Impact of Titanium Skull Plate on Transcranial Magnetic Stimulation: Analysis of Induced Electric Fields
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Barker, A.T.; Jalinous, R.; Freeston, I.L. Non-invasive magnetic stimulation of human motor cortex. Lancet 1985, 1, 1106–1107. [Google Scholar] [CrossRef] [PubMed]
- Ueno, S.; Tashiro, T.; Harada, K. Localized stimulation of neural tissues in the brain by means of a paired configuration of time-varying magnetic fields. J. Appl. Phys. 1988, 64, 5862–5864. [Google Scholar] [CrossRef]
- Holtzheimer, P.E.; MacDonald, W.M. A Clinical Guide to Transcranial Magnetic Stimulation; Oxford University Press: Oxford, UK, 2014. [Google Scholar]
- Jannati, A.; Oberman, L.M.; Rotenberg, A.; Pascual-Leone, A. Assessing the Mechanisms of Brain Plasticity by Transcranial Magnetic Stimulation. Neuropsychopharmacology 2023, 48, 191–208. [Google Scholar] [CrossRef]
- Marzouk, T.; Winkelbeiner, S.; Azizi, H.; Malhotra, A.K.; Homan, P. Transcranial Magnetic Stimulation for Positive Symptoms in Schizophrenia: A Systematic Review. Neuropsychobiology 2020, 79, 384–396. [Google Scholar] [CrossRef]
- Pelissolo, A.; Harika-Germaneau, G.; Rachid, F.; Gaudeau-Bosma, C.; Tanguy, M.-L.; BenAdhira, R.; Bouaziz, N.; Popa, T.; Wassouf, I.; Saba, G.; et al. Repetitive Transcranial Magnetic Stimulation to Supplementary Motor Area in Refractory Obsessive-Compulsive Disorder Treatment: A Sham-Controlled Trial. Int. J. Neuropsychopharmacol. 2016, 19, pyw025. [Google Scholar] [CrossRef] [PubMed]
- Galhardoni, R.; Correia, G.S.; Araujo, H.; Yeng, L.T.; Fernandes, D.T.; Kaziyama, H.H.; Marcolin, M.A.; Bouhassira, D.; Teixeira, M.J.; De Andrade, D.C. Repetitive Transcranial Magnetic Stimulation in Chronic Pain: A Review of the Literature. Arch. Phys. Med. Rehabil. 2015, 96, S156–S172. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Lee, E.K.; Sohn, E. Repetitive Transcranial Magnetic Stimulation for Neuropathic Pain. Ann. Clin. Neurophysiol. 2022, 24, 53–58. [Google Scholar] [CrossRef]
- Jussi, N.; Anu, H.; Marjo, S.; Teemu, J.; Esa, R.; Antti, K. Repetitive Transcranial Magnetic Stimulation for Chronic Prostatitis/Chronic Pelvic Pain Syndrome: A Prospective Pilot Study. Int. Neurourol. J. 2020, 24, 144–149. [Google Scholar] [CrossRef]
- Rossi, S.; Antal, A.; Bestmann, S.; Bikson, M.; Brewer, C.; Brockmöller, J.; Carpenter, L.L.; Cincotta, M.; Chen, R.; Daskalakis, J.D.; et al. Safety and Recommendations for TMS Use in Healthy Subjects and Patient Populations, with Updates on Training, Ethical and Regulatory Issues: Expert Guidelines. Clin. Neurophysiol. 2021, 132, 269–306. [Google Scholar] [CrossRef]
- Piazza, M.; Grady, M.S. Cranioplasty. Neurosurg. Clin. N. Am. 2017, 28, 257–265. [Google Scholar] [CrossRef]
- Luo, J.; Morrison, D.A.; Hayes, A.J.; Bala, A.; Watts, G. Single-Piece Titanium Plate Cranioplasty Reconstruction of Complex Defects. J. Craniofac. Surg. 2018, 29, 839–842. [Google Scholar] [CrossRef]
- Cabraja, M.; Klein, M.; Lehmann, T.-N. Long-Term Results Following Titanium Cranioplasty of Large Skull Defects. Neurosurg. Focus 2009, 26, E10. [Google Scholar] [CrossRef]
- Van der Meulen, J.J.; Nazir, P.R.; Mathijssen, I.M.; van Adrichem, L.N.; Ongkosuwito, E.; Stolk-Liefferink, S.A.; Vaandrager, M.J. Itemporal Depressions after Cranioplasty for Trigonocephaly: A Long(supra) Orbital Growth in Term Evaluation of 92 Patients. J. Craniofac. Surg. 2008, 19, 72–79. [Google Scholar] [CrossRef] [PubMed]
- Roth, B.J.; Pascual-Leone, A.; Cohen, L.G.; Hallett, M. The Heating of Metal Electrodes during Rapid-Rate Magnetic Stimulation: A Possible Safety Hazard. Electroencephalogr. Clin. Neurophysiol./Evoked Potentials Sect. 1992, 85, 116–123. [Google Scholar] [CrossRef] [PubMed]
- Rotenberg, A.; Harrington, M.G.; Birnbaum, D.S.; Madsen, J.R.; Glass, I.E.S.; Jensen, F.E.; Pascual-Leone, A. Minimal Heating of Titanium Skull Plates during 1Hz Repetitive Transcranial Magnetic Stimulation. Clin. Neurophysiol. 2007, 118, 2536–2538. [Google Scholar] [CrossRef] [PubMed]
- Rotenberg, A.; Pascual-Leone, A. Safety of 1 Hz repetitive transcranial magnetic stimulation (rTMS) in patients with titanium skull plates. Clin. Neurophysiol. 2009, 120, 1417. [Google Scholar] [CrossRef]
- Hsieh, T.-H.; Dhamne, S.C.; Chen, J.-J.J.; Carpenter, L.L.; Anastasio, E.M.; Pascual-Leone, A.; Rotenberg, A. Minimal Heating of Aneurysm Clips during Repetitive Transcranial Magnetic Stimulation. Clin. Neurophysiol. 2012, 123, 1471–1473. [Google Scholar] [CrossRef] [PubMed]
- Stillman, M.; Chandonnet, N.; Davis, L.; Buzan, R.; Wirecki, T. Deep Transcranial Magnetic Stimulation in Patients with Intracranial Aneurysm Clips: A Case Report and Guidelines for Clinicians. Brain Stimul. 2020, 13, 273–274. [Google Scholar] [CrossRef] [PubMed]
- Dhamne, S.C.; Ilmoniemi, R.J.; Tsuboyama, M.; Carpenter, L.L.; Pascual-Leone, A.; Rotenberg, A. Safety of rTMS in patients with intracranial metallic objects. Brain Stimul. 2020, 13, 928–929. [Google Scholar] [CrossRef]
- Datta, A.; Bikson, M.; Fregni, F. Transcranial direct current stimulation in patients with skull defects and skull plates: High-resolution computational FEM study of factors altering cortical current flow. Neuroimage 2010, 52, 1268–1278. [Google Scholar] [CrossRef]
- Rossi, S.; Hallett, M.; Rossini, P.M.; Pascual-Leone, A.; Safety of TMS Consensus Group. Safety, ethical considerations, and application guidelines for the use of transcranial magnetic stimulation in clinical practice and research. Clin. Neurophysiol. 2009, 120, 2008–2039. [Google Scholar] [CrossRef]
- Christ, A.; Kainz, W.; Hahn, E.G.; Honegger, K.; Zefferer, M.; Neufeld, E.; Rascher, W.; Janka, R.; Bautz, W.; Chen, J.; et al. The Virtual Family—Development of Surface-Based Anatomical Models of Two Adults and Two Children for Dosimetric Simulations. Phys. Med. Biol. 2010, 55, N23–N38. [Google Scholar] [CrossRef]
- Cole, K.S.; Cole, R.H. Dispersion and absorption in dielectrics I. Alternating current characteristics. J. Chem. Phys. 1941, 9, 341–351. [Google Scholar] [CrossRef]
- Gabriel, C.; Gabriel, S.; Corthout, E. The Dielectric Properties of Biological Tissues: I. Literature Survey. Phys. Med. Biol. 1996, 41, 2231–2249. [Google Scholar] [CrossRef] [PubMed]
- Gabriel, S.; Lau, R.W.; Gabriel, C. The Dielectric Properties of Biological Tissues: II. Measurements in the Frequency Range 10 Hz to 20 GHz. Phys. Med. Biol. 1996, 41, 2251–2269. [Google Scholar] [CrossRef]
- Gabriel, S.; Lau, R.W.; Gabriel, C. The Dielectric Properties of Biological Tissues: III. Parametric Models for the Dielectric Spectrum of Tissues. Phys. Med. Biol. 1996, 41, 2271–2293. [Google Scholar] [CrossRef]
- Orcutt, N.; Gandhi, O.P. A 3-D Impedance Method to Calculate Power Deposition in Biological Bodies Subjected to Time Varying Magnetic Fields. IEEE Trans. Biomed. Eng. 1988, 35, 577–583. [Google Scholar] [CrossRef] [PubMed]
- Lu, M.; Ueno, S. Deep Transcranial Magnetic Stimulation Using Figure-of-Eight and Halo Coils. IEEE Trans. Magn. 2015, 51, 1–4. [Google Scholar]
- Lu, M.; Ueno, S. Safety Assessment of H-Coil for Nursing Staff in Deep Transcranial Magnetic Stimulation. IEEE Magn. Lett. 2022, 13, 1–5. [Google Scholar] [CrossRef]
- Huang, Y.-Z.; Sommer, M.; Thickbroom, G.; Hamada, M.; Pascual-Leonne, A.; Paulus, W.; Classen, J.; Peterchev, A.V.; Zangen, A.; Ugawa, Y. Consensus: New Methodologies for Brain Stimulation. Brain Stimul. 2009, 2, 2–13. [Google Scholar] [CrossRef]
Tissue | Conductivity (S/m) | Tissue | Conductivity (S/m) |
---|---|---|---|
Artery | 7.00 × 10−1 | Hypothalamus | 5.26 × 10−1 |
Blood Vessel | 3.10 × 10−1 | Mandible | 2.03 × 10−2 |
Cartilage | 1.75 × 10−1 | Marrow—bone | 2.44 × 10−3 |
Cerebellum | 1.24 × 10−1 | MO*3 | 4.65 × 10−1 |
CSF | 2.00 × 100 | Midbrain | 4.65 × 10−1 |
CA*1 | 6.44 × 10−2 | Mucosa | 8.46 × 10−4 |
CP*2 | 6.44 × 10−2 | Muscle | 3.31 × 10−1 |
Connective Tissue | 2.04 × 10−1 | Nerve | 3.04 × 10−2 |
Ear—cartilage | 1.75 × 10−1 | Pineal—body | 5.26 × 10−1 |
Ear—skin | 2.00 × 10−4 | Pons | 4.65 × 10−1 |
Eye—cornea | 4.25 × 10−1 | Skin | 2.00 × 10−4 |
Eye—lens | 3.31 × 10−1 | Skull | 2.03 × 10−2 |
Eye—sclera | 5.07 × 10−1 | Spinal Cord | 3.04 × 10−2 |
Eye—vitreous humor | 1.50 × 100 | Teeth | 2.03 × 10−2 |
FAT | 2.32 × 10−2 | Thalamus | 1.04 × 10−1 |
Gray matter | 1.04 × 10−1 | Tongue | 2.76 × 10−1 |
Hippocampus | 1.04 × 10−1 | titanium | 5.00 × 105 |
Hypophysis | 5.26 × 10−1 | White Matter | 6.44 × 10−2 |
Tissue | Head Model with TSP-4cm | Head Model with TSP-6cm | Normal Head Model |
---|---|---|---|
Cerebellum | 22.5 | 25 | 20.4 |
Commissure—Anterior | 18.3 | 21.1 | 14.1 |
Commissure—Posterior | 10.3 | 16.7 | 2.94 |
Hippocampus | 30.3 | 45.9 | 16.8 |
Hypophysis | 54.3 | 67.6 | 33.9 |
Hypothalamus | 30.9 | 39.5 | 19.13 |
Medulla Oblongata | 3.7 | 4.9 | 2.52 |
Midbrain | 14.9 | 20.6 | 8.89 |
Pineal—Body | 5.3 | 7.8 | 3.55 |
Pons | 8.8 | 10.9 | 6.46 |
Thalamus | 29.7 | 41.2 | 16.38 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, M.; Ueno, S. Impact of Titanium Skull Plate on Transcranial Magnetic Stimulation: Analysis of Induced Electric Fields. Life 2024, 14, 642. https://doi.org/10.3390/life14050642
Lu M, Ueno S. Impact of Titanium Skull Plate on Transcranial Magnetic Stimulation: Analysis of Induced Electric Fields. Life. 2024; 14(5):642. https://doi.org/10.3390/life14050642
Chicago/Turabian StyleLu, Mai, and Shoogo Ueno. 2024. "Impact of Titanium Skull Plate on Transcranial Magnetic Stimulation: Analysis of Induced Electric Fields" Life 14, no. 5: 642. https://doi.org/10.3390/life14050642
APA StyleLu, M., & Ueno, S. (2024). Impact of Titanium Skull Plate on Transcranial Magnetic Stimulation: Analysis of Induced Electric Fields. Life, 14(5), 642. https://doi.org/10.3390/life14050642