Anti-IL-17 and Anti-IL-23 Therapies Modulate Serum Biomarkers of Intestinal Dysbiosis and Oxidative Stress Linked to Cardiovascular Risk in Patients with Psoriasis
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design and Setting
2.2. Study Population
2.3. Psoriasis Assessment and Quality of Life Measures
2.4. Anthropometric Assessment
2.5. Blood Samples and Serum Analysis
2.6. Determination of TMAO and OxS Biomarkers
2.7. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| BMI | Body mass index |
| CVR | Cardiovascular risk |
| DLQI | Dermatology life quality index |
| d-ROMs | Reactive oxygen metabolites |
| IL | Interleukins |
| oxLDL | Oxidized LDL |
| OxS | Oxidative stress |
| PASI | Psoriasis area and severity index |
| TMAO | Trimethylamine-N-oxide |
| TNF-α | Tumor necrosis factor α |
| WG | Waist grith |
References
- Puthenpurail, A.; Rathi, H.; Nauli, S.M.; Ally, A. A brief synopsis of monoclonal antibody for the treatment of various groups of diseases. World J. Pharm. Pharm. Sci. 2021, 10, 14–22. [Google Scholar]
- Quinteros, D.A.; Bermúdez, J.M.; Ravetti, S.; Cid, A.; Allemandi, D.A.; Palma, S.D. Therapeutic Use of Monoclonal Antibodies: General Aspects and Challenges for Drug Delivery. In Nanostructures for Drug Delivery; Andronescu, E., Grumezescu, A.M., Eds.; Elsevier: Amsterdam, The Netherlands, 2017; pp. 807–833. ISBN 978-0-323-46143-6. [Google Scholar]
- Potestio, L.; Martora, F.; Lauletta, G.; Vallone, Y.; Battista, T.; Megna, M. The Role of Interleukin 23/17 Axis in Psoriasis Management: A Comprehensive Review of Clinical Trials. CCID 2024, 17, 829–842. [Google Scholar] [CrossRef]
- Balato, A.; Scala, E.; Balato, N.; Caiazzo, G.; Di Caprio, R.; Monfrecola, G.; Raimondo, A.; Lembo, S.; Ayala, F. Biologics That Inhibit the Th17 Pathway and Related Cytokines to Treat Inflammatory Disorders. Expert. Opin. Biol. Ther. 2017, 17, 1363–1374. [Google Scholar] [CrossRef]
- Armstrong, A.W.; Blauvelt, A.; Callis Duffin, K.; Huang, Y.-H.; Savage, L.J.; Guo, L.; Merola, J.F. Psoriasis. Nat. Rev. Dis. Primers 2025, 11, 45. [Google Scholar] [CrossRef]
- Raheem Abed, S. Update Aetiopathogenesis and Treatment of Psoriasis: A Literature Review. JDR 2023, 4, 1–13. [Google Scholar] [CrossRef]
- Branisteanu, D.E.; Cojocaru, C.; Diaconu, R.; Porumb, E.A.; Alexa, A.I.; Nicolescu, A.C.; Brihan, I.; Bogdanici, C.M.; Branisteanu, G.; Dimitriu, A.; et al. Update on the Etiopathogenesis of Psoriasis (Review). Exp. Ther. Med. 2022, 23, 201. [Google Scholar] [CrossRef] [PubMed]
- Caiazzo, G.; Fabbrocini, G.; Di Caprio, R.; Raimondo, A.; Scala, E.; Balato, N.; Balato, A. Psoriasis, Cardiovascular Events, and Biologics: Lights and Shadows. Front. Immunol. 2018, 9, 1668. [Google Scholar] [CrossRef]
- Korman, N.J. Management of Psoriasis as a Systemic Disease: What Is the Evidence? Br. J. Dermatol. 2020, 182, 840–848. [Google Scholar] [CrossRef] [PubMed]
- Scala, E.; Mercurio, L.; Albanesi, C.; Madonna, S. The Intersection of the Pathogenic Processes Underlying Psoriasis and the Comorbid Condition of Obesity. Life 2024, 14, 733. [Google Scholar] [CrossRef]
- Secchiero, P.; Rimondi, E.; Marcuzzi, A.; Longo, G.; Papi, C.; Manfredini, M.; Fields, M.; Caruso, L.; Di Caprio, R.; Balato, A. Metabolic Syndrome and Psoriasis: Pivotal Roles of Chronic Inflammation and Gut Microbiota. Int. J. Mol. Sci. 2024, 25, 8098. [Google Scholar] [CrossRef] [PubMed]
- Sikora, M.; Chrabąszcz, M.; Maciejewski, C.; Zaremba, M.; Waśkiel, A.; Olszewska, M.; Rudnicka, L. Intestinal Barrier Integrity in Patients with Plaque Psoriasis. J. Dermatol. 2018, 45, 1468–1470. [Google Scholar] [CrossRef]
- Valentini, V.; Silvestri, V.; Bucalo, A.; Marraffa, F.; Risicato, M.; Grassi, S.; Pellacani, G.; Ottini, L.; Richetta, A.G. A Possible Link between Gut Microbiome Composition and Cardiovascular Comorbidities in Psoriatic Patients. JPM 2022, 12, 1118. [Google Scholar] [CrossRef]
- Memariani, M.; Memariani, H. New Horizons in the Treatment of Psoriasis: Modulation of Gut Microbiome. Heliyon 2025, 11, e41672. [Google Scholar] [CrossRef]
- Yang, S.; Li, X.; Yang, F.; Zhao, R.; Pan, X.; Liang, J.; Tian, L.; Li, X.; Liu, L.; Xing, Y.; et al. Gut Microbiota-Dependent Marker TMAO in Promoting Cardiovascular Disease: Inflammation Mechanism, Clinical Prognostic, and Potential as a Therapeutic Target. Front. Pharmacol. 2019, 10, 1360. [Google Scholar] [CrossRef]
- Caradonna, E.; Abate, F.; Schiano, E.; Paparella, F.; Ferrara, F.; Vanoli, E.; Difruscolo, R.; Goffredo, V.M.; Amato, B.; Setacci, C.; et al. Trimethylamine-N-Oxide (TMAO) as a Rising-Star Metabolite: Implications for Human Health. Metabolites 2025, 15, 220. [Google Scholar] [CrossRef] [PubMed]
- Budoff, M.J.; De Oliveira Otto, M.C.; Li, X.S.; Lee, Y.; Wang, M.; Lai, H.T.M.; Lemaitre, R.N.; Pratt, A.; Tang, W.H.W.; Psaty, B.M.; et al. Trimethylamine-N-Oxide (TMAO) and Risk of Incident Cardiovascular Events in the Multi Ethnic Study of Atherosclerosis. Sci. Rep. 2025, 15, 23362. [Google Scholar] [CrossRef] [PubMed]
- Stec, A.; Sikora, M.; Maciejewska, M.; Paralusz-Stec, K.; Michalska, M.; Sikorska, E.; Rudnicka, L. Bacterial Metabolites: A Link between Gut Microbiota and Dermatological Diseases. IJMS 2023, 24, 3494. [Google Scholar] [CrossRef]
- Zekey, E.; Tunçez Akyürek, F.; Tunçez, A.; Akyürek, F.; Doğan, M.E. The Relationship of Serum Trimethylamine N-Oxide Levels with Carotid Intima-Media Thickness and Disease Activity in Psoriasis Patients. Dermatol. Pract. Concept. 2023, 13, e2023116. [Google Scholar] [CrossRef]
- Sikora, M.; Kiss, N.; Stec, A.; Giebultowicz, J.; Samborowska, E.; Jazwiec, R.; Dadlez, M.; Olszewska, M.; Rudnicka, L. Trimethylamine N-Oxide, a Gut Microbiota-Derived Metabolite, Is Associated with Cardiovascular Risk in Psoriasis: A Cross-Sectional Pilot Study. Dermatol. Ther. 2021, 11, 1277–1289. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Hu, B.; Mao, M.; Chen, W.; Zhu, W. TMAO Promotes Disorders of Lipid Metabolism in Psoriasis. Zhong Nan Da Xue Xue Bao Yi Xue Ban 2025, 50, 331–343. [Google Scholar] [CrossRef]
- Coras, R.; Kavanaugh, A.; Boyd, T.; Huynh, D.; Lagerborg, K.A.; Xu, Y.-J.; Rosenthal, S.B.; Jain, M.; Guma, M. Choline Metabolite, Trimethylamine N-Oxide (TMAO), Is Associated with Inflammation in Psoriatic Arthritis. Clin. Exp. Rheumatol. 2019, 37, 481–484. [Google Scholar]
- Scala, E.; Kaczmarczyk, R.; Zink, A.; Balato, A. PSES Study Group Sociodemographic, Clinical and Therapeutic Factors as Predictors of Life Quality Impairment in Psoriasis: A Cross-sectional Study in Italy. Dermatol. Ther. 2022, 35, e15622. [Google Scholar] [CrossRef]
- Ihtatho, D.; Fadzil, M.H.A.; Affandi, A.M.; Hussein, S.H. Area Assessment of Psoriasis Lesion for PASI Scoring. In Proceedings of the 2007 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Lyon, France, 22–26 August 2007; pp. 3446–3449. [Google Scholar]
- Barrea, L.; Annunziata, G.; Muscogiuri, G.; Di Somma, C.; Laudisio, D.; Maisto, M.; De Alteriis, G.; Tenore, G.C.; Colao, A.; Savastano, S. Trimethylamine-N-Oxide (TMAO) as Novel Potential Biomarker of Early Predictors of Metabolic Syndrome. Nutrients 2018, 10, 1971. [Google Scholar] [CrossRef]
- Bellinato, F.; Maurelli, M.; Geat, D.; Girolomoni, G.; Gisondi, P. Managing the Patient with Psoriasis and Metabolic Comorbidities. Am. J. Clin. Dermatol. 2024, 25, 527–540. [Google Scholar] [CrossRef] [PubMed]
- Ni, C.; Chiu, M.W. Psoriasis and Comorbidities: Links and Risks. Clin. Cosmet. Investig. Dermatol. 2014, 7, 119–132. [Google Scholar] [CrossRef] [PubMed]
- Scala, E.; Megna, M.; Amerio, P.; Argenziano, G.; Babino, G.; Bardazzi, F.; Bianchi, L.; Caldarola, G.; Campanati, A.; Cannavò, S.P.; et al. Patients’ Demographic and Socioeconomic Characteristics Influence the Therapeutic Decision-Making Process in Psoriasis. PLoS ONE 2020, 15, e0237267. [Google Scholar] [CrossRef] [PubMed]
- Quiles-Tsimaratos, N.; Jouan, N.; Vermersch-Langlin, A.; Duval-Modeste, A.-B.; Nicolas, C.; Lislaud, C.; Roux, B.; Mahé, E. Therapeutic Strategies and Decision-Making to Optimize Psoriasis Treatment: A French National Survey Based on Virtual Case Vignettes. Dermatol. Ther. 2025, 2025, 7294541. [Google Scholar] [CrossRef]
- Cui, L.; Chen, R.; Subedi, S.; Yu, Q.; Gong, Y.; Chen, Z.; Shi, Y. Efficacy and Safety of Biologics Targeting IL-17 and IL-23 in the Treatment of Moderate-to-Severe Plaque Psoriasis: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Int. Immunopharmacol. 2018, 62, 46–58. [Google Scholar] [CrossRef]
- Bilal, J.; Berlinberg, A.; Bhattacharjee, S.; Trost, J.; Riaz, I.B.; Kurtzman, D.J.B. A Systematic Review and Meta-Analysis of the Efficacy and Safety of the Interleukin (IL)-12/23 and IL-17 Inhibitors Ustekinumab, Secukinumab, Ixekizumab, Brodalumab, Guselkumab and Tildrakizumab for the Treatment of Moderate to Severe Plaque Psoriasis. J. Dermatol. Treat. 2018, 29, 569–578. [Google Scholar] [CrossRef]
- Radaschin, D.S.; Iancu, A.V.; Ionescu, A.M.; Gurau, G.; Niculet, E.; Bujoreanu, F.C.; Beiu, C.; Tatu, A.L.; Popa, L.G. Comparative Analysis of the Cutaneous Microbiome in Psoriasis Patients and Healthy Individuals—Insights into Microbial Dysbiosis: Final Results. IJMS 2024, 25, 10583. [Google Scholar] [CrossRef]
- Zhao, H.; Shang, L.; Zhang, Y.; Liang, Z.; Wang, N.; Zhang, Q.; Gao, C.; Luo, J. IL-17A Inhibitors Alleviate Psoriasis with Concomitant Restoration of Intestinal/Skin Microbiota Homeostasis and Altered Microbiota Function. Front. Immunol. 2024, 15, 1344963. [Google Scholar] [CrossRef]
- Wen, Z.; Lu, X.; Nie, H.; Xu, J.; Zou, Y.; Huang, K.; Chen, A.; Zhang, Y.; Cao, M.; Yin, Q.; et al. Influence of Biological Treatments on Intestinal Microbiota of Psoriasis Patients. Chin. Med. J. 2024, 137, 1996–1998. [Google Scholar] [CrossRef] [PubMed]
- Huang, W.; Geng, Y.; Gong, J.; Wu, W. The Impact of IL-17A Inhibitors on Scalp and Gut Microbiota in Psoriasis. Front. Cell. Infect. Microbiol. 2025, 15, 1623003. [Google Scholar] [CrossRef]
- Huang, Y.-H.; Chang, L.-C.; Chang, Y.-C.; Chung, W.-H.; Yang, S.-F.; Su, S.-C. Compositional Alteration of Gut Microbiota in Psoriasis Treated with IL-23 and IL-17 Inhibitors. IJMS 2023, 24, 4568. [Google Scholar] [CrossRef] [PubMed]
- Mills, K.H.G. IL-17 and IL-17-Producing Cells in Protection versus Pathology. Nat. Rev. Immunol. 2023, 23, 38–54. [Google Scholar] [CrossRef]
- Abusleme, L.; Moutsopoulos, N.M. IL-17: Overview and Role in Oral Immunity and Microbiome. Oral. Dis. 2017, 23, 854–865. [Google Scholar] [CrossRef]
- Alsakarneh, S.; Al Ta’ani, O.; Aburumman, R.; Mikhail, I.; Hashash, J.G.; Farraye, F.A. Risk of De Novo Inflammatory Bowel Disease in Patients with Psoriasis and Psoriatic Arthritis Treated with IL—17A Inhibitors: A Population-Based Study. Aliment. Pharmacol. Ther. 2025, 62, 72–76. [Google Scholar] [CrossRef]
- Petitpain, N.; D’Amico, F.; Yelehe-Okouma, M.; Jouzeau, J.; Netter, P.; Peyrin-Biroulet, L.; Gillet, P. IL-17 Inhibitors and Inflammatory Bowel Diseases: A Postmarketing Study in Vigibase. Clin. Pharma Ther. 2021, 110, 159–168. [Google Scholar] [CrossRef] [PubMed]
- Deng, Z.; Wang, S.; Wu, C.; Wang, C. IL-17 Inhibitor-Associated Inflammatory Bowel Disease: A Study Based on Literature and Database Analysis. Front. Pharmacol. 2023, 14, 1124628. [Google Scholar] [CrossRef]
- Verstockt, B.; Salas, A.; Sands, B.E.; Abraham, C.; Leibovitzh, H.; Neurath, M.F.; Vande Casteele, N. Alimentiv Translational Research Consortium (ATRC) IL-12 and IL-23 Pathway Inhibition in Inflammatory Bowel Disease. Nat. Rev. Gastroenterol. Hepatol. 2023, 20, 433–446. [Google Scholar] [CrossRef]
- Wang, S.; Sun, H.; Wang, Q.; Xiao, H. Efficacy and Safety of IL-23 P19 Inhibitors in the Treatment for Inflammatory Bowel Disease: A Systematic Review and Meta-Analysis. Front. Pharmacol. 2025, 16, 1490667. [Google Scholar] [CrossRef]
- Dehghan, P.; Farhangi, M.A.; Nikniaz, L.; Nikniaz, Z.; Asghari-Jafarabadi, M. Gut Microbiota-derived Metabolite Trimethylamine N-oxide (TMAO) Potentially Increases the Risk of Obesity in Adults: An Exploratory Systematic Review and Dose-response Meta-Analysis. Obes. Rev. 2020, 21, e12993. [Google Scholar] [CrossRef]
- Belli, R.; Dattolo, A.; Sampogna, F.; Gubinelli, E.; Lulli, D.; Moretta, G.; Scala, E.; Sanna, L.; Megna, M.; Cannizzaro, M.V.; et al. Leptin: A Gender and Obesity-Related Marker Predictive of Metabolic Comorbidities and Therapeutic Response to Anti-IL-23 Biologic Drugs in Psoriatic Patients. Front. Immunol. 2025, 16, 1607312. [Google Scholar] [CrossRef]
- Zhou, Q.; Mrowietz, U.; Rostami-Yazdi, M. Oxidative Stress in the Pathogenesis of Psoriasis. Free. Radic. Biol. Med. 2009, 47, 891–905. [Google Scholar] [CrossRef]
- Dobrică, E.C.; Cozma, M.A.; Găman, M.A.; Voiculescu, V.M.; Găman, A.M. The Involvement of Oxidative Stress in Psoriasis: A Systematic Review. Antioxidants 2022, 11, 282. [Google Scholar] [CrossRef] [PubMed]
- Orem, A.; Cimşit, G.; Değer, O.; Orem, C.; Vanizor, B. The Significance of Autoantibodies against Oxidatively Modified Low-Density Lipoprotein (LDL) in Patients with Psoriasis. Clin. Chim. Acta Int. J. Clin. Chem. 1999, 284, 81–88. [Google Scholar] [CrossRef] [PubMed]
- Tekin, N.S.; Tekin, I.O.; Barut, F.; Sipahi, E.Y. Accumulation of Oxidized Low-Density Lipoprotein in Psoriatic Skin and Changes of Plasma Lipid Levels in Psoriatic Patients. Mediat. Inflamm. 2007, 2007, 78454. [Google Scholar] [CrossRef]
- Asha, K.; Singal, A.; Sharma, S.B.; Arora, V.K.; Aggarwal, A. Dyslipidaemia & Oxidative Stress in Patients of Psoriasis: Emerging Cardiovascular Risk Factors. Indian J. Med. Res. 2017, 146, 708–713. [Google Scholar] [CrossRef]
- Ren, S.; Shatadal, S.; Shen, G.X. Protein Kinase C-Beta Mediates Lipoprotein-Induced Generation of PAI-1 from Vascular Endothelial Cells. Am. J. Physiol. Endocrinol. Metab. 2000, 278, E656–E662. [Google Scholar] [CrossRef]
- Li, D.; Liu, L.; Chen, H.; Sawamura, T.; Mehta, J.L. LOX-1, an Oxidized LDL Endothelial Receptor, Induces CD40/CD40L Signaling in Human Coronary Artery Endothelial Cells. Arterioscler. Thromb. Vasc. Biol. 2003, 23, 816–821. [Google Scholar] [CrossRef] [PubMed]
- Alderman, C.J.; Bunyard, P.R.; Chain, B.M.; Foreman, J.C.; Leake, D.S.; Katz, D.R. Effects of Oxidised Low Density Lipoprotein on Dendritic Cells: A Possible Immunoregulatory Component of the Atherogenic Micro-Environment? Cardiovasc. Res. 2002, 55, 806–819. [Google Scholar] [CrossRef]
- Ohno, Y. ICH guidelines—Implementation of the 3Rs (refinement, reduction, and replacement): Incorporating best scientific practices into the regulatory process. ILAR J. 2002, 43, S95–S98. [Google Scholar] [CrossRef]
- Maisto, M.; Schiano, E.; Novellino, E.; Piccolo, V.; Iannuzzo, F.; Salviati, E.; Summa, V.; Annunziata, G.; Tenore, G.C. Application of a Rapid and Simple Technological Process to Increase Levels and Bioccessibility of Free Phenolic Compounds in Annurca Apple Nutraceutical Product. Foods 2022, 11, 1453. [Google Scholar] [CrossRef]
- Barrea, L.; Muscogiuri, G.; Pugliese, G.; de Alteriis, G.; Maisto, M.; Donnarumma, M.; Tenore, G.C.; Colao, A.; Fabbrocini, G.; Savastano, S. Association of Trimethylamine N-Oxide (TMAO) with the Clinical Severity of Hidradenitis Suppurativa (Acne Inversa). Nutrients 2021, 13, 1997. [Google Scholar] [CrossRef]
- Macri, A.; Scanarotti, C.; Bassi, A.M.; Giuffrida, S.; Sangalli, G.; Traverso, C.E.; Iester, M. Evaluation of oxidative stress levels in the conjunctival epithelium of patients with or without dry eye, and dry eye patients treated with preservative-free hyaluronic acid 0.15% and vitamin B12 eye drops. Graefes Arch. Clin. Exp. Ophthalmol. 2015, 253, 425–430. [Google Scholar] [CrossRef]
- Cesarone, M.R.; Belcaro, G.; Carratelli, M.; Cornelli, U.; De Sanctis, M.T.; Incandela, L.; Barsotti, A.; Terranova, R.; Nicolaides, A. A simple test to monitor oxidative stress. Int. Angiol. 1999, 18, 127–130. [Google Scholar]
- Alberti, A.; Bolognini, L.; Macciantelli, D.; Caratelli, M. The radical cation of N,N-diethyl-paraphenylendiamine: A possible indicator of oxidative stress in biological samples. Res. Chem. Intermed. 2000, 26, 253–267. [Google Scholar] [CrossRef]
- Trotti, R.; Carratelli, M.; Barbieri, M.; Micieli, G.; Bosone, D.; Rondanelli, M.; Bo, P. Oxidative stress and a thrombophilic condition in alcoholics without severe liver disease. Haematologica 2001, 86, 85–91. [Google Scholar]
- Gerardi, G.; Usberti, M.; Martini, G.; Albertini, A.; Sugherini, L.; Pompella, A.; Di Lorenzo, D. Plasma total antioxidant capacity in hemodialyzed patients and its relationships to other biomarkers of oxidative stress and lipid peroxidation. Clin. Chem. Lab. Med. 2002, 40, 104–110. [Google Scholar] [CrossRef] [PubMed]
- Annunziata, G.; Ciampaglia, R.; Maisto, M.; D’Avino, M.; Caruso, D.; Tenore, G.C.; Novellino, E. Taurisolo®, a Grape Pomace Polyphenol Nutraceutical Reducing the Levels of Serum Biomarkers Associated With Atherosclerosis. Front. Cardiovasc. Med. 2021, 8, 697272. [Google Scholar] [CrossRef] [PubMed]
- Verde, L.; Cacciapuoti, S.; Caiazzo, G.; Megna, M.; Martora, F.; Cavaliere, A.; Mattera, M.; Maisto, M.; Tenore, G.C.; Colao, A.; et al. Very low-calorie ketogenic diet (VLCKD) in the management of hidradenitis suppurativa (Acne Inversa): An effective and safe tool for improvement of the clinical severity of disease. Results of a pilot study. J. Transl. Med. 2024, 22, 149. [Google Scholar] [CrossRef] [PubMed]

| Parameters | Anti-IL-17 (n = 17) | Anti-IL-23 (n = 16) | p-Value |
|---|---|---|---|
| Males, n (%) | 9 (52.90%) | 9 (56.30%) | - |
| Age, years | 46.41 ± 16.85 | 50.12 ± 19.96 | 0.57 |
| Weight, kg | 86.02 ± 18.72 | 77.37 ± 19.44 | 0.20 |
| BMI, kg/m2 | 30.53 ± 6.75 | 27.94 ± 6.43 | 0.27 |
| WG, cm | 100.81 ± 17.13 | 92.59 ± 18.28 | 0.19 |
| Triglycerides, mg/dL | 124.29 ± 53.03 | 116.06 ± 60.36 | 0.68 |
| Total cholesterol, mg/dL | 181.65 ± 38.44 | 190.62 ± 33.57 | 0.48 |
| HDL-c, mg/dL | 59.47 ± 15.80 | 57.62 ± 13.76 | 0.72 |
| LDL-c, mg/dL | 100.06 ± 31.53 | 111.26 ± 30.96 | 0.31 |
| TMAO, µmol/L | 6.84 ± 6.51 | 2.88 ± 2.52 | 0.03 |
| d-ROMs, UCARR | 405.59 ± 122.88 | 437.87 ± 140.63 | 0.49 |
| oxLDL, µEq/L | 848.31 ± 252.30 | 1261.02 ± 1354.09 | 0.25 |
| Visfatin, ng/mL | 5.79 ± 3.85 | 5.59 ± 3.44 | 0.89 |
| Leptin, pg/mL | 61.29 ± 71.30 | 42.04 ± 37.72 | 0.41 |
| Adiponectin, µg/mL | 6.61 ± 3.65 | 9.57 ± 5.91 | 0.13 |
| PASI | 19.54 ± 6.91 | 17.38 ± 8.05 | 0.42 |
| DLQI | 15.53 ± 8.09 | 15.50 ± 6.16 | 0.99 |
| Parameters | Baseline | Week 16 | p-Value | Δ% | 95% CI |
|---|---|---|---|---|---|
| Males, n (%) | 18 (54.5%) | - | - | - | - |
| Age, years | 48.21 ± 18.23 | - | - | - | - |
| Weight, kg | 81.83 ± 19.28 | 81.88 ± 19.45 | 0.88 | 0.02 ± 2.42 | −0.69–0.59 |
| BMI, kg/m2 | 29.27 ± 6.62 | 29.30 ± 6.73 | 0.85 | 0.02 ± 2.42 | −0.27–0.22 |
| WG, cm | 96.83 ± 17.91 | 96.91 ± 18.24 | 0.77 | 0.04 ± 1.82 | −0.67–0.50 |
| Triglycerides, mg/dL | 120.30 ± 55.96 | 121.12 ± 57.12 | 0.95 | 3.92 ± 29.99 | −14.13–12.50 |
| Total cholesterol, mg/dL | 186.00 ± 35.89 | 187.85 ± 42.15 | 0.69 | 1.30 ± 13.98 | −11.21–7.51 |
| HDL-c, mg/dL | 58.58 ± 14.64 | 57.33 ± 16.45 | 0.36 | −1.39 ± 15.80 | −2.19–4.68 |
| LDL-c, mg/dL | 105.49 ± 31.28 | 102.41 ± 34.23 | 0.56 | −0.79 ± 24.40 | −7.45–13.60 |
| Visfatin, ng/mL | 5.68 ± 3.56 | 4.26 ± 3.80 | 0.11 | −31.78 ± 46.46 | −0.34–3.18 |
| Leptin, pg/mL | 50.93 ± 55.43 | 53.34 ± 55.15 | 0.55 | 59.01 ± 284.19 | −11.60–6.78 |
| Adiponectin, µg/mL | 8.20 ± 5.13 | 8.29 ± 6.18 | 0.89 | 6.42 ± 46.91 | −2.10–1.93 |
| Parameters | Baseline | Week 16 | p-Value | Δ% | 95% CI |
|---|---|---|---|---|---|
| DLQI | 15.51 ± 7.11 | 5.51 ± 5.78 | <0.001 | −66.22 ± 27.38 | 7.80–12.20 |
| No effect on QoL, n (%) | - | 8 (24.2%) | |||
| Small effect on QoL, n (%) | 1 (3.0%) | 12 (36.4%) | |||
| Moderate effect on QoL, n (%) | 9 (27.3%) | 9 (27.3%) | |||
| Very large effect on QoL, n (%) | 13 (39.4%) | 4 (12.1%) | |||
| Extremely large effect on QoL, n (%) | 10 (30.3%) | - | |||
| PASI | 18.49 ± 7.44 | 1.70 ± 3.74 | <0.001 | −90.61 ± 22.17 | 14.04–19.54 |
| <10, n (%) | 7 (21.2%) | 6 (18.2%) | |||
| 10–15, n (%) | 16 (48.5%) | 3 (9.1%) | |||
| >15, n (%) | 10 (30.3%) | 2 (6.1%) |
| Parameters | Baseline | Week 16 | p-Value | Δ% | 95% CI |
|---|---|---|---|---|---|
| TMAO, µmol/L | 4.92 ± 5.31 | 3.07 ± 2.60 | 0.02 | −3.14 ± 81.17 | 0.58–3.11 |
| <5.94, n (%) | 26 (78.8%) | 29 (87.9%) | |||
| >5.95, n (%) | 7 (21.2%) | 4 (12.1%) | |||
| d-ROMs, UCARR | 421.24 ± 130.72 | 333.58 ± 96.54 | <0.001 | −18.19 ± 16.04 | 54.35–120.98 |
| Normal, n (%) | 3 (9.1%) | 11 (33.3%) | |||
| Borderline, n (%) | 4 (12.1%) | 2 (6.1%) | |||
| Low OxS, n (%) | 2 (6.1%) | 7 (21.2%) | |||
| Middle OxS, n (%) | 9 (27.3%) | 7 (21.1%) | |||
| High OxS, n (%) | 4 (12.1%) | - | |||
| Very high OxS, n (%) | 11 (33.3%) | 6 (18.2%) | |||
| oxLDL, µEq/L | 1048.41 ± 967.05 | 687.03 ± 187.26 | <0.001 | −21.52 ± 20.51 | 15.47–707.29 |
| Normal, n (%) | 3 (9.1%) | 10 (30.3%) | |||
| Slightly high, n (%) | 14 (42.4%) | 17 (51.5%) | |||
| Moderately high, n (%) | 7 (21.2%) | 4 (12.1%) | |||
| Very high, n (%) | 9 (27.3%) | 2 (6.1%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Annunziata, G.; Scala, E.; Mercurio, L.; Sanna, L.; Dattolo, A.; Pagnanelli, G.; Lolli, M.G.; Belli, R.; Moretta, G.; Savastano, S.; et al. Anti-IL-17 and Anti-IL-23 Therapies Modulate Serum Biomarkers of Intestinal Dysbiosis and Oxidative Stress Linked to Cardiovascular Risk in Patients with Psoriasis. Life 2025, 15, 1703. https://doi.org/10.3390/life15111703
Annunziata G, Scala E, Mercurio L, Sanna L, Dattolo A, Pagnanelli G, Lolli MG, Belli R, Moretta G, Savastano S, et al. Anti-IL-17 and Anti-IL-23 Therapies Modulate Serum Biomarkers of Intestinal Dysbiosis and Oxidative Stress Linked to Cardiovascular Risk in Patients with Psoriasis. Life. 2025; 15(11):1703. https://doi.org/10.3390/life15111703
Chicago/Turabian StyleAnnunziata, Giuseppe, Emanuele Scala, Laura Mercurio, Luca Sanna, Anna Dattolo, Gianluca Pagnanelli, Maria Grazia Lolli, Roberta Belli, Gaia Moretta, Silvia Savastano, and et al. 2025. "Anti-IL-17 and Anti-IL-23 Therapies Modulate Serum Biomarkers of Intestinal Dysbiosis and Oxidative Stress Linked to Cardiovascular Risk in Patients with Psoriasis" Life 15, no. 11: 1703. https://doi.org/10.3390/life15111703
APA StyleAnnunziata, G., Scala, E., Mercurio, L., Sanna, L., Dattolo, A., Pagnanelli, G., Lolli, M. G., Belli, R., Moretta, G., Savastano, S., Muscogiuri, G., Maisto, M., Ciampaglia, R., Piccolo, V., Tenore, G. C., Albanesi, C., Madonna, S., & Barrea, L. (2025). Anti-IL-17 and Anti-IL-23 Therapies Modulate Serum Biomarkers of Intestinal Dysbiosis and Oxidative Stress Linked to Cardiovascular Risk in Patients with Psoriasis. Life, 15(11), 1703. https://doi.org/10.3390/life15111703

