The Association Between the Triglyceride–Glucose Index and the Risk of Cardiovascular Disease in Patients with Type 2 Diabetes Mellitus: A Cross-Sectional Study
Abstract
1. Introduction
2. Methods
2.1. Study Design and Population
2.2. Assessment of Triglyceride–Glucose Index
2.3. Assessment of Cardiovascular Risk
2.4. Assessment of Diabetes
2.5. Section of Covariates
2.6. Statistical Analysis
3. Results
3.1. Characteristics of Included Patients
3.2. Triglyceride–Glucose Index and Cardiovascular Events
3.3. Triglyceride–Glucose Index Performance
3.4. Subgroup Analysis
4. Discussion
4.1. TG Index and Age
4.2. TG Index and Gender
4.3. TG Index and Heart Failure
4.4. TG Index and Stroke Risk: Focus on Ischemic Stroke
4.5. Optimal Cut-Off Value of TG Index for Predicting CV Events and Global Perspective
4.6. Addressing the Middle Eastern Evidence Gap
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- World Health Organization. Cardiovascular Diseases (CVDs) Fact Sheet. 2022. Available online: https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds) (accessed on 27 June 2025).
- Roth, G.A.; Mensah, G.A.; Johnson, C.O.; Addolorato, G.; Ammirati, E.; Baddour, L.M.; Barengo, N.C.; Beaton, A.Z.; Benjamin, E.J.; Benziger, C.P.; et al. Global Burden of Cardiovascular Diseases and Risk Factors, 1990–2019: Update from the GBD 2019 Study. J. Am. Coll. Cardiol. 2020, 76, 2982–3021. [Google Scholar] [CrossRef]
- National Health Service. Cardiovascular Disease. NHS 2017. Available online: https://www.nhs.uk/conditions/cardiovascular-disease/ (accessed on 27 June 2025).
- Sun, Y.; Ji, H.; Sun, W.; An, X.; Lian, F. Triglyceride–Glucose (TyG) Index: A Promising Biomarker for Diagnosis and Treatment of Different Diseases. Eur. J. Intern. Med. 2025, 131, 3–14. [Google Scholar] [CrossRef]
- Liang, S.; Wang, C.; Zhang, J.; Liu, Z.; Bai, Y.; Chen, Z.; Huang, H.; He, Y. Triglyceride–Glucose Index and Coronary Artery Disease: A Systematic Review and Meta-Analysis of Risk, Severity, and Prognosis. Cardiovasc. Diabetol. 2023, 22, 170. [Google Scholar] [CrossRef]
- Huang, R.; Wang, Z.; Chen, J.; Bao, X.; Xu, N.; Guo, S.; Gu, R.; Wang, W.; Wei, Z.; Wang, L. Prognostic Value of Triglyceride–Glucose (TyG) Index in Patients with Acute Decompensated Heart Failure. Cardiovasc. Diabetol. 2022, 21, 88. [Google Scholar] [CrossRef] [PubMed]
- Huang, Z.; Ding, X.; Yue, Q.; Wang, X.; Chen, Z.; Cai, Z.; Li, W.; Cai, Z.; Chen, G.; Lan, Y.; et al. Triglyceride–Glucose Index Trajectory and Stroke Incidence in Patients with Hypertension: A Prospective Cohort Study. Cardiovasc. Diabetol. 2022, 21, 141. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.W.; Chang, C.C.; Chou, R.H.; Tsai, Y.L.; Liu, L.K.; Chen, L.K.; Huang, P.-H.; Lin, S.-J. Gender Difference in the Association between TyG Index and Subclinical Atherosclerosis: Results from the I-Lan Longitudinal Aging Study. Cardiovasc. Diabetol. 2021, 20, 206. [Google Scholar] [CrossRef] [PubMed]
- Rivière, B.; Jaussent, A.; Macioce, V.; Faure, S.; Builles, N.; Lefebvre, P.; Géraud, P.; Picot, M.-C.; Rebuffat, S.; Renard, E.; et al. The Triglycerides and Glucose (TyG) Index: A New Marker Associated with Nonalcoholic Steatohepatitis (NASH) in Obese Patients. Diabetes Metab. 2022, 48, 101345. [Google Scholar] [CrossRef]
- Yang, C.; Song, Y.; Wang, X.; Yang, Y.; Zhou, Y.; Wang, D.; Hou, J.; Wang, P. Association of Hypertension with the Triglyceride–Glucose Index and Its Associated Indices in the Chinese Population: A 6-Year Prospective Cohort Study. J. Clin. Hypertens. 2024, 26, 53–62. [Google Scholar] [CrossRef]
- Nikoloski, Z. Obesity in Middle East. In Metabolic Syndrome; Springer: Cham, Switzerland, 2023; pp. 1–16. [Google Scholar]
- Afshin, A.; Forouzanfar, M.H.; Reitsma, M.B.; Sur, P.; Estep, K.; Lee, A.; Marczak, L.; Mokdad, A.H.; Moradi-Lakeh, M.; Naghavi, M.; et al. Health Effects of Overweight and Obesity in 195 Countries over 25 Years. N. Engl. J. Med. 2017, 377, 13–27. [Google Scholar]
- Song, G.; Zhang, Y.; Jiang, Y.; Zhang, H.; Gu, W.; Xu, X.; Yao, J.; Chen, Z. Circular RNA PIP5K1A Promotes Glucose and Lipid Metabolism Disorders and Inflammation in Type 2 Diabetes Mellitus. Mol. Biotechnol. 2024, 66, 3549–3558. [Google Scholar] [CrossRef]
- Wu, S.; Xu, W.; Guan, C.; Lv, M.; Jiang, S.; Jinhua, Z. Global Burden of Cardiovascular Disease Attributable to Metabolic Risk Factors, 1990–2019: An Analysis of Observational Data from a 2019 Global Burden of Disease Study. BMJ Open 2023, 13, e069397. [Google Scholar] [CrossRef]
- Sun, H.; Saeedi, P.; Karuranga, S.; Pinkepank, M.; Ogurtsova, K.; Duncan, B.B.; Stein, C.; Basit, A.; Chan, J.C.; Mbanya, J.C.; et al. IDF Diabetes Atlas: Global, Regional and Country-Level Diabetes Prevalence Estimates for 2021 and Projections for 2045. Diabetes Res. Clin. Pract. 2022, 183, 109119. [Google Scholar] [CrossRef] [PubMed]
- Ajlouni, K.; Batieha, A.; Jaddou, H.; Khader, Y.; Abdo, N.; El-Khateeb, M.; Hyassat, D.; Al-Louzi, D. Time Trends in Diabetes Mellitus in Jordan between 1994 and 2017. Diabet. Med. 2019, 36, 1176–1182. [Google Scholar] [CrossRef]
- Low, S.; Khoo, K.C.J.; Irwan, B.; Sum, C.F.; Subramaniam, T.; Lim, S.C.; Wong, T.K.M. Triglyceride–Glucose Index in the Development of Type 2 Diabetes Mellitus. Diabetes Res. Clin. Pract. 2018, 143, 43–49. [Google Scholar] [CrossRef] [PubMed]
- American Diabetes Association Professional Practice Committee. 2. Diagnosis and Classification of Diabetes: Standards of Care in Diabetes—2025. Diabetes Care 2025, 48 (Suppl. 1), S27–S49. [Google Scholar] [CrossRef]
- Obeidat, A.A.; Ahmad, M.N.; Haddad, F.H.; Azzeh, F.S. Alarming High Prevalence of Metabolic Syndrome among Jordanian Adults. Pak. J. Med. Sci. 2015, 31, 1377–1382. [Google Scholar] [CrossRef] [PubMed]
- Haddad, J.A.; Annabi, F.O.A.; Abbasi, H.; AlSamen, M.A.A.; Ammari, F.L.; Haddad, F.H.; Haddad, S.E.; Jaradat, M.; Khassawneh, A.; Khatib, N.; et al. The Prevalence of Atherosclerotic Cardiovascular Disease in Patients with Type 2 Diabetes in Jordan: The PACT-MEA Study. Diabetes Ther. 2025, 16, 899–913. [Google Scholar] [CrossRef]
- Barzegar, N.; Tohidi, M.; Hasheminia, M.; Azizi, F.; Hadaegh, F. The Impact of Triglyceride–Glucose Index on Incident Cardiovascular Events during 16 Years of Follow-Up: Tehran Lipid and Glucose Study. Cardiovasc. Diabetol. 2020, 19, 155. [Google Scholar] [CrossRef]
- Zhao, M.; Xiao, M.; Tan, Q.; Lu, F. Triglyceride–Glucose Index as a Predictor of Mortality in Middle-Aged and Elderly Patients with Type 2 Diabetes in the US. Sci. Rep. 2023, 13, 16478. [Google Scholar] [CrossRef]
- Dang, K.; Wang, X.; Hu, J.; Zhang, Y.; Cheng, L.; Qi, X.; Liu, L.; Ming, Z.; Tao, X.; Li, Y. The Association between Triglyceride–Glucose Index and Its Combination with Obesity Indicators and Cardiovascular Disease: NHANES 2003–2018. Cardiovasc. Diabetol. 2024, 23, 8. [Google Scholar] [CrossRef]
- Cui, C.; Qi, Y.; Song, J.; Shang, X.; Han, T.; Han, N.; Yue, S.; Zha, Y.; Xu, Z.; Li, J.; et al. Comparison of Triglyceride–Glucose Index and Modified Triglyceride–Glucose Indices in Prediction of Cardiovascular Diseases in Middle Aged and Older Chinese Adults. Cardiovasc. Diabetol. 2024, 23, 185. [Google Scholar] [CrossRef]
- Lertsakulbunlue, P.; Sobhonslidsuk, A.; Charoensuk, K.; Kanjanahattakij, N.; Nathisuwan, S. Trends in Baseline Triglyceride–Glucose Index and Association with Predicted 10-Year Cardiovascular Disease Risk among Type 2 Diabetes Patients in Thailand. Sci. Rep. 2023, 13, 13819. [Google Scholar] [CrossRef]
- Zhang, F.; Hou, X. Association between the Triglyceride–Glucose Index and Heart Failure: Analysis of NHANES 2007–2018. Front. Endocrinol. 2023, 14, 1322445. [Google Scholar] [CrossRef]
- Aroor, A.R.; Mandavia, C.; Sowers, J.R. Insulin Resistance and Heart Failure: Molecular Mechanisms. Heart Fail. Clin. 2012, 8, 609–617. [Google Scholar] [CrossRef]
- Wang, A.; Wang, G.; Liu, Q.; Zuo, Y.; Chen, S.; Tao, B.; Tian, X.; Wang, P.; Meng, X.; Wu, S.; et al. Triglyceride–Glucose Index and the Risk of Stroke and Its Subtypes in the General Population: An 11-Year Follow-Up. Cardiovasc. Diabetol. 2021, 20, 46. [Google Scholar] [CrossRef]
- Li, X.; Hao, J.; Han, Q.; Wang, D.; Lu, Y.; Tu, J.; Wang, L.; Wang, J.; Ning, X.; Yang, C.; et al. Triglyceride–Glucose Index Prediction of Stroke Incidence Risk in Low-Income Chinese Population: A 10-Year Prospective Cohort Study. Front. Endocrinol. 2024, 15, 1444030. [Google Scholar] [CrossRef]
- Wang, X.; Liu, Q.; Wang, T.; Tian, W.; Chen, X.; Zhang, J.; Li, Q.; Ma, D.; Zhao, L.; Chen, Z.; et al. Triglyceride–Glucose Index and the Risk of Stroke in American Adults: Findings from the Atherosclerosis Risk in Communities Study. Diabetol. Metab. Syndr. 2023, 15, 187. [Google Scholar] [CrossRef] [PubMed]
- Liao, C.; Xu, H.; Jin, T.; Xu, K.; Xu, Z.; Zhu, L.; Liu, M. Triglyceride–Glucose Index and the Incidence of Stroke: A Meta-Analysis of Cohort Studies. Front. Neurol. 2023, 13, 1033385. [Google Scholar] [CrossRef]
- Wu, M.; Li, C.; Yu, Y.; Zeng, L.; Qiu, Y.; Liu, J.; Yang, F.; Han, Y. Association between the triglyceride-glucose (TyG) index and stroke risk in Chinese normal-weight adults: A population-based study. Diabetol. Metab. Syndr. 2024, 16, 176. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Cong, H.L.; Zhang, J.X.; Hu, Y.-C.; Wei, A.; Zhang, Y.-Y.; Yang, H.; Ren, L.-B.; Qi, W.; Li, W.-Y.; et al. Triglyceride–Glucose Index Predicts Adverse Cardiovascular Events in Patients with Diabetes and Acute Coronary Syndrome. Cardiovasc. Diabetol. 2020, 19, 80. [Google Scholar] [CrossRef] [PubMed]
- Tao, S.; Yu, L.; Li, J.; Xie, Z.; Huang, L.; Yang, D. Prognostic Value of Triglyceride–Glucose Index in Patients with Chronic Coronary Syndrome Undergoing Percutaneous Coronary Intervention. Cardiovasc. Diabetol. 2023, 22, 322. [Google Scholar] [CrossRef]
- Da Silva, A.P.S.; Caldas, A.P.S.; Hermsdorff, H.H.M.; Bersch-Ferreira, Â.C.; Torreglosa, C.R.; Weber, B.; Bressan, J. TyG Index Predicts Intermediate/High Cardiovascular Risk in Adults with Cardiometabolic Features: A PROCARDIO-UFV Trial. Nutr. Sci. 2022, 10, 51. [Google Scholar]
- Sánchez-Íñigo, L.; Navarro-González, D.; Fernández-Montero, A.; Pastrana-Delgado, J.; Martínez, J.A.; VMCUN Cohort Investigators. The TyG Index Predicts Development of Cardiovascular Events: A 10-Year Prospective Study. Eur. J. Clin. Investig. 2016, 46, 189–197. [Google Scholar] [CrossRef]
- Pavanello, C.; Ruscica, M.; Castiglione, S.; Mombelli, G.G.; Alberti, A.; Calabresi, L.; Sirtori, C.R. Triglyceride–Glucose Index: Carotid Intima-Media Thickness and Cardiovascular Risk in a European Population. Cardiovasc. Diabetol. 2025, 24, 17. [Google Scholar] [CrossRef]
- Muhammad, I.F.; Bao, X.; Nilsson, P.M.; Zaigham, S. Triglyceride–Glucose (TyG) Index Is a Predictor of Arterial Stiffness, Incidence of Diabetes, Cardiovascular Disease, and All-Cause and Cardiovascular Mortality: A Longitudinal Two-Cohort Analysis. Front. Cardiovasc. Med. 2023, 9, 1035105. [Google Scholar] [CrossRef] [PubMed]
- Yoon, J.S.; Shim, Y.S.; Lee, H.S.; Hwang, I.T.; Hwang, J.S. A Population-Based Study of TyG Index Distribution and Its Relationship to Cardiometabolic Risk Factors in Children and Adolescents. Sci. Rep. 2021, 11, 23660. [Google Scholar] [CrossRef] [PubMed]
- Moon, S.; Park, J.S.; Ahn, Y. The Cut-Off Values of Triglycerides and Glucose Index for Metabolic Syndrome in American and Korean Adolescents. J. Korean Med. Sci. 2017, 32, 427–433. [Google Scholar] [CrossRef]
- Marcus, M.E.; Manne-Goehler, J.; Theilmann, M.; Farzadfar, F.; Moghaddam, S.S.; Keykhaei, M.; Hajebi, A.; Tschida, S.; Lemp, J.M.; Aryal, K.K.; et al. Use of Statins for the Prevention of Cardiovascular Disease in 41 Low-Income and Middle-Income Countries: A Cross-Sectional Study of Nationally Representative, Individual-Level Data. Lancet Glob. Health 2022, 10, e369–e379. [Google Scholar] [CrossRef] [PubMed]
[ALL] | No MACE | MACE | p Overall | |
---|---|---|---|---|
N = 1412 | N = 1098 | N = 314 | ||
Age | 60.0 [54.0; 68.0] | 59.0 [52.0; 66.0] | 64.0 [57.0; 72.0] | <0.001 |
Gender: | <0.001 | |||
0 | 832 (58.9%) | 699 (63.7%) | 133 (42.4%) | |
1 | 580 (41.1%) | 399 (36.3%) | 181 (57.6%) | |
DM: Y | 1412 (100%) | 1098 (100%) | 314 (100%) | |
HTN: | <0.001 | |||
N | 432 (30.6%) | 387 (35.2%) | 45 (14.3%) | |
Y | 980 (69.4%) | 711 (64.8%) | 269 (85.7%) | |
Weight | 84.0 [74.0; 96.8] | 83.0 [74.0; 96.0] | 88.0 [77.6; 98.0] | 0.002 |
Height | 1.61 [1.55; 1.70] | 1.60 [1.54; 1.68] | 1.65 [1.57; 1.71] | <0.001 |
BMI | 32.0 [28.2; 36.4] | 32.0 [28.2; 36.6] | 32.0 [28.3; 36.1] | 0.875 |
serum Cr. 1 | 0.76 [0.60; 1.00] | 0.72 [0.58; 0.92] | 0.95 [0.71; 1.29] | <0.001 |
serum Cr2 | 0.77 [0.60; 1.00] | 0.73 [0.58; 0.93] | 0.94 [0.73; 1.31] | <0.001 |
Mean GFR(MDRD) | 96.9 [68.1; 123] | 102 [74.8; 127] | 75.9 [54.0; 103] | <0.001 |
CKD-EPI 1 | 91.4 [66.9; 103] | 93.8 [74.5; 104] | 72.6 [52.0; 95.3] | <0.001 |
HBAic < 7, 7–8, 8–9, >9% | 7.40 [6.50; 8.60] | 7.30 [6.50; 8.50] | 7.90 [6.70; 9.00] | 0.001 |
LDL > 100 | 92.0 [72.6; 114] | 92.0 [73.0; 114] | 88.0 [71.0; 114] | 0.248 |
HDL < 38 men, <50 women | 43.0 [36.0; 51.0] | 44.0 [36.0; 52.0] | 39.0 [33.0; 47.0] | <0.001 |
Trig > 160 | 147 [108; 208] | 144 [107; 203] | 154 [120; 232] | 0.003 |
Vit d 1 | 19.2 [12.3; 29.2] | 19.3 [12.3; 29.4] | 18.9 [12.3; 29.0] | 0.873 |
vit d 2 | 30.3 [18.9; 45.2] | 30.8 [19.1; 45.4] | 27.6 [17.2; 42.9] | 0.307 |
Vit_d_mean | 24.3 [16.1; 35.9] | 24.7 [16.6; 35.9] | 23.5 [15.7; 35.4] | 0.277 |
serum_Cr_mean | 0.76 [0.60; 1.00] | 0.72 [0.58; 0.92] | 0.94 [0.74; 1.27] | <0.001 |
Mean_GFR_MDRD_mean | 97.1 [69.4; 121] | 102 [77.2; 125] | 77.5 [56.7; 105] | <0.001 |
CKD_EPI_mean | 92.1 [68.8; 103] | 94.8 [76.1; 106] | 76.4 [54.0; 95.2] | <0.001 |
Smoking (never/current smoker/ex-smoker): | <0.001 | |||
N/N/N | 1 (0.07%) | 1 (0.09%) | 0 (0.00%) | |
N/N/Y | 177 (12.5%) | 106 (9.65%) | 71 (22.6%) | |
N/Y/N | 27 (1.91%) | 19 (1.73%) | 8 (2.55%) | |
N/Y/Y | 213 (15.1%) | 155 (14.1%) | 58 (18.5%) | |
N/YY | 2 (0.14%) | 2 (0.18%) | 0 (0.00%) | |
Y/N/N | 991 (70.2%) | 815 (74.2%) | 176 (56.1%) | |
Y/NN | 1 (0.07%) | 0 (0.00%) | 1 (0.32%) | |
PTH | 69.9 [48.4; 109] | 65.9 [47.0; 99.6] | 88.9 [53.0; 137] | <0.001 |
Ca | 9.50 [9.20; 9.80] | 9.52 [9.24; 9.80] | 9.40 [9.10; 9.70] | <0.001 |
Phosphorous | 3.50 [3.10; 3.90] | 3.50 [3.10; 3.90] | 3.40 [3.00; 3.86] | 0.080 |
Albumin | 4.32 [4.10; 4.53] | 4.34 [4.14; 4.55] | 4.26 [3.99; 4.48] | <0.001 |
Alkaline phosph. | 79.0 [64.0; 97.0] | 79.0 [64.0; 94.0] | 83.0 [64.0; 104] | 0.038 |
Mg | 1.80 [1.60; 1.92] | 1.80 [1.60; 1.91] | 1.80 [1.60; 1.92] | 0.612 |
Insulin: | 0.010 | |||
N | 712 (50.5%) | 575 (52.5%) | 137 (43.6%) | |
Y | 698 (49.5%) | 521 (47.5%) | 177 (56.4%) | |
Aspirin: | <0.001 | |||
N | 415 (29.4%) | 368 (33.6%) | 47 (15.0%) | |
Y | 995 (70.6%) | 728 (66.4%) | 267 (85.0%) | |
ARBs: | 0.039 | |||
N | 923 (65.5%) | 734 (67.0%) | 189 (60.2%) | |
Y | 487 (34.5%) | 362 (33.0%) | 125 (39.8%) | |
ACEIs: | 0.005 | |||
N | 1147 (81.3%) | 910 (83.0%) | 237 (75.5%) | |
Y | 263 (18.7%) | 186 (17.0%) | 77 (24.5%) | |
Statins: | 0.002 | |||
N | 247 (17.5%) | 212 (19.3%) | 35 (11.1%) | |
Y | 1163 (82.5%) | 884 (80.7%) | 279 (88.9%) | |
Beta Blockers: | <0.001 | |||
N | 791 (56.1%) | 703 (64.1%) | 88 (28.0%) | |
Y | 619 (43.9%) | 393 (35.9%) | 226 (72.0%) | |
Diuretics: | <0.001 | |||
N | 898 (63.7%) | 759 (69.3%) | 139 (44.3%) | |
Y | 512 (36.3%) | 337 (30.7%) | 175 (55.7%) | |
Metformin: | <0.001 | |||
N | 328 (23.3%) | 228 (20.8%) | 100 (31.8%) | |
Y | 1082 (76.7%) | 868 (79.2%) | 214 (68.2%) | |
CCBs: | 0.002 | |||
N | 1009 (71.6%) | 808 (73.7%) | 201 (64.0%) | |
Y | 401 (28.4%) | 288 (26.3%) | 113 (36.0%) | |
PPIs: | <0.001 | |||
N | 615 (43.6%) | 519 (47.4%) | 96 (30.6%) | |
Y | 795 (56.4%) | 577 (52.6%) | 218 (69.4%) | |
Oral antiDM: | 0.725 | |||
N | 783 (55.5%) | 605 (55.2%) | 178 (56.7%) | |
Y | 627 (44.5%) | 491 (44.8%) | 136 (43.3%) |
MACE | |||
---|---|---|---|
Yes | No | ||
Variable | Mean ± STDV | Mean ± STDV | p |
TGI | 9.51 ± 0.66 | 9.25 ± 0.66 | <0.001 |
Stroke | |||
TGI | 9.42 ± 0.65 | 9.30 ± 0.67 | 0.106 |
CAD | |||
TGI | 9.60 ± 0.67 | 9.28 ± 0.67 | <0.001 |
CHF | |||
TGI | 9.52 ± 0.71 | 9.29 ± 0.67 | <0.001 |
MI | |||
TGI | 9.61 ± 0.66 | 9.27 ± 0.66 | <0.001 |
MACE | ||||||
---|---|---|---|---|---|---|
Unadjusted | Partially Adjusted | Fully Adjusted | ||||
Variable | OR (95%CI) | p | OR (95%CI) | p | OR (95%CI) | p |
TGI | 1.80 (1.48–2.19) | <0.001 | 1.88 (1.51–2.35) | <0.001 | 1.80 (1.21–2.69) | 0.004 |
Stroke | ||||||
TGI | 1.30 (0.95–1.77) | 0.105 | 1.33 (0.95–1.87) | 0.097 | 1.43 (0.78–2.62 | 0.243 |
CAD | ||||||
TGI | 2.01 (1.56–2.60) | <0.001 | 2.08 (1.56–2.78) | <0.001 | 2.36 (1.41–3.95) | 0.001 |
CHF | ||||||
TGI | 1.66 (1.27–2.17) | <0.001 | 1.67 (1.25–2.23) | <0.001 | 1.60 (0.95–2.58) | 0.076 |
MI | ||||||
TGI | 2.09 (1.63–2.69) | <0.001 | 2.19 (1.65–2.91) | <0.001 | 2.43 (1.46–4.03) | 0.001 |
MACE | ||||||
---|---|---|---|---|---|---|
Unadjusted | Partially Adjusted | Fully Adjusted | ||||
Variable | OR (95%CI) | p | OR (95%CI) | p | OR (95%CI) | p |
First quartile | Ref | Ref | Ref | Ref | Ref | Ref |
Second quartile | 1.44 (0.96–2.18) | 0.081 | 1.49 (0.961–2.29) | 0.075 | 1.88 (0.946–3.73) | 0.071 |
Third quartile | 1.93 (1.29–2.87) | 0.001 | 1.95 (1.28–2.97) | 0.002 | 1.88 (1.04–3.73) | 0.047 |
Fourth quartile | 2.82 (1.91–4.14) | <0.001 | 3.16 (2.09–4.78) | <0.001 | 2.81 (1.34–5.88) | 0.006 |
Stroke | ||||||
First quartile | Ref | Ref | Ref | Ref | Ref | Ref |
Second quartile | 1.39 (0.730–2.63) | 0.319 | 1.43 (0.776–2.63) | 0.252 | 1.54 (0.573–4.12) | 0.393 |
Third quartile | 1.39 (0.734–2.65) | 0.310 | 2.00 (1.12–3.57) | 0.019 | 1.19 (0.430–3.27) | 0.741 |
Fourth quartile | 1.52 (0.806–2.85) | 0.197 | 3.66 (2.10–6.36) | <0.001 | 1.68 (0.570–4.95) | 0.347 |
CAD | ||||||
First quartile | Ref | Ref | Ref | Ref | Ref | Ref |
Second quartile | 1.38 (0.760–2.50) | 0.291 | 1.24 (0.681–2.27) | 0.480 | 1.39 (0.506–3.80) | 0.525 |
Third quartile | 2.00 (1.14–3.51) | 0.015 | 1.44 (0.800–2.58) | 0.225 | 1.67 (0.646–4.29) | 0.291 |
Fourth quartile | 3.17 (1.86–5.40) | <0.001 | 2.59 (1.49–4.48) | 0.001 | 3.55 (1.32–9.52) | 0.012 |
CHF | ||||||
First quartile | Ref | Ref | Ref | Ref | Ref | Ref |
Second quartile | 1.26 (0.700–2.28) | 0.442 | 1.37 (0.743–2.53) | 0.313 | 1.60 (0.618–4.14) | 0.333 |
Third quartile | 1.47 (0.827–2.62) | 0.189 | 1.93 (1.08–3.45) | 0.027 | 1.53 (0.591–3.94) | 0.383 |
Fourth quartile | 2.52 (1.48–4.30) | 0.001 | 3.34 (1.91–5.84) | <0.001 | 2.59 (0.976–6.89) | 0.056 |
MI | ||||||
First quartile | Ref | Ref | Ref | Ref | Ref | Ref |
Second quartile | 1.43 (0.793–2.59) | 0.234 | 1.42 (0.740–2.73) | 0.290 | 1.58 (0.591–4.23) | 0.362 |
Third quartile | 2.06 (1.18–3.61) | 0.011 | 1.44 (0.746–2.76) | 0.280 | 1.66 (0.649–4.24) | 0.290 |
Fourth quartile | 3.44 (2.02–5.83) | <0.001 | 1.70 (0.887–3.24) | 0.110 | 3.74 (1.41–9.91) | 0.008 |
MACE | ||||
---|---|---|---|---|
Variable Cut-Off Point | AUC | p | Sensitivity | Specificity |
TGI > 9.36 | 0.61 | <0.001 | 0.57 | 0.57 |
Stroke | ||||
TGI > 9.33 | 0.55 | 0.141 | 0.53 | 0.53 |
CAD | ||||
TGI > 9.39 | 0.63 | <0.001 | 0.59 | 0.58 |
CHF | ||||
TGI > 9.40 | 0.6 | <0.001 | 0.57 | 0.58 |
MI | ||||
TGI > 9.39 | 0.64 | <0.001 | 0.59 | 0.59 |
Sex | ||||||
---|---|---|---|---|---|---|
Outcome | Male | Female | ||||
OR (95%CI) | p | FDR-p | OR (95%CI) | p | FDR-p | |
MACE | 2.57 (1.29–5.12) | 0.007 | 0.031 | 1.98 (1.43–2.53) | 0.016 | 0.044 |
Stroke | 2.47 (1.08–5.65) | 0.032 | 0.063 | 0.989 (0.01–1.97) | 0.982 | 0.999 |
CAD | 2.12 (0.932–4.82) | 0.073 | 0.362 | 3.44 (2.62–4.26) | 0.003 | 0.015 |
CHF | 3.06 (1.30–7.18) | 0.010 | 0.046 | 1.71 (0.906–2.51) | 0.187 | 0.653 |
MI | 1.78 (0.82–3.86) | 0.146 | 0.611 | 4.21 (3.39–5.03) | 0.001 | 0.006 |
Age (years) | ||||||
Outcome | <60 | ≥60 | ||||
MACE | 3.52 (2.58–4.46) | 0.036 | 0.076 | 1.53 (0.997–2.01) | 0.081 | 0.215 |
Stroke | 3.79 (0.910–6.57) | 0.347 | 0.725 | 1.68 (0.974–2.39) | 0.148 | 0.620 |
CAD | 5.28 (3.89–6.67) | 0.019 | 0.042 | 1.91 (1.30–2.52) | 0.037 | 0.061 |
CHF | 4.27 (2.95–5.65) | 0.035 | 0.055 | 1.36 (0.721–2.00) | 0.344 | 0.888 |
MI | 7.26 (5.83–8.69) | 0.007 | 0.033 | 1.82 (1.23–2.41) | 0.048 | 0.113 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Momani, M.S.; Sarhan, D.; Sarhan, Z.; Aldarras, O.R.; Dalaeen, R.; Momani, Y.M.; Mousa, K.S.; Toubasi, A. The Association Between the Triglyceride–Glucose Index and the Risk of Cardiovascular Disease in Patients with Type 2 Diabetes Mellitus: A Cross-Sectional Study. Life 2025, 15, 1519. https://doi.org/10.3390/life15101519
Momani MS, Sarhan D, Sarhan Z, Aldarras OR, Dalaeen R, Momani YM, Mousa KS, Toubasi A. The Association Between the Triglyceride–Glucose Index and the Risk of Cardiovascular Disease in Patients with Type 2 Diabetes Mellitus: A Cross-Sectional Study. Life. 2025; 15(10):1519. https://doi.org/10.3390/life15101519
Chicago/Turabian StyleMomani, Munther S., Dia Sarhan, Zaid Sarhan, Omar R. Aldarras, Raneem Dalaeen, Yazan M. Momani, Khalil S. Mousa, and Ahmad Toubasi. 2025. "The Association Between the Triglyceride–Glucose Index and the Risk of Cardiovascular Disease in Patients with Type 2 Diabetes Mellitus: A Cross-Sectional Study" Life 15, no. 10: 1519. https://doi.org/10.3390/life15101519
APA StyleMomani, M. S., Sarhan, D., Sarhan, Z., Aldarras, O. R., Dalaeen, R., Momani, Y. M., Mousa, K. S., & Toubasi, A. (2025). The Association Between the Triglyceride–Glucose Index and the Risk of Cardiovascular Disease in Patients with Type 2 Diabetes Mellitus: A Cross-Sectional Study. Life, 15(10), 1519. https://doi.org/10.3390/life15101519