.63–39.17) | 8.04 b (4.90–13.20) | 4.61 b (2.63–8.09) | 1.85 a (1.16–2.96) | 5.33 b (3.41–8.34) | 5.36 b (3.60–7.98) |
| Testosterone/E2 | 0.63 a (0.24–1.15) | 1.51 ab (0.83–2.44) | 3.11 b (1.88–4.87) | 8.16 c (5.79–11.34) | 2.57 b (1.69–3.75) | 2.65 b (1.84–3.70) |
| DHEA-S (pg/mg of hair) | 45.70 A (38.38–54.42) | 43.67 A (35.69–53.43) | 56.32 AB (44.80–70.80) | 69.83 B (57.68–84.55) | 45.88 A (38.22–55.06) | 56.44 AB (48.00–66.37) |
| DHEA/DHEA-S | 1.66 c (1.44–1.87) | 1.64 c (1.39–1.89) | 1.31 abc (1.03–1.59) | 1.10 a (0.86–1.34) | 1.57 bc (1.35–1.80) | 1.26 ab (1.06–1.46) |
| Cortisol/DHEA-S*100 | 4.16 a (3.46–4.86) | 4.83 a (4.02–5.64) | 3.74 ab (2.82–4.65) | 2.96 b (2.19–3.73) | 3.83 ab (3.10–4.56) | 4.17 a (3.53–4.82) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pividori, I.; Peric, T.; Comin, A.; Rosso, N.; Gazzin, S.; Corazzin, M.; Prandi, A. Impact of a High-Fat High-Carbohydrate (HFHC) Diet at a Young Age on Steroid Hormone Hair Concentrations in Mice: A Comparison with a Control Diet and Nutraceutical Supplementation. Life 2025, 15, 1722. https://doi.org/10.3390/life15111722
Pividori I, Peric T, Comin A, Rosso N, Gazzin S, Corazzin M, Prandi A. Impact of a High-Fat High-Carbohydrate (HFHC) Diet at a Young Age on Steroid Hormone Hair Concentrations in Mice: A Comparison with a Control Diet and Nutraceutical Supplementation. Life. 2025; 15(11):1722. https://doi.org/10.3390/life15111722
Chicago/Turabian StylePividori, Isabella, Tanja Peric, Antonella Comin, Natalia Rosso, Silvia Gazzin, Mirco Corazzin, and Alberto Prandi. 2025. "Impact of a High-Fat High-Carbohydrate (HFHC) Diet at a Young Age on Steroid Hormone Hair Concentrations in Mice: A Comparison with a Control Diet and Nutraceutical Supplementation" Life 15, no. 11: 1722. https://doi.org/10.3390/life15111722
APA StylePividori, I., Peric, T., Comin, A., Rosso, N., Gazzin, S., Corazzin, M., & Prandi, A. (2025). Impact of a High-Fat High-Carbohydrate (HFHC) Diet at a Young Age on Steroid Hormone Hair Concentrations in Mice: A Comparison with a Control Diet and Nutraceutical Supplementation. Life, 15(11), 1722. https://doi.org/10.3390/life15111722

