The Interconnected World of Coagulation Factors, Platelets and Plasminogen: A Novel Perspective on Biosynthetic Regulation
Abstract
1. Introduction: Haemostatic Regulation of the Coagulation Pathway and Coagulation Factor Dynamic Storage and Turnover
1.1. Prothrombin Pathway
1.2. Fibrinogen Metabolism
Physiological Versus Pathological Roles of IL-6 in Fibrinogen Regulation
1.3. Coagulopoietin Pathway
2. Overview of the Coagulation Pathway and Control of Inflammation During Insult and Injury: Known Determinants and Their Role or Function
3. Defining the Critical (Overlapping) Factors: State of the Art and Future Perspectives
3.1. Regulation of Plasminogen Levels
Proposed Mechanism: The FgDP–IL-6–Plasminogen Pathway
3.2. Regulation of Platelets Levels
3.2.1. Proposed Mechanism: The PAF–IL-6–TPO Pathway
3.2.2. Proposed Mechanism: The Thrombin–FgDP–IL-6–TPO Pathway
4. Biological and Medicinal Impact-Novel Anticoagulant and Anti-Thrombotic Drugs
4.1. Targeting the IL-6-TPO Axis
4.2. Targeting the Thrombin–FgDP–IL-6–TPO and FgDP–IL-6–Plasminogen Pathways
4.3. Platelet Subpopulation-Specific Therapies
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Trauber, D.; Hawkins, K.; Karpatkin, M.; Karpatkin, S. Humoral Factor That Specifically Regulates Factor X Levels in Rabbits (Coagulopoietin-X). J. Clin. Investig. 1979, 64, 1713–1716. [Google Scholar] [CrossRef]
- Lelas, A.; Greinix, H.T.; Wolff, D.; Eissner, G.; Pavletic, S.Z.; Pulanic, D. Von Willebrand Factor, Factor VIII, and Other Acute Phase Reactants as Biomarkers of Inflammation and Endothelial Dysfunction in Chronic Graft-Versus-Host Disease. Front. Immunol. 2021, 12, 676756. [Google Scholar] [CrossRef]
- Ladikou, E.E.; Sivaloganathan, H.; Milne, K.M.; Arter, W.E.; Ramasamy, R.; Saad, R.; Stoneham, S.M.; Philips, B.; Eziefula, A.C.; Chevassut, T. Von Willebrand Factor (vWF): Marker of Endothelial Damage and Thrombotic Risk in COVID-19? Clin. Med. 2020, 20, e178–e182. [Google Scholar] [CrossRef]
- Graves, C.B.; Munns, T.W.; Carlisle, T.L.; Grant, G.A.; Strauss, A.W. Induction of Prothrombin Synthesis by Prothrombin Fragments. Proc. Natl. Acad. Sci. USA 1981, 78, 4772–4776. [Google Scholar] [CrossRef] [PubMed]
- Mitropoulos, K.A.; Esnouf, M.P. The Prothrombin Activation Peptide Regulates Synthesis of the Vitamin K-Dependent Proteins in the Rabbit. Thromb. Res. 1990, 57, 541–549. [Google Scholar] [CrossRef] [PubMed]
- Malhotra, O.P. Dicoumarol-Induced 9-γ-Carboxyglutamic Acid Prothrombin: Isolation and Comparison with the 6-, 7-, 8-, and L0-γ-Carboxyglutamic Acid Isomers. Biochem. Cell Biol. 1990, 68, 705–715. [Google Scholar] [CrossRef] [PubMed]
- Tsantes, A.G.; Parastatidou, S.; Tsantes, E.A.; Bonova, E.; Tsante, K.A.; Mantzios, P.G.; Vaiopoulos, A.G.; Tsalas, S.; Konstantinidi, A.; Houhoula, D.; et al. Sepsis-Induced Coagulopathy: An Update on Pathophysiology, Biomarkers, and Current Guidelines. Life 2023, 13, 350. [Google Scholar] [CrossRef]
- Kamath, P.; Krishnaswamy, S. Fate of Membrane-Bound Reactants and Products during the Activation of Human Prothrombin by Prothrombinase. J. Biol. Chem. 2008, 283, 30164–30173. [Google Scholar] [CrossRef]
- Matafonov, A.; Sarilla, S.; Sun, M.; Sheehan, J.P.; Serebrov, V.; Verhamme, I.M.; Gailani, D. Activation of Factor XI by Products of Prothrombin Activation. Blood 2011, 118, 437–445. [Google Scholar] [CrossRef]
- Adams, T.E.; Huntington, J.A. Structural Transitions during Prothrombin Activation: On the Importance of Fragment 2. Biochimie 2016, 122, 235–242. [Google Scholar] [CrossRef]
- Kondo, A.; Kondo, H.; Nakagawa, Y.; Kameyama, H.; Ito, H.; Shimomura, D.; Yamanishi, H.; Hatanaka, N.; Yamamoto, Y.; Iwai-Kanai, E.; et al. Measuring Serum Prothrombin in Patients Treated with Warfarin or Direct Oral Anticoagulants. Clin. Chim. Acta 2021, 523, 224–230. [Google Scholar] [CrossRef] [PubMed]
- Kessler, C.; Bell, W. Stimulation of Fibrinogen Synthesis: A Possible Functional Role of Fibrinogen Degradation Products. Blood 1980, 55, 40–47. [Google Scholar] [CrossRef] [PubMed]
- Ritchie, D.G.; Levy, B.A.; Adams, M.A.; Fuller, G.M. Regulation of Fibrinogen Synthesis by Plasmin-Derived Fragments of Fibrinogen and Fibrin: An Indirect Feedback Pathway. Proc. Natl. Acad. Sci. USA 1982, 79, 1530–1534. [Google Scholar] [CrossRef]
- Lee, M.E.; Rhee, K.J.; Nham, S.U. Fragment E Derived from Both Fibrin and Fibrinogen Stimulates Interleukin-6 Production in Rat Peritoneal Macrophages. Mol. Cells 1999, 9, 7–13. [Google Scholar] [CrossRef] [PubMed]
- Mandl, J.; Csala, M.; Léránt, I.; Bánhegyi, G.; Biró, J.; Machovich, R.; Falus, A. Enhancement of Interleukin-6 Production by Fibrinogen Degradation Product D in Human Peripheral Monocytes and Perfused Murine Liver. Scand. J. Immunol. 1995, 42, 175–178. [Google Scholar] [CrossRef]
- Otto, J.M.; Grenett, H.E.; Fuller, G.M. The Coordinated Regulation of Fibrinogen Gene Transcription by Hepatocyte-Stimulating Factor and Dexamethasone. J. Cell Biol. 1987, 105, 1067–1072. [Google Scholar] [CrossRef]
- Jennewein, C.; Tran, N.; Paulus, P.; Ellinghaus, P.; Eble, J.A.; Zacharowski, K. Novel Aspects of Fibrin(ogen) Fragments during Inflammation. Mol. Med. 2011, 17, 568–573. [Google Scholar] [CrossRef]
- Dittrich, A.; Khouri, C.; Sackett, S.D.; Ehlting, C.; Böhmer, O.; Albrecht, U.; Bode, J.G.; Trautwein, C.; Schaper, F. Glucocorticoids Increase Interleukin–6–Dependent Gene Induction by Interfering with the Expression of the Suppressor of Cytokine Signaling 3 Feedback Inhibitor. Hepatology 2012, 55, 256–266. [Google Scholar] [CrossRef]
- LaDuca, F.M.; Tinsley, L.A.; Dang, C.V.; Bell, W.R. Stimulation of Fibrinogen Synthesis in Cultured Rat Hepatocytes by Fibrinogen Degradation Product Fragment D. Proc. Natl. Acad. Sci. USA 1989, 86, 8788–8792. [Google Scholar] [CrossRef]
- Moshage, H.J.; Rinceen, H.M.G.P.; Van Pelt, J.; Roelofs, H.M.J.; Nieuwenhuizen, W.; Yap, S.H. Differential Effects of Endotoxin and Fibrinogen Degradation Products (FDPs) on Liver Synthesis of Fibrinogen and Albumin: Evidence for the Involvement of a Novel Monokine in the Stimulation of Fibrinogen Synthesis Induced by FDPs. Int. J. Biochem. 1990, 22, 1393–1400. [Google Scholar] [CrossRef]
- Nakae, R.; Murai, Y.; Wada, T.; Fujiki, Y.; Kanaya, T.; Takayama, Y.; Suzuki, G.; Naoe, Y.; Yokota, H.; Yokobori, S. Hyperfibrinolysis and Fibrinolysis Shutdown in Patients with Traumatic Brain Injury. Sci. Rep. 2022, 12, 19107. [Google Scholar] [CrossRef] [PubMed]
- Cronjé, H.T.; Nienaber-Rousseau, C.; Zandberg, L.; De Lange, Z.; Green, F.R.; Pieters, M. Fibrinogen and Clot-Related Phenotypes Determined by Fibrinogen Polymorphisms: Independent and IL-6-Interactive Associations. PLoS ONE 2017, 12, e0187712. [Google Scholar] [CrossRef]
- Rein-Smith, C.M.; Anderson, N.W.; Farrell, D.H. Differential Regulation of Fibrinogen γ Chain Splice Isoforms by Interleukin-6. Thromb. Res. 2013, 131, 89–93. [Google Scholar] [CrossRef]
- Dobson, D.A.; Holle, L.A.; Lin, F.-C.; Huffman, J.E.; Luyendyk, J.P.; Flick, M.J.; Smith, N.L.; De Vries, P.S.; Morrison, A.C.; Wolberg, A.S. Novel Genetic Regulators of Fibrinogen Synthesis Identified by an in Vitro Experimental Platform. J. Thromb. Haemost. 2023, 21, 522–533. [Google Scholar] [CrossRef]
- Kaser, A.; Brandacher, G.; Steurer, W.; Kaser, S.; Offner, F.A.; Zoller, H.; Theurl, I.; Widder, W.; Molnar, C.; Ludwiczek, O.; et al. Interleukin-6 Stimulates Thrombopoiesis through Thrombopoietin: Role in Inflammatory Thrombocytosis. Blood 2001, 98, 2720–2725. [Google Scholar] [CrossRef]
- Robson, S.C.; Shephard, E.G.; Kirsch, R.E. Fibrin Degradation Product D-dimer Induces the Synthesis and Release of Biologically Active IL-1β, IL-6 and Plasminogen Activator Inhibitors from Monocytes in Vitro. Br. J. Haematol. 1994, 86, 322–326. [Google Scholar] [CrossRef]
- Choy, E.H.S.; Panayi, G.S. Cytokine Pathways and Joint Inflammation in Rheumatoid Arthritis. N. Engl. J. Med. 2001, 344, 907–916. [Google Scholar] [CrossRef]
- Guaraldi, G.; Meschiari, M.; Cozzi-Lepri, A.; Milic, J.; Tonelli, R.; Menozzi, M.; Franceschini, E.; Cuomo, G.; Orlando, G.; Borghi, V.; et al. Tocilizumab in Patients with Severe COVID-19: A Retrospective Cohort Study. Lancet Rheumatol. 2020, 2, e474–e484. [Google Scholar] [CrossRef]
- Hao, Z.; Jin, D.-Y.; Stafford, D.W.; Tie, J.-K. Vitamin K-Dependent Carboxylation of Coagulation Factors: Insights from a Cell-Based Functional Study. Haematologica 2020, 105, 2164–2173. [Google Scholar] [CrossRef] [PubMed]
- Girolami, A.; Ferrari, S.; Cosi, E.; Santarossa, C.; Randi, M.L. Vitamin K-Dependent Coagulation Factors That May Be Responsible for Both Bleeding and Thrombosis (FII, FVII, and FIX). Clin. Appl. Thromb. Hemost. 2018, 24 (Suppl. S9), 42S–47S. [Google Scholar] [CrossRef] [PubMed]
- Fay, W.P. Linking Inflammation and Thrombosis: Role of C-Reactive Protein. World J. Cardiol. 2010, 2, 365–369. [Google Scholar] [CrossRef]
- van der Poll, T.; de Jonge, E.; ten Cate an, H. Cytokines as Regulators of Coagulation. In Madame Curie Bioscience Database; Landes Bioscience: Austin, TX, USA, 2000. [Google Scholar]
- Cirillo, P.; Golino, P.; Calabro, P.; Cali, G.; Ragni, M.; Derosa, S.; Cimmino, G.; Pacileo, M.; Depalma, R.; Forte, L. C-Reactive Protein Induces Tissue Factor Expression and Promotes Smooth Muscle and Endothelial Cell Proliferation. Cardiovasc. Res. 2005, 68, 47–55. [Google Scholar] [CrossRef]
- Chatterjee, M.; Geisler, T. Inflammatory Contribution of Platelets Revisited: New Players in the Arena of Inflammation. Semin. Thromb. Hemost. 2016, 42, 205–214. [Google Scholar] [CrossRef]
- Bhopale, G.M.; Nanda, R.K. Blood Coagulation Factor VIII: An Overview. J. Biosci. 2003, 28, 783–789. [Google Scholar] [CrossRef]
- Jenkins, G.R.; Seiffert, D.; Parmer, R.J.; Miles, L.A. Regulation of Plasminogen Gene Expression by Interleukin-6. Blood 1997, 89, 2394–2403. [Google Scholar] [CrossRef]
- Lackner, H.; Javid, J.P. The Clinical Significance of the Plasminogen Level. Am. J. Clin. Pathol. 1973, 60, 175–181. [Google Scholar] [CrossRef]
- Bannach, F.G.; Gutierrez-Fernandez, A.; Parmer, R.J.; Miles, L.A. Interleukin-6-Induced Plasminogen Gene Expression in Murine Hepatocytes Is Mediated by Transcription Factor CCAAT/Enhancer Binding Protein Beta (C/EBPbeta). J. Thromb. Haemost. 2004, 2, 2205–2212. [Google Scholar] [CrossRef] [PubMed]
- Awbrey, B.J.; Hoak, J.C.; Owen, W.G. Binding of Human Thrombin to Cultured Human Endothelial Cells. J. Biol. Chem. 1979, 254, 4092–4095. [Google Scholar] [CrossRef] [PubMed]
- Levin, E.G.; Marzec, U.; Anderson, J.; Harker, L.A. Thrombin Stimulates Tissue Plasminogen Activator Release from Cultured Human Endothelial Cells. J. Clin. Investig. 1984, 74, 1988–1995. [Google Scholar] [CrossRef] [PubMed]
- Urano, T.; Castellino, F.J.; Suzuki, Y. Regulation of Plasminogen Activation on Cell Surfaces and Fibrin. J. Thromb. Haemost. 2018, 16, 1487–1497. [Google Scholar] [CrossRef]
- Thelwell, C.; Longstaff, C. The Regulation by Fibrinogen and Fibrin of Tissue Plasminogen Activator Kinetics and Inhibition by Plasminogen Activator Inhibitor 1. J. Thromb. Haemost. 2007, 5, 804–811. [Google Scholar] [CrossRef]
- Dichek, D.; Quertermous, T. Thrombin Regulation of mRNA Levels of Tissue Plasminogen Activator and Plasminogen Activator Inhibitor-1 in Cultured Human Umbilical Vein Endothelial Cells. Blood 1989, 74, 222–228. [Google Scholar] [CrossRef]
- Grulich-Henn, J.; Müller-Berghaus, G. Regulation of Endothelial Tissue Plasminogen Activator and Plasminogen Activator Inhibitor Type 1 Synthesis by Diacylglycerol, Phorbol Ester, and Thrombin. Blut 1990, 61, 38–44. [Google Scholar] [CrossRef]
- Bajzar, L.; Nesheim, M.E.; Tracy, P.B. The Profibrinolytic Effect of Activated Protein C in Clots Formed from Plasma Is TAFI-Dependent. Blood 1996, 88, 2093–2100. [Google Scholar] [CrossRef]
- Sakata, Y.; Loskutoff, D.; Gladson, C.; Hekman, C.; Griffin, J. Mechanism of Protein C-Dependent Clot Lysis: Role of Plasminogen Activator Inhibitor. Blood 1986, 68, 1218–1223. [Google Scholar] [CrossRef] [PubMed]
- Gando, S.; Mayumi, T.; Ukai, T. Activated Protein C Plays No Major Roles in the Inhibition of Coagulation or Increased Fibrinolysis in Acute Coagulopathy of Trauma-Shock: A Systematic Review. Thromb. J. 2018, 16, 13. [Google Scholar] [CrossRef] [PubMed]
- Barranco-Medina, S.; Murphy, M.; Pelc, L.; Chen, Z.; Di Cera, E.; Pozzi, N. Rational Design of Protein C Activators. Sci. Rep. 2017, 7, 44596. [Google Scholar] [CrossRef]
- Agbani, E.O.; Poole, A.W. Procoagulant Platelets: Generation, Function, and Therapeutic Targeting in Thrombosis. Blood 2017, 130, 2171–2179. [Google Scholar] [CrossRef] [PubMed]
- Ng, A.P.; Kauppi, M.; Metcalf, D.; Hyland, C.D.; Josefsson, E.C.; Lebois, M.; Zhang, J.-G.; Baldwin, T.M.; Di Rago, L.; Hilton, D.J.; et al. Mpl Expression on Megakaryocytes and Platelets Is Dispensable for Thrombopoiesis but Essential to Prevent Myeloproliferation. Proc. Natl. Acad. Sci. USA 2014, 111, 5884–5889. [Google Scholar] [CrossRef]
- Grozovsky, R.; Giannini, S.; Falet, H.; Hoffmeister, K.M. Novel Mechanisms of Platelet Clearance and Thrombopoietin Regulation. Curr. Opin. Hematol. 2015, 22, 445–451. [Google Scholar] [CrossRef]
- Grozovsky, R.; Begonja, A.J.; Liu, K.; Visner, G.; Hartwig, J.H.; Falet, H.; Hoffmeister, K.M. The Ashwell-Morell Receptor Regulates Hepatic Thrombopoietin Production via JAK2-STAT3 Signaling. Nat. Med. 2015, 21, 47–54. [Google Scholar] [CrossRef]
- Burmester, H.; Wolber, E.-M.; Freitag, P.; Fandrey, J.; Jelkmann, W. Thrombopoietin Production in Wild-Type and Interleukin-6 Knockout Mice with Acute Inflammation. J. Interferon Cytokine Res. 2005, 25, 407–413. [Google Scholar] [CrossRef]
- Wolber, E.-M.; Jelkmann, W. Interleukin-6 Increases Thrombopoietin Production in Human Hepatoma Cells HepG2 and Hep3B. J. Interferon Cytokine Res. 2000, 20, 499–506. [Google Scholar] [CrossRef]
- Reusswig, F.; Fazel Modares, N.; Brechtenkamp, M.; Wienands, L.; Krüger, I.; Behnke, K.; Lee-Sundlov, M.M.; Herebian, D.; Scheller, J.; Hoffmeister, K.M.; et al. Efficiently Restored Thrombopoietin Production by Ashwell-Morell Receptor and IL-6R Induced Janus Kinase 2/Signal Transducer and Activator of Transcription Signaling Early After Partial Hepatectomy. Hepatology 2021, 74, 411–427. [Google Scholar] [CrossRef] [PubMed]
- Kulkarni, S.; Woollard, K.J.; Thomas, S.; Oxley, D.; Jackson, S.P. Conversion of Platelets from a Proaggregatory to a Proinflammatory Adhesive Phenotype: Role of PAF in Spatially Regulating Neutrophil Adhesion and Spreading. Blood 2007, 110, 1879–1886. [Google Scholar] [CrossRef] [PubMed]
- Iwamoto, S.; Kawasaki, T.; Kambayashi, J.; Ariyoshi, H.; Monden, M. Platelet Microparticles: A Carrier of Platelet-Activating Factor? Biochem. Biophys. Res. Commun. 1996, 218, 940–944. [Google Scholar] [CrossRef] [PubMed]
- Iwamoto, S.; Kawasaki, T.; Kambayashi, J.; Ariyoshi, H.; Shinoki, N.; Sakon, M.; Ikeda, Y.; Monden, M. The Release Mechanism of Platelet-Activating Factor during Shear-Stress Induced Platelet Aggregation. Biochem. Biophys. Res. Commun. 1997, 239, 101–105. [Google Scholar] [CrossRef]
- Lacasse, C.; Turcotte, S.; Gingras, D.; Stankova, J.; Rola-Pleszczynski, M. Platelet-Activating Factor Stimulates Interleukin-6 Production by Human Endothelial Cells and Synergizes with Tumor Necrosis Factor for Enhanced Production of Granulocyte-Macrophage Colony Stimulating Factor. Inflammation 1997, 21, 145–158. [Google Scholar] [CrossRef]
- Tamm, M.; Bihl, M.; Eickelberg, O.; Stulz, P.; Perruchoud, A.P.; Roth, M. Hypoxia-Induced Interleukin-6 and Interleukin-8 Production Is Mediated by Platelet-Activating Factor and Platelet-Derived Growth Factor in Primary Human Lung Cells. Am. J. Respir. Cell Mol. Biol. 1998, 19, 653–661. [Google Scholar] [CrossRef]
- Braquet, P.; Pignol, B.; Maisonnet, T.; Mencia-Huerta, J.M. Platelet-Activating Factor Modulates Interleukin-6 Production by Mouse Fibroblasts. Int. Arch. Allergy Appl. Immunol. 1991, 94, 165–166. [Google Scholar] [CrossRef]
- Gaumond, F.; Fortin, D.; Stankova, J.; Rola-Pleszczynski, M. Differential Signaling Pathways in Platelet-Activating Factor-Induced Proliferation and Interleukin-6 Production by Rat Vascular Smooth Muscle Cells. J. Cardiovasc. Pharmacol. 1997, 30, 169–175. [Google Scholar] [CrossRef]
- Hamel-Côté, G.; Lapointe, F.; Véronneau, S.; Mayhue, M.; Rola-Pleszczynski, M.; Stankova, J. Regulation of Platelet-Activating Factor-Mediated Interleukin-6 Promoter Activation by the 48 kDa but not the 45 kDa Isoform of Protein Tyrosine Phosphatase Non-Receptor Type 2. Cell Biosci. 2019, 9, 51. [Google Scholar] [CrossRef]
- Lu, P.; Liu, J.; Pang, X. Pravastatin Inhibits Fibrinogen- and FDP-Induced Inflammatory Response via Reducing the Production of IL-6, TNF-α and iNOS in Vascular Smooth Muscle Cells. Mol. Med. Rep. 2015, 12, 6145–6151. [Google Scholar] [CrossRef]
- Wang, S.; Du, L.; Chen, H.; Zhang, X.; Chen, B.; Yang, L. Paracrine Production of IL-6 Promotes a Hypercoagulable State in Pancreatic Cancer. Am. J. Cancer Res. 2021, 11, 5992–6003. [Google Scholar] [PubMed]
- Li, X.; Sim, M.M.S.; Wood, J.P. Recent Insights Into the Regulation of Coagulation and Thrombosis. ATVB 2020, 40, e119–e125. [Google Scholar] [CrossRef]
- Koh, C.Y.; Shih, N.; Yip, C.Y.C.; Li, A.W.L.; Chen, W.; Amran, F.S.; Leong, E.J.E.; Iyer, J.K.; Croft, G.; Mazlan, M.I.B.; et al. Efficacy and Safety of Next-Generation Tick Transcriptome-Derived Direct Thrombin Inhibitors. Nat. Commun. 2021, 12, 6912. [Google Scholar] [CrossRef] [PubMed]
- Khoukaz, H.B.; Ji, Y.; Braet, D.J.; Vadali, M.; Abdelhamid, A.A.; Emal, C.D.; Lawrence, D.A.; Fay, W.P. Drug Targeting of Plasminogen Activator Inhibitor-1 Inhibits Metabolic Dysfunction and Atherosclerosis in a Murine Model of Metabolic Syndrome. ATVB 2020, 40, 1479–1490. [Google Scholar] [CrossRef] [PubMed]
- Bentounes, N.K.; Melicine, S.; Martin, A.C.; Smadja, D.M.; Gendron, N. Development of New Anticoagulant in 2023: Prime Time for Anti-Factor XI and XIa Inhibitors. JMV J. Méd. Vasc. 2023, 48, 69–80. [Google Scholar] [CrossRef]
- Leentjens, J.; Middeldorp, S.; Jung, C. A Short Review of Ciraparantag in Perspective of the Currently Available Anticoagulant Reversal Agents. Drug Discov. Today 2022, 27, 103332. [Google Scholar] [CrossRef]
- Capodanno, D.; Angiolillo, D.J. Aspirin for Primary Cardiovascular Risk Prevention and Beyond in Diabetes Mellitus. Circulation 2016, 134, 1579–1594. [Google Scholar] [CrossRef]
- Watanabe, H.; Morimoto, T.; Natsuaki, M.; Yamamoto, K.; Obayashi, Y.; Nishikawa, R.; Ando, K.; Ono, K.; Kadota, K.; Suwa, S.; et al. Clopidogrel vs Aspirin Monotherapy Beyond 1 Year After Percutaneous Coronary Intervention. J. Am. Coll. Cardiol. 2024, 83, 17–31. [Google Scholar] [CrossRef]
- Passacquale, G.; Sharma, P.; Perera, D.; Ferro, A. Antiplatelet Therapy in Cardiovascular Disease: Current Status and Future Directions. Brit. J. Clinical. Pharma. 2022, 88, 2686–2699. [Google Scholar] [CrossRef]
- Wiśniewski, A.; Filipska, K.; Sikora, J.; Kozera, G. Aspirin Resistance Affects Medium-Term Recurrent Vascular Events after Cerebrovascular Incidents: A Three-Year Follow-up Study. Brain Sci. 2020, 10, 179. [Google Scholar] [CrossRef]
- Ma, T.; Wang, X.; Song, Y.; Liu, J.; Zhang, M. Construction and Evaluation of an Aspirin Resistance Risk Prediction Model for Ischemic Stroke. BMC Neurol. 2025, 25, 244. [Google Scholar] [CrossRef]
- Roman-Gonzalez, A.; Naranjo, C.A.; Cardona-Maya, W.D.; Vallejo, D.; Garcia, F.; Franco, C.; Alvarez, L.; Tobón, L.I.; López, M.I.; Rua, C.; et al. Frequency of Aspirin Resistance in Ischemic Stroke Patients and Healthy Controls from Colombia. Stroke Res. Treat. 2021, 2021, 924710. [Google Scholar] [CrossRef]
- Adali, M.K.; Buber, I.; Kilic, O.; Turkoz, A.; Yilmaz, S. Ticagrelor Improves Systemic Immune-Inflammation Index in Acute Coronary Syndrome Patients. Acta Cardiol. 2022, 77, 632–638. [Google Scholar] [CrossRef]
- Jósa, V.; Brodszky, V.; Zaránd, A.; Mezei, T.; Szilasi, Z.; Merkel, K.; Fehér, A.; Szállási, Z.; Baranyai, Z. The Relationship between IL-6 and Thrombocytosis Accompanying Gastrointestinal Tumours. Przegląd Gastroenterol. 2020, 15, 215–219. [Google Scholar] [CrossRef]
- Nishimoto, N.; Miyasaka, N.; Yamamoto, K.; Kawai, S.; Takeuchi, T.; Azuma, J. Long-Term Safety and Efficacy of Tocilizumab, an Anti-IL-6 Receptor Monoclonal Antibody, in Monotherapy, in Patients with Rheumatoid Arthritis (the STREAM Study): Evidence of Safety and Efficacy in a 5-Year Extension Study. Ann. Rheum. Dis. 2009, 68, 1580–1584. [Google Scholar] [CrossRef] [PubMed]
- Rempenault, C.; Lukas, C.; Combe, B.; Herrero, A.; Pane, I.; Schaeverbeke, T.; Wendling, D.; Pham, T.; Gottenberg, J.-E.; Mariette, X.; et al. Risk of Diverticulitis and Gastrointestinal Perforation in Rheumatoid Arthritis Treated with Tocilizumab Compared to Rituximab or Abatacept. Rheumatology 2022, 61, 953–962. [Google Scholar] [CrossRef] [PubMed]
- Jones, S.A.; Scheller, J.; Rose-John, S. Therapeutic Strategies for the Clinical Blockade of IL-6/Gp130 Signaling. J. Clin. Investig. 2011, 121, 3375–3383. [Google Scholar] [CrossRef] [PubMed]
- The REMAP-CAP Investigators. Interleukin-6 Receptor Antagonists in Critically Ill Patients with Covid-19. N. Engl. J. Med. 2021, 384, 1491–1502. [Google Scholar] [CrossRef]
- Carbonaro, M.; Wang, K.; Huang, H.; Frleta, D.; Patel, A.; Pennington, A.; Desclaux, M.; Moller-Tank, S.; Grindley, J.; Altarejos, J.; et al. IL-6–GP130 Signaling Protects Human Hepatocytes against Lipid Droplet Accumulation in Humanized Liver Models. Sci. Adv. 2023, 9, eadf4490. [Google Scholar] [CrossRef]
- Wang, M.-J.; Zhang, H.-L.; Chen, F.; Guo, X.-J.; Liu, Q.-G.; Hou, J. The Double-Edged Effects of IL-6 in Liver Regeneration, Aging, Inflammation, and Diseases. Exp. Hematol. Oncol. 2024, 13, 62. [Google Scholar] [CrossRef]
- Rose-John, S.; Jenkins, B.J.; Garbers, C.; Moll, J.M.; Scheller, J. Targeting IL-6 Trans-Signalling: Past, Present and Future Prospects. Nat. Rev. Immunol. 2023, 23, 666–681. [Google Scholar] [CrossRef]
- Biessen, E.A.L.; Van Berkel, T.J.C. N-Acetyl Galactosamine Targeting: Paving the Way for Clinical Application of Nucleotide Medicines in Cardiovascular Diseases. ATVB 2021, 41, 2855–2865. [Google Scholar] [CrossRef] [PubMed]
- Lanao, J.M. Frontiers in Hepatic Drug Delivery-Grand Challenges. Front. Drug Deliv. 2023, 3, 1265446. [Google Scholar] [CrossRef]
- Ridker, P.M.; Everett, B.M.; Thuren, T.; MacFadyen, J.G.; Chang, W.H.; Ballantyne, C.; Fonseca, F.; Nicolau, J.; Koenig, W.; Anker, S.D.; et al. Antiinflammatory Therapy with Canakinumab for Atherosclerotic Disease. N. Engl. J. Med. 2017, 377, 1119–1131. [Google Scholar] [CrossRef]
- Liao, J.K.; Laufs, U. Pleiotropic Effects of Statins. Annu. Rev. Pharmacol. Toxicol. 2005, 45, 89–118. [Google Scholar] [CrossRef]
- Kandelouei, T.; Abbasifard, M.; Imani, D.; Aslani, S.; Razi, B.; Fasihi, M.; Shafiekhani, S.; Mohammadi, K.; Jamialahmadi, T.; Reiner, Ž.; et al. Effect of Statins on Serum Level of Hs-CRP and CRP in Patients with Cardiovascular Diseases: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Mediat. Inflamm. 2022, 2022, 732360. [Google Scholar] [CrossRef] [PubMed]
- Siniscalchi, C.; Basaglia, M.; Riva, M.; Meschi, M.; Meschi, T.; Castaldo, G.; Di Micco, P. Statins Effects on Blood Clotting: A Review. Cells 2023, 12, 2719. [Google Scholar] [CrossRef] [PubMed]
- Deftereos, S.G.; Beerkens, F.J.; Shah, B.; Giannopoulos, G.; Vrachatis, D.A.; Giotaki, S.G.; Siasos, G.; Nicolas, J.; Arnott, C.; Patel, S.; et al. Colchicine in Cardiovascular Disease: In-Depth Review. Circulation 2022, 145, 61–78. [Google Scholar] [CrossRef] [PubMed]
- Reddy, E.C.; Rand, M.L. Procoagulant Phosphatidylserine-Exposing Platelets in Vitro and in Vivo. Front. Cardiovasc. Med. 2020, 7, 15. [Google Scholar] [CrossRef]
- Josefsson, E.C.; Ramström, S.; Thaler, J.; Lordkipanidzé, M.; Agbani, E.O.; Alberio, L.; Bakchoul, T.; Bouchard, B.A.; Camera, M.; Chen, V.; et al. Consensus Report on Markers to Distinguish Procoagulant Platelets from Apoptotic Platelets: Communication from the Scientific and Standardization Committee of the ISTH. J. Thromb. Haemost. 2023, 21, 2291–2299. [Google Scholar] [CrossRef]
- Merali, S.; Wang, Z.; Frost, C.; Callejo, M.; Hedrick, M.; Hui, L.; Meadows Shropshire, S.; Xu, K.; Bouvier, M.; DeSouza, M.M.; et al. New Oral Protease-Activated Receptor 4 Antagonist BMS-986120: Tolerability, Pharmacokinetics, Pharmacodynamics, and Gene Variant Effects in Humans. Platelets 2022, 33, 969–978. [Google Scholar] [CrossRef]
- Liu, M.; Zhao, X. Platelet Glycoprotein VI: A Novel Target for Antithrombotic Therapy in Cardiovascular Disease. Cardiol. Discov. 2024, 4, 309–318. [Google Scholar] [CrossRef]
- Vaughan, D.E. PAI-1 and Atherothrombosis. J. Thromb. Haemost. 2005, 3, 1879–1883. [Google Scholar] [CrossRef] [PubMed]
- Södergren, A.L.; Ramström, S. Platelet Subpopulations Remain despite Strong Dual Agonist Stimulation and Can Be Characterised Using a Novel Six-Colour Flow Cytometry Protocol. Sci. Rep. 2018, 8, 1441. [Google Scholar] [CrossRef] [PubMed]
Target | Goal | Conventional Therapies (Mechanism) | Novel/Targeted Therapies (Mechanism) | Potential Risks |
IL-6–TPO axis | Blunt cytokine-driven thrombopoiesis (reactive thrombocytosis). ↓IL -6 signaling → ↓TPO output; potential ↓fibrinogen; platelets trend toward normalization | -Corticosteroids (broad ↓cytokines incl. IL-6); -NSAIDs (minimal on IL-6/TPO); -general anticoagulants (heparin/DOACs/VKA) have no direct effect on IL-6/TPO | -IL-6R mAbs (tocilizumab, sarilumab → block classic/trans-signaling); -JAK inhibitors (e.g., baricitinib → dampen STAT signaling); -PAF-R antagonists (upstream ↓IL-6); statins/fibrates (pleiotropy: ↓IL-6/CRP, ↓PAI-1) | -Bacterial infection by IL-6/JAK blockade; -IL-6 blockers may mask fever/CRP; lipid changes; |
Thrombin–FgDP–IL-6–TPO axis | Reduce thrombin generation and/or IL-6 amplification from FgDP ↓FgDP formation and/or ↓IL-6 response → ↓TPO; improved inflammatory tone | -Heparins/DOACs/VKA (↓thrombin → ↓fibrin → ↓FgDP); -antifibrinolytics (TXA) ↓FgDP but may stabilize clots. | -PAR-1/4 antagonists (↓thrombin-platelet signaling); GPVI inhibitors (↓collagen-driven procoagulant platelets → less thrombin/PAF); -IL-6 pathway inhibitors (block downstream amplification) | -Anticoagulant/antiplatelet bleeding risk; -TXA may worsen thrombosis. |
FgDP–IL-6–plasminogen axis | Tune fibrinolysis recovery without excessive IL-6 surge. Balanced: maintain fibrinolysis while preventing IL-6 overshoot; stable plasminogen pool | -tPA/tenecteplase (↑plasmin, ↑FgDP use for lysis, but may ↑IL-6); -PAI-1↑ (physiologic/inflammatory) dampens fibrinolysis; -fibrates (↓PAI-1). | -PAI-1 inhibitors (pro-fibrinolytic; may ↑FgDP → watch IL-6); -IL-6 blockade to cap cytokine surge during high FgDP states; -hepatocyte-targeted FgDP-mimic without leukocyte activation | -β2-integrin/TLR activation on monocytes must be avoided |
Platelet subpopulation–specific (procoagulant vs. aggregatory) | Selectively dampen procoagulant platelets while preserving physiologic aggregation. ↓PAF and thrombin-driven IL-6 triggers → indirect ↓TPO; less propagation of thrombo-inflammation. | -Aspirin/P2Y12 inhibitors reduce aggregation but do not specifically target procoagulant phenotype | -PAR-4 (±PAR-1) antagonists (thrombin-platelet axis); -GPVI inhibitors (collagen axis); -PAF-R antagonists (↓PAF-driven IL-6). | -Bleeding risk |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bergo, I.; Slevin, M.; Pastorello, Y.; Höhne, A.; Tero-Vescan, A. The Interconnected World of Coagulation Factors, Platelets and Plasminogen: A Novel Perspective on Biosynthetic Regulation. Life 2025, 15, 1593. https://doi.org/10.3390/life15101593
Bergo I, Slevin M, Pastorello Y, Höhne A, Tero-Vescan A. The Interconnected World of Coagulation Factors, Platelets and Plasminogen: A Novel Perspective on Biosynthetic Regulation. Life. 2025; 15(10):1593. https://doi.org/10.3390/life15101593
Chicago/Turabian StyleBergo, Ivan, Mark Slevin, Ylenia Pastorello, Aaron Höhne, and Amelia Tero-Vescan. 2025. "The Interconnected World of Coagulation Factors, Platelets and Plasminogen: A Novel Perspective on Biosynthetic Regulation" Life 15, no. 10: 1593. https://doi.org/10.3390/life15101593
APA StyleBergo, I., Slevin, M., Pastorello, Y., Höhne, A., & Tero-Vescan, A. (2025). The Interconnected World of Coagulation Factors, Platelets and Plasminogen: A Novel Perspective on Biosynthetic Regulation. Life, 15(10), 1593. https://doi.org/10.3390/life15101593