Impact of Pericoronary Microbiota Composition on Course of Recovery after Third Molar Alveotomy
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kilian, M.; Chapple, I.L.; Hannig, M.; Marsh, P.D.; Meuric, V.; Pedersen, A.M.; Tonetti, M.S.; Wade, W.G.; Zaura, E. The oral microbiome—An update for oral healthcare professionals. Br. Dent. J. 2016, 221, 657–666. [Google Scholar] [CrossRef] [PubMed]
- Hrncir, T. Gut Microbiota Dysbiosis: Triggers, Consequences, Diagnostic and Therapeutic Options. Microorganisms 2022, 10, 578. [Google Scholar] [CrossRef] [PubMed]
- Rinninella, E.; Raoul, P.; Cintoni, M.; Franceschi, F.; Miggiano, G.A.D.; Gasbarrini, A.; Mele, M.C. What is the Healthy Gut Microbiota Composition? A Changing Ecosystem across Age, Environment, Diet, and Diseases. Microorganisms 2019, 7, 14. [Google Scholar] [CrossRef] [PubMed]
- Baumgardner, D.J. Oral Fungal Microbiota: To Thrush and Beyond. J. Patient Cent. Res. Rev. 2019, 6, 252–261. [Google Scholar] [CrossRef] [PubMed]
- Ximénez-Fyvie, L.A.; Haffajee, A.D.; Socransky, S.S. Comparison of the microbiota of supra- and subgingival plaque in health and periodontitis. J. Clin. Periodontol. 2000, 27, 648–657. [Google Scholar] [CrossRef]
- Huang, X.; Zheng, H. Microbial Profile During Pericoronitis and Microbiota Shift After Treatment. Front. Microbiol. 2020, 11, 1888. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Wang, X. Human oral microbiota and its modulation for oral health. Biomed. Pharmacother. 2018, 99, 883–893. [Google Scholar] [CrossRef]
- Han, Y.W. Fusobacterium nucleatum: A commensal-turned pathogen. Curr. Opin. Microbiol. 2015, 23, 141–147. [Google Scholar] [CrossRef]
- Kuryłek, A.; Stasiak, M.; Kern-Zdanowicz, I. Virulence factors of Streptococcus anginosus—A molecular perspective. Front. Microbiol. 2022, 13, 1025136. [Google Scholar] [CrossRef]
- Ribeiro, M.H.B.; Ribeiro, P.C.; Retamal-Valdes, B.; Feres, M.; Canabarro, A. Microbial profile of symptomatic pericoronitis lesions: A cross-sectional study. J. Appl. Oral. Sci. 2019, 28, e20190266. [Google Scholar] [CrossRef]
- Nitzan, D.W.; Tal, O.; Sela, M.N.; Shteyer, A. Pericoronitis: A reappraisal of its clinical and microbiologic aspects. J. Oral. Maxillofac. Surg. 1985, 43, 510–516. [Google Scholar] [CrossRef] [PubMed]
- Themkumkwun, S.; Sawatdeenarunat, S.; Manosuthi, P. Surgical removal of third molars in a young adult: Review of indications and surgical techniques. J. Korean Assoc. Oral. Maxillofac. Surg. 2023, 49, 184–191. [Google Scholar] [CrossRef] [PubMed]
- Wade, W.G.; Gray, A.R.; Absi, E.G.; Barker, G.R. Predominant cultivable flora in pericoronitis. Oral. Microbiol. Immunol. 1991, 6, 310–312. [Google Scholar] [CrossRef] [PubMed]
- Sifuentes-Cervantes, J.S.; Carrillo-Morales, F.; Castro-Núñez, J.; Cunningham, L.L.; Van Sickels, J.E. Third molar surgery: Past, present, and the future. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 2021, 132, 523–531. [Google Scholar] [CrossRef] [PubMed]
- Sreesha, S.; Ummar, M.; Sooraj, S.; Aslam, S.; Roshni, A.; Jabir, K. Postoperative pain, edema and trismus following third molar surgery—A comparitive study between submucosal and intravenous dexamethasone. J. Family Med. Prim. Care 2020, 9, 2454–2459. [Google Scholar] [CrossRef]
- Kumbargere Nagraj, S.; Prashanti, E.; Aggarwal, H.; Lingappa, A.; Muthu, M.S.; Kiran Kumar Krishanappa, S.; Hassan, H. Interventions for treating post-extraction bleeding. Cochrane Database Syst. Rev. 2018, 3, CD011930. [Google Scholar] [CrossRef]
- Rener-Sitar, K.; Petricević, N.; Celebić, A.; Marion, L. Psychometric properties of Croatian and Slovenian short form of oral health impact profile questionnaires. Croat. Med. J. 2008, 49, 536–544. [Google Scholar] [CrossRef] [PubMed]
- Rizqiawan, A.; Lesmaya, Y.D.; Rasyida, A.Z.; Amir, M.S.; Ono, S.; Kamadjaja, D.B. Postoperative Complications of Impacted Mandibular Third Molar Extraction Related to Patient’s Age and Surgical Difficulty Level: A Cross-Sectional Retrospective Study. Int. J. Dent. 2022, 2022, 7239339. [Google Scholar] [CrossRef]
- Sayed, N.; Bakathir, A.; Pasha, M.; Al-Sudairy, S. Complications of Third Molar Extraction: A retrospective study from a tertiary healthcare centre in Oman. Sultan Qaboos Univ. Med. J. 2019, 19, 230–235. [Google Scholar] [CrossRef] [PubMed]
- Yamada, S.I.; Hasegawa, T.; Yoshimura, N.; Hakoyama, Y.; Nitta, T.; Hirahara, N.; Miyamoto, H.; Yoshimura, H.; Ueda, N.; Yamamura, Y.; et al. Prevalence of and risk factors for postoperative complications after lower third molar extraction: A multicenter prospective observational study in Japan. Medicine 2022, 101, 29989. [Google Scholar] [CrossRef]
- Osunde, O.D.; Saheeb, B.D. Effect of age, sex and level of surgical difficulty on inflammatory complications after third molar surgery. J. Maxillofac. Oral Surg. 2015, 14, 7–12. [Google Scholar] [CrossRef]
- Kiencało, A.; Jamka-Kasprzyk, M.; Panaś, M.; Wyszyńska-Pawelec, G. Analysis of complications after the removal of 339 third molars. Dent. Med. Probl. 2021, 58, 75–80. [Google Scholar]
- Kautto, A.; Vehkalahti, M.M.; Ventä, I. Age of patient at the extraction of the third molar. Int. J. Oral Maxillofac. Surg. 2018, 47, 947–951. [Google Scholar] [CrossRef]
- Marsh, P.D. In Sickness and in Health-What Does the Oral Microbiome Mean to Us? An Ecological Perspective. Adv. Dent. Res. 2018, 29, 60–65. [Google Scholar] [CrossRef]
- Rosier, B.T.; Marsh, P.D.; Mira, A. Resilience of the Oral Microbiota in Health: Mechanisms That Prevent Dysbiosis. J. Dent. Res. 2018, 97, 371–380. [Google Scholar] [CrossRef]
- Arweiler, N.B.; Netuschil, L. The Oral Microbiota. Adv. Exp. Med. Biol. 2016, 902, 45–60. [Google Scholar]
- Morales, T.B.; Rocha, N.M.L.; Reynoso, A.J.A. Aerobic and anaerobic microbiota present in third molars with pericoronitis. Rev. ADM 2012, 69, 58–62. [Google Scholar]
- Menon, T. Understanding the viridians group streptococci: Are we there yet? Ind. J. Med. Microbiol. 2016, 34, 421–426. [Google Scholar] [CrossRef]
- Nobbs, A.; Kreth, J. Genetics of sanguinis-Group Streptococci in Health and Disease. Microbiol. Spectr. 2019, 7. [Google Scholar] [CrossRef]
- Jentsch, H.; Rodloff, A.C.; Gerweck, M.K.; Stingu, C.S. Streptococci in the Subgingival Biofilm and Periodontal Therapy. Oral Health Prev. Dent. 2021, 19, 25–31. [Google Scholar]
- Espíndola, L.C.P.; do Nascimento, M.V.M.R.; do Souto, R.M.; Colombo, A.P.V. Antimicrobial susceptibility and virulence of Enterococcus spp. isolated from periodontitis-associated subgingival biofilm. J. Periodontol. 2021, 92, 1588–1600. [Google Scholar] [CrossRef] [PubMed]
- Sencimen, M.; Saygun, I.; Gulses, A.; Bal, V.; Acikel, C.H.; Kubar, A. Evaluation of periodontal pathogens of the mandibular third molar pericoronitis by using real time PCR. Int. Dent. J. 2014, 64, 200–205. [Google Scholar] [CrossRef] [PubMed]
- Abranches, J.; Zeng, L.; Kajfasz, J.K.; Palmer, S.R.; Chakraborty, B.; Wen, Z.T.; Richards, V.P.; Brady, L.J.; Lemos, J.A. Biology of Oral Streptococci. Microbiol. Spectr. 2018, 6. [Google Scholar] [CrossRef] [PubMed]
- Baty, J.J.; Stoner, S.N.; Scoffield, J.A. Oral Commensal Streptococci: Gatekeepers of the Oral Cavity. J. Bacteriol. 2022, 15, 204. [Google Scholar] [CrossRef] [PubMed]
- McLean, A.R.; Torres-Morales, J.; Dewhirst, F.E.; Borisy, G.G.; Mark Welch, J.L. Site-tropism of streptococci in the oral microbiome. Mol. Oral Microbiol. 2022, 37, 229–243. [Google Scholar] [CrossRef] [PubMed]
- Peltroche-Llacsahuanga, H.; Reichhart, E.; Schmitt, W.; Lütticken, R.; Haase, G. Investigation of infectious organisms causing pericoronitis of the mandibular third molar. J. Oral Maxillofac. Surg. 2000, 58, 611–616. [Google Scholar] [CrossRef]
- Ng, H.M.; Kin, L.X.; Dashper, S.G.; Slakeski, N.; Butler, C.A.; Reynolds, E.C. Bacterial interactions in pathogenic subgingival plaque. Microb. Pathog. 2016, 94, 60–69. [Google Scholar] [CrossRef] [PubMed]
- Lederer, A.-K.; Chikhladze, S.; Kohnert, E.; Huber, R.; Müller, A. Current Insights: The Impact of Gut Microbiota on Postoperative Complications in Visceral Surgery—A Narrative Review. Diagnostics 2021, 11, 2099. [Google Scholar] [CrossRef]
- Riba-Terés, N.; Jorba-García, A.; Toledano-Serrabona, J.; Aguilar-Durán, L.; Figueiredo, R.; Valmaseda-Castellón, E. Microbiota of alveolar osteitis after permanent tooth extractions: A systematic review. J. Stomatol. Oral Maxillofac. Surg. 2021, 122, 173–181. [Google Scholar] [CrossRef]
- Zhao, J.; Zhang, Y.; Cheng, Y.; Xie, S.; Li, D.D.; Zhang, P.F.; Ren, X.Y.; Wang, X. Effects of modified triangular flap for third molar extraction on distal periodontal health of second molar: A randomized controlled study. Heliyon 2023, 9, 16161. [Google Scholar] [CrossRef]
- Shogan, B.D.; Belogortseva, N.; Luong, P.M.; Zaborin, A.; Lax, S.; Bethel, C.; Muldoon, J.P.; Singer, M.; An, G.; Umanskiy, K.; et al. Collagen degradation and MMP9 activation by Enterococcus faecalis contributes to intestinal anastomotic leak. Sci. Transl. Med. 2016, 7, 286ra68. [Google Scholar] [CrossRef]
- Shogan, B.D.; Smith, D.P.; Christley, S.; Gilbert, J.A.; Zaborina, O.; Alverdy, J.C. Intestinal anastomotic injury alters spatially defined microbiome composition and function. Microbiome 2014, 2, 35. [Google Scholar] [CrossRef]
- Bouloux, G.F.; Steed, M.B.; Perciaccante, V.J. Complications of third molar surgery. Oral Maxillofac. Surg. Clin. N. Am. 2007, 19, 117–128. [Google Scholar] [CrossRef]
- Issrani, R.; Reddy, J.; Bader, A.K.; Albalawi, R.F.H.; Alserhani, E.D.M.; Alruwaili, D.S.R.; Alanazi, G.R.A.; Alruwaili, N.S.R.; Sghaireen, M.G.; Rao, K. Exploring an Association between Body Mass Index and Oral Health-A Scoping Review. Diagnostics 2023, 13, 902. [Google Scholar] [CrossRef]
- Abdolsamadi, H.; Poormoradi, B.; Yaghoubi, G.; Farhadian, M.; Jazaeri, M. Relationship between body mass index and oral health indicators: A cross-sectional study. Eur. J. Transl. Myol. 2023, 33, 11259. [Google Scholar] [CrossRef]
- Arslan, Z.B. Evaluation of the Relationship Between Oral Health and Body Mass Index. Eurasian J. Med. 2023, 55, 259–262. [Google Scholar]
- Milic, T.; Raidoo, P.; Gebauer, D. Antibiotic prophylaxis in oral and maxillofacial surgery: A systematic review. Br. J. Oral Maxillofac. Surg. 2021, 59, 633–642. [Google Scholar] [CrossRef]
- Rodrigues, W.C.; Okamoto, R.; Pellizzer, E.P.; dos Carrijo, A.C.; de Almeida, R.S.; de Melo, W.M. Antibiotic prophylaxis for third molar extraction in healthy patients: Current scientific evidence. Quintessence Int. 2015, 46, 149–161. [Google Scholar]
- White, B.P.; Siegrist, E.A. Increasing clindamycin resistance in group A streptococcus. Lancet Infect. Dis. 2021, 21, 1208–1209. [Google Scholar] [CrossRef]
- Singh, N.; Poggensee, L.; Huang, Y.; Evans, C.T.; Suda, K.J.; Bulman, Z.P. Antibiotic susceptibility patterns of viridans group streptococci isolates in the United States from 2010 to 2020. JAC Antimicrob. Resist. 2022, 4, dlac049. [Google Scholar] [CrossRef]
- Kim, Y.H.; Lee, S.Y. Antibiotic Resistance of Viridans Group Streptococci Isolated from Dental Plaques. Biocontrol Sci. 2020, 25, 173–178. [Google Scholar] [CrossRef]
- Xiao, X.; Liu, S.; Deng, H.; Song, Y.; Zhang, L.; Song, Z. Advances in the oral microbiota and rapid detection of oral infectious diseases. Front. Microbiol. 2023, 14, 1121737. [Google Scholar] [CrossRef]
- Deo, P.N.; Deshmukh, R. Oral microbiome: Unveiling the fundamentals. J. Oral Maxillofac. Pathol. 2019, 23, 122–128. [Google Scholar] [CrossRef]
- Caselli, E.; Fabbri, C.; D’Accolti, M. Defining the oral microbiome by whole-genome sequencing and resistome analysis: The complexity of the healthy picture. BMC Microbiol. 2020, 20, 120. [Google Scholar] [CrossRef]
- Zhang, Y.; Qi, Y.; Lo, E.C.M.; McGrath, C.; Mei, M.L.; Dai, R. Using next-generation sequencing to detect oral microbiome change following periodontal interventions: A systematic review. Oral Dis. 2021, 27, 1073–1089. [Google Scholar] [CrossRef]
- Utter, D.R.; Borisy, G.G.; Eren, A.M. Metapangenomics of the oral microbiome provides insights into habitat adaptation and cultivar diversity. Genome Biol. 2020, 21, 293. [Google Scholar] [CrossRef]
- Böttger, S.; Zechel-Gran, S.; Streckbein, P.; Knitschke, M.; Hain, T.; Weigel, M.; Wilbrand, J.F.; Domann, E.; Howaldt, H.P.; Attia, S. A New Type of Chronic Wound Infection after Wisdom Tooth Extraction: A Diagnostic Approach with 16S-rRNA Gene Analysis, Next-Generation Sequencing, and Bioinformatics. Pathogens 2020, 9, 798. [Google Scholar] [CrossRef]
- Rossen, J.W.A.; Friedrich, A.W.; Moran-Gilad, J.; ESCMID Study Group for Genomic and Molecular Diagnostics (ESGMD). Practical issues in implementing whole-genome-sequencing in routine diagnostic microbiology. Clin. Microbiol. Infect. 2018, 24, 355–360. [Google Scholar] [CrossRef]
- Committee for Antibiotic Resistance Surveillance in Croatia. Antibiotic Resistance in Croatia, 2022; The Croatian Acadamy of Medical Sciences: Zagreb, Croatia, 2023; pp. 54–65. [Google Scholar]
Characteristic | Median | Interquartile Range |
---|---|---|
Age (y) | 25.0 | 23.0–31.0 |
Body mass index (kg/m2) | 22.9 | 21.4–25.3 |
Number of pericoronitis episodes before alveotomy | 2.0 | 1.0–5.0 |
Duration of alveotomy (min) | 13.0 | 10.0–16.8 |
Initial mouth opening (mm) | 50.0 | 45.0–53.0 |
First analgetic administration (hours after procedure) | 1.0 | 1.0–2.0 |
Bacterial Species | n | % |
---|---|---|
Streptococcus spp. | 66 | 22.4 |
Fusobacterium spp. | 35 | 11.9 |
Tannerella forsythia | 27 | 9.1 |
Parvimonas micra | 26 | 8.8 |
Prevotella spp. | 25 | 8.5 |
Treponema denticola | 22 | 7.5 |
Veilonella spp. | 22 | 7.5 |
Lactobacillus spp. | 19 | 6.4 |
Campylobacter rectus | 13 | 4.4 |
Eubacterium nodatum | 11 | 3.7 |
Eikenella corrodens | 11 | 3.7 |
Bifidobacterium spp. | 6 | 2.0 |
Actinomyces spp. | 4 | 1.4 |
Porphyromonas gingivalis | 3 | 1.0 |
Aggregatibacter spp. | 3 | 1.0 |
Coagulase-negative staphylococci | 2 | 0.7 |
Total | 295 |
Bacterial Species | n | % |
---|---|---|
Streptococcus anginosus group | 34 | 51.5 |
S. anginosus | 23 | 34.8 |
S. constellatus | 9 | 13.6 |
S. intermedius | 2 | 3.0 |
Streptococcus mitis group | 15 | 22.7 |
S. oralis | 8 | 12.1 |
S. mitis | 2 | 3.0 |
S. parasanguinis | 2 | 3.0 |
S. massiliensis | 1 | 1.5 |
S. cristatus | 1 | 1.5 |
Streptococcus mutans group | 11 | 16.7 |
S. mutans | 8 | 12.1 |
S. sobrinus | 3 | 4.5 |
Streptococcus salivarius group | 6 | 9.1 |
S. vestibularis | 4 | 6.1 |
S. salivarius | 2 | 3.0 |
Streptococcus sanguinis group | 1 | 1.5 |
S. sanguinis | 1 | 1.5 |
Total | 66 |
Better Recovery Course (n = 29) | Worse Recovery Course (n = 7) | p Value (Two-Tailed) | OR (95% CI) *** | |
---|---|---|---|---|
Gender: n (%) | 2.35 (0.42–13.18) | |||
Female gender: n (%) | 22 (75.9) | 4 (57.1) | 0.370 | |
Male gender: n (%) | 7 (24.1) | 3 (42.9) | ||
Age (y): median (* IQR) | 25.0 (22.5–31.0) | 27.0 (24.0–35.0) | 0.434 | 1.04 (0.93–1.15) |
Body mass index (kg/m2): median (IQR) Previous oral surgery procedures: median (IQR) | 22.8 (21.3–25.5) 0 (0.0–0.5) | 23.9 (21.9–24.9) 1 (0.0–1.0) | 0.780 0.019 | 0.99 (0.77–1.29) 7.85 (1.23–49.83) |
Number of pericoronitis episodes before alveotomy: median (IQR) | 2 (1.0–5.0) | 1 (1.0–5.0) | 0.731 | |
** Oral health assessment: n (%) | 0.96 (0.81–1.14) | |||
Grade 1 | 1 (3.4) | 0 (0.0) | 0.625 | |
Grade 2 | 3 (10.3) | 3 (42.9) | 0.040 | |
Grade 3 | 11 (37.9) | 4 (57.1) | 0.362 | |
Grade 4 | 14 (48.3) | 0 (0.0) | 0.020 |
Better Recovery Course (n = 252) | Worse Recovery Course (n = 43) | p | |
---|---|---|---|
Bacterial isolates | |||
Streptococcus spp. (n = 66) | 56 (22.2) | 10 (23.3) | 0.873 |
Fusobacterium spp. (n = 35) | 28 (11.1) | 7 (16.3) | 0.330 |
Tannerella forsythia (n = 27) | 22 (8.7) | 5 (11.6) | 0.542 |
Parvimonas micra (n = 26) | 25 (9.9) | 1 (2.3) | 0.104 |
Prevotella spp. (n = 25) | 22 (8.7) | 3 (7.0) | 0.712 |
Treponema denticola (n = 22) | 16 (6.3) | 6 (14.0) | 0.075 |
Veilonella spp. (n = 22) | 17 (6.7) | 5 (11.6) | 0.257 |
Lactobacillus spp. (n = 19) | 16 (6.3) | 3 (7.0) | 0.862 |
Campylobacter rectus (n = 13) | 13 (5.2) | 0 (0.0) | 0.127 |
Eubacterium nodatum (n = 11) | 11 (4.4) | 0 (0.0) | 0.162 |
Eikenella corrodens (n = 11) | 10 (4.0) | 1 (2.3) | 0.588 |
Bifidobacterium spp. (n = 6) | 5 (2.0) | 1 (2.3) | 0.897 |
Actinomyces spp. (n = 4) | 4 (1.6) | 0 (0.0) | 0.404 |
Porphyromonas gingivalis (n = 3) | 3 (1.2) | 0 (0.0) | 0.471 |
Aggregatibacter spp. (n = 3) | 2 (0.8) | 1 (2.3) | 0.366 |
Coagulase-negative staphylococci (n = 2) | 2 (0.8) | 0 (0.0) | 0.556 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Todorić, Z.; Milošević, M.; Mareković, I.; Biočić, J. Impact of Pericoronary Microbiota Composition on Course of Recovery after Third Molar Alveotomy. Life 2024, 14, 580. https://doi.org/10.3390/life14050580
Todorić Z, Milošević M, Mareković I, Biočić J. Impact of Pericoronary Microbiota Composition on Course of Recovery after Third Molar Alveotomy. Life. 2024; 14(5):580. https://doi.org/10.3390/life14050580
Chicago/Turabian StyleTodorić, Zrinka, Milan Milošević, Ivana Mareković, and Josip Biočić. 2024. "Impact of Pericoronary Microbiota Composition on Course of Recovery after Third Molar Alveotomy" Life 14, no. 5: 580. https://doi.org/10.3390/life14050580
APA StyleTodorić, Z., Milošević, M., Mareković, I., & Biočić, J. (2024). Impact of Pericoronary Microbiota Composition on Course of Recovery after Third Molar Alveotomy. Life, 14(5), 580. https://doi.org/10.3390/life14050580