Impact of Pericoronary Microbiota Composition on Course of Recovery after Third Molar Alveotomy
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kilian, M.; Chapple, I.L.; Hannig, M.; Marsh, P.D.; Meuric, V.; Pedersen, A.M.; Tonetti, M.S.; Wade, W.G.; Zaura, E. The oral microbiome—An update for oral healthcare professionals. Br. Dent. J. 2016, 221, 657–666. [Google Scholar] [CrossRef] [PubMed]
- Hrncir, T. Gut Microbiota Dysbiosis: Triggers, Consequences, Diagnostic and Therapeutic Options. Microorganisms 2022, 10, 578. [Google Scholar] [CrossRef] [PubMed]
- Rinninella, E.; Raoul, P.; Cintoni, M.; Franceschi, F.; Miggiano, G.A.D.; Gasbarrini, A.; Mele, M.C. What is the Healthy Gut Microbiota Composition? A Changing Ecosystem across Age, Environment, Diet, and Diseases. Microorganisms 2019, 7, 14. [Google Scholar] [CrossRef] [PubMed]
- Baumgardner, D.J. Oral Fungal Microbiota: To Thrush and Beyond. J. Patient Cent. Res. Rev. 2019, 6, 252–261. [Google Scholar] [CrossRef] [PubMed]
- Ximénez-Fyvie, L.A.; Haffajee, A.D.; Socransky, S.S. Comparison of the microbiota of supra- and subgingival plaque in health and periodontitis. J. Clin. Periodontol. 2000, 27, 648–657. [Google Scholar] [CrossRef]
- Huang, X.; Zheng, H. Microbial Profile During Pericoronitis and Microbiota Shift After Treatment. Front. Microbiol. 2020, 11, 1888. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Wang, X. Human oral microbiota and its modulation for oral health. Biomed. Pharmacother. 2018, 99, 883–893. [Google Scholar] [CrossRef]
- Han, Y.W. Fusobacterium nucleatum: A commensal-turned pathogen. Curr. Opin. Microbiol. 2015, 23, 141–147. [Google Scholar] [CrossRef]
- Kuryłek, A.; Stasiak, M.; Kern-Zdanowicz, I. Virulence factors of Streptococcus anginosus—A molecular perspective. Front. Microbiol. 2022, 13, 1025136. [Google Scholar] [CrossRef]
- Ribeiro, M.H.B.; Ribeiro, P.C.; Retamal-Valdes, B.; Feres, M.; Canabarro, A. Microbial profile of symptomatic pericoronitis lesions: A cross-sectional study. J. Appl. Oral. Sci. 2019, 28, e20190266. [Google Scholar] [CrossRef]
- Nitzan, D.W.; Tal, O.; Sela, M.N.; Shteyer, A. Pericoronitis: A reappraisal of its clinical and microbiologic aspects. J. Oral. Maxillofac. Surg. 1985, 43, 510–516. [Google Scholar] [CrossRef] [PubMed]
- Themkumkwun, S.; Sawatdeenarunat, S.; Manosuthi, P. Surgical removal of third molars in a young adult: Review of indications and surgical techniques. J. Korean Assoc. Oral. Maxillofac. Surg. 2023, 49, 184–191. [Google Scholar] [CrossRef] [PubMed]
- Wade, W.G.; Gray, A.R.; Absi, E.G.; Barker, G.R. Predominant cultivable flora in pericoronitis. Oral. Microbiol. Immunol. 1991, 6, 310–312. [Google Scholar] [CrossRef] [PubMed]
- Sifuentes-Cervantes, J.S.; Carrillo-Morales, F.; Castro-Núñez, J.; Cunningham, L.L.; Van Sickels, J.E. Third molar surgery: Past, present, and the future. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 2021, 132, 523–531. [Google Scholar] [CrossRef] [PubMed]
- Sreesha, S.; Ummar, M.; Sooraj, S.; Aslam, S.; Roshni, A.; Jabir, K. Postoperative pain, edema and trismus following third molar surgery—A comparitive study between submucosal and intravenous dexamethasone. J. Family Med. Prim. Care 2020, 9, 2454–2459. [Google Scholar] [CrossRef]
- Kumbargere Nagraj, S.; Prashanti, E.; Aggarwal, H.; Lingappa, A.; Muthu, M.S.; Kiran Kumar Krishanappa, S.; Hassan, H. Interventions for treating post-extraction bleeding. Cochrane Database Syst. Rev. 2018, 3, CD011930. [Google Scholar] [CrossRef]
- Rener-Sitar, K.; Petricević, N.; Celebić, A.; Marion, L. Psychometric properties of Croatian and Slovenian short form of oral health impact profile questionnaires. Croat. Med. J. 2008, 49, 536–544. [Google Scholar] [CrossRef] [PubMed]
- Rizqiawan, A.; Lesmaya, Y.D.; Rasyida, A.Z.; Amir, M.S.; Ono, S.; Kamadjaja, D.B. Postoperative Complications of Impacted Mandibular Third Molar Extraction Related to Patient’s Age and Surgical Difficulty Level: A Cross-Sectional Retrospective Study. Int. J. Dent. 2022, 2022, 7239339. [Google Scholar] [CrossRef]
- Sayed, N.; Bakathir, A.; Pasha, M.; Al-Sudairy, S. Complications of Third Molar Extraction: A retrospective study from a tertiary healthcare centre in Oman. Sultan Qaboos Univ. Med. J. 2019, 19, 230–235. [Google Scholar] [CrossRef] [PubMed]
- Yamada, S.I.; Hasegawa, T.; Yoshimura, N.; Hakoyama, Y.; Nitta, T.; Hirahara, N.; Miyamoto, H.; Yoshimura, H.; Ueda, N.; Yamamura, Y.; et al. Prevalence of and risk factors for postoperative complications after lower third molar extraction: A multicenter prospective observational study in Japan. Medicine 2022, 101, 29989. [Google Scholar] [CrossRef]
- Osunde, O.D.; Saheeb, B.D. Effect of age, sex and level of surgical difficulty on inflammatory complications after third molar surgery. J. Maxillofac. Oral Surg. 2015, 14, 7–12. [Google Scholar] [CrossRef]
- Kiencało, A.; Jamka-Kasprzyk, M.; Panaś, M.; Wyszyńska-Pawelec, G. Analysis of complications after the removal of 339 third molars. Dent. Med. Probl. 2021, 58, 75–80. [Google Scholar]
- Kautto, A.; Vehkalahti, M.M.; Ventä, I. Age of patient at the extraction of the third molar. Int. J. Oral Maxillofac. Surg. 2018, 47, 947–951. [Google Scholar] [CrossRef]
- Marsh, P.D. In Sickness and in Health-What Does the Oral Microbiome Mean to Us? An Ecological Perspective. Adv. Dent. Res. 2018, 29, 60–65. [Google Scholar] [CrossRef]
- Rosier, B.T.; Marsh, P.D.; Mira, A. Resilience of the Oral Microbiota in Health: Mechanisms That Prevent Dysbiosis. J. Dent. Res. 2018, 97, 371–380. [Google Scholar] [CrossRef]
- Arweiler, N.B.; Netuschil, L. The Oral Microbiota. Adv. Exp. Med. Biol. 2016, 902, 45–60. [Google Scholar]
- Morales, T.B.; Rocha, N.M.L.; Reynoso, A.J.A. Aerobic and anaerobic microbiota present in third molars with pericoronitis. Rev. ADM 2012, 69, 58–62. [Google Scholar]
- Menon, T. Understanding the viridians group streptococci: Are we there yet? Ind. J. Med. Microbiol. 2016, 34, 421–426. [Google Scholar] [CrossRef]
- Nobbs, A.; Kreth, J. Genetics of sanguinis-Group Streptococci in Health and Disease. Microbiol. Spectr. 2019, 7. [Google Scholar] [CrossRef]
- Jentsch, H.; Rodloff, A.C.; Gerweck, M.K.; Stingu, C.S. Streptococci in the Subgingival Biofilm and Periodontal Therapy. Oral Health Prev. Dent. 2021, 19, 25–31. [Google Scholar]
- Espíndola, L.C.P.; do Nascimento, M.V.M.R.; do Souto, R.M.; Colombo, A.P.V. Antimicrobial susceptibility and virulence of Enterococcus spp. isolated from periodontitis-associated subgingival biofilm. J. Periodontol. 2021, 92, 1588–1600. [Google Scholar] [CrossRef] [PubMed]
- Sencimen, M.; Saygun, I.; Gulses, A.; Bal, V.; Acikel, C.H.; Kubar, A. Evaluation of periodontal pathogens of the mandibular third molar pericoronitis by using real time PCR. Int. Dent. J. 2014, 64, 200–205. [Google Scholar] [CrossRef] [PubMed]
- Abranches, J.; Zeng, L.; Kajfasz, J.K.; Palmer, S.R.; Chakraborty, B.; Wen, Z.T.; Richards, V.P.; Brady, L.J.; Lemos, J.A. Biology of Oral Streptococci. Microbiol. Spectr. 2018, 6. [Google Scholar] [CrossRef] [PubMed]
- Baty, J.J.; Stoner, S.N.; Scoffield, J.A. Oral Commensal Streptococci: Gatekeepers of the Oral Cavity. J. Bacteriol. 2022, 15, 204. [Google Scholar] [CrossRef] [PubMed]
- McLean, A.R.; Torres-Morales, J.; Dewhirst, F.E.; Borisy, G.G.; Mark Welch, J.L. Site-tropism of streptococci in the oral microbiome. Mol. Oral Microbiol. 2022, 37, 229–243. [Google Scholar] [CrossRef] [PubMed]
- Peltroche-Llacsahuanga, H.; Reichhart, E.; Schmitt, W.; Lütticken, R.; Haase, G. Investigation of infectious organisms causing pericoronitis of the mandibular third molar. J. Oral Maxillofac. Surg. 2000, 58, 611–616. [Google Scholar] [CrossRef]
- Ng, H.M.; Kin, L.X.; Dashper, S.G.; Slakeski, N.; Butler, C.A.; Reynolds, E.C. Bacterial interactions in pathogenic subgingival plaque. Microb. Pathog. 2016, 94, 60–69. [Google Scholar] [CrossRef] [PubMed]
- Lederer, A.-K.; Chikhladze, S.; Kohnert, E.; Huber, R.; Müller, A. Current Insights: The Impact of Gut Microbiota on Postoperative Complications in Visceral Surgery—A Narrative Review. Diagnostics 2021, 11, 2099. [Google Scholar] [CrossRef]
- Riba-Terés, N.; Jorba-García, A.; Toledano-Serrabona, J.; Aguilar-Durán, L.; Figueiredo, R.; Valmaseda-Castellón, E. Microbiota of alveolar osteitis after permanent tooth extractions: A systematic review. J. Stomatol. Oral Maxillofac. Surg. 2021, 122, 173–181. [Google Scholar] [CrossRef]
- Zhao, J.; Zhang, Y.; Cheng, Y.; Xie, S.; Li, D.D.; Zhang, P.F.; Ren, X.Y.; Wang, X. Effects of modified triangular flap for third molar extraction on distal periodontal health of second molar: A randomized controlled study. Heliyon 2023, 9, 16161. [Google Scholar] [CrossRef]
- Shogan, B.D.; Belogortseva, N.; Luong, P.M.; Zaborin, A.; Lax, S.; Bethel, C.; Muldoon, J.P.; Singer, M.; An, G.; Umanskiy, K.; et al. Collagen degradation and MMP9 activation by Enterococcus faecalis contributes to intestinal anastomotic leak. Sci. Transl. Med. 2016, 7, 286ra68. [Google Scholar] [CrossRef]
- Shogan, B.D.; Smith, D.P.; Christley, S.; Gilbert, J.A.; Zaborina, O.; Alverdy, J.C. Intestinal anastomotic injury alters spatially defined microbiome composition and function. Microbiome 2014, 2, 35. [Google Scholar] [CrossRef]
- Bouloux, G.F.; Steed, M.B.; Perciaccante, V.J. Complications of third molar surgery. Oral Maxillofac. Surg. Clin. N. Am. 2007, 19, 117–128. [Google Scholar] [CrossRef]
- Issrani, R.; Reddy, J.; Bader, A.K.; Albalawi, R.F.H.; Alserhani, E.D.M.; Alruwaili, D.S.R.; Alanazi, G.R.A.; Alruwaili, N.S.R.; Sghaireen, M.G.; Rao, K. Exploring an Association between Body Mass Index and Oral Health-A Scoping Review. Diagnostics 2023, 13, 902. [Google Scholar] [CrossRef]
- Abdolsamadi, H.; Poormoradi, B.; Yaghoubi, G.; Farhadian, M.; Jazaeri, M. Relationship between body mass index and oral health indicators: A cross-sectional study. Eur. J. Transl. Myol. 2023, 33, 11259. [Google Scholar] [CrossRef]
- Arslan, Z.B. Evaluation of the Relationship Between Oral Health and Body Mass Index. Eurasian J. Med. 2023, 55, 259–262. [Google Scholar]
- Milic, T.; Raidoo, P.; Gebauer, D. Antibiotic prophylaxis in oral and maxillofacial surgery: A systematic review. Br. J. Oral Maxillofac. Surg. 2021, 59, 633–642. [Google Scholar] [CrossRef]
- Rodrigues, W.C.; Okamoto, R.; Pellizzer, E.P.; dos Carrijo, A.C.; de Almeida, R.S.; de Melo, W.M. Antibiotic prophylaxis for third molar extraction in healthy patients: Current scientific evidence. Quintessence Int. 2015, 46, 149–161. [Google Scholar]
- White, B.P.; Siegrist, E.A. Increasing clindamycin resistance in group A streptococcus. Lancet Infect. Dis. 2021, 21, 1208–1209. [Google Scholar] [CrossRef]
- Singh, N.; Poggensee, L.; Huang, Y.; Evans, C.T.; Suda, K.J.; Bulman, Z.P. Antibiotic susceptibility patterns of viridans group streptococci isolates in the United States from 2010 to 2020. JAC Antimicrob. Resist. 2022, 4, dlac049. [Google Scholar] [CrossRef]
- Kim, Y.H.; Lee, S.Y. Antibiotic Resistance of Viridans Group Streptococci Isolated from Dental Plaques. Biocontrol Sci. 2020, 25, 173–178. [Google Scholar] [CrossRef]
- Xiao, X.; Liu, S.; Deng, H.; Song, Y.; Zhang, L.; Song, Z. Advances in the oral microbiota and rapid detection of oral infectious diseases. Front. Microbiol. 2023, 14, 1121737. [Google Scholar] [CrossRef]
- Deo, P.N.; Deshmukh, R. Oral microbiome: Unveiling the fundamentals. J. Oral Maxillofac. Pathol. 2019, 23, 122–128. [Google Scholar] [CrossRef]
- Caselli, E.; Fabbri, C.; D’Accolti, M. Defining the oral microbiome by whole-genome sequencing and resistome analysis: The complexity of the healthy picture. BMC Microbiol. 2020, 20, 120. [Google Scholar] [CrossRef]
- Zhang, Y.; Qi, Y.; Lo, E.C.M.; McGrath, C.; Mei, M.L.; Dai, R. Using next-generation sequencing to detect oral microbiome change following periodontal interventions: A systematic review. Oral Dis. 2021, 27, 1073–1089. [Google Scholar] [CrossRef]
- Utter, D.R.; Borisy, G.G.; Eren, A.M. Metapangenomics of the oral microbiome provides insights into habitat adaptation and cultivar diversity. Genome Biol. 2020, 21, 293. [Google Scholar] [CrossRef]
- Böttger, S.; Zechel-Gran, S.; Streckbein, P.; Knitschke, M.; Hain, T.; Weigel, M.; Wilbrand, J.F.; Domann, E.; Howaldt, H.P.; Attia, S. A New Type of Chronic Wound Infection after Wisdom Tooth Extraction: A Diagnostic Approach with 16S-rRNA Gene Analysis, Next-Generation Sequencing, and Bioinformatics. Pathogens 2020, 9, 798. [Google Scholar] [CrossRef]
- Rossen, J.W.A.; Friedrich, A.W.; Moran-Gilad, J.; ESCMID Study Group for Genomic and Molecular Diagnostics (ESGMD). Practical issues in implementing whole-genome-sequencing in routine diagnostic microbiology. Clin. Microbiol. Infect. 2018, 24, 355–360. [Google Scholar] [CrossRef]
- Committee for Antibiotic Resistance Surveillance in Croatia. Antibiotic Resistance in Croatia, 2022; The Croatian Acadamy of Medical Sciences: Zagreb, Croatia, 2023; pp. 54–65. [Google Scholar]
Characteristic | Median | Interquartile Range |
---|---|---|
Age (y) | 25.0 | 23.0–31.0 |
Body mass index (kg/m2) | 22.9 | 21.4–25.3 |
Number of pericoronitis episodes before alveotomy | 2.0 | 1.0–5.0 |
Duration of alveotomy (min) | 13.0 | 10.0–16.8 |
Initial mouth opening (mm) | 50.0 | 45.0–53.0 |
First analgetic administration (hours after procedure) | 1.0 | 1.0–2.0 |
Bacterial Species | n | % |
---|---|---|
Streptococcus spp. | 66 | 22.4 |
Fusobacterium spp. | 35 | 11.9 |
Tannerella forsythia | 27 | 9.1 |
Parvimonas micra | 26 | 8.8 |
Prevotella spp. | 25 | 8.5 |
Treponema denticola | 22 | 7.5 |
Veilonella spp. | 22 | 7.5 |
Lactobacillus spp. | 19 | 6.4 |
Campylobacter rectus | 13 | 4.4 |
Eubacterium nodatum | 11 | 3.7 |
Eikenella corrodens | 11 | 3.7 |
Bifidobacterium spp. | 6 | 2.0 |
Actinomyces spp. | 4 | 1.4 |
Porphyromonas gingivalis | 3 | 1.0 |
Aggregatibacter spp. | 3 | 1.0 |
Coagulase-negative staphylococci | 2 | 0.7 |
Total | 295 |
Bacterial Species | n | % |
---|---|---|
Streptococcus anginosus group | 34 | 51.5 |
S. anginosus | 23 | 34.8 |
S. constellatus | 9 | 13.6 |
S. intermedius | 2 | 3.0 |
Streptococcus mitis group | 15 | 22.7 |
S. oralis | 8 | 12.1 |
S. mitis | 2 | 3.0 |
S. parasanguinis | 2 | 3.0 |
S. massiliensis | 1 | 1.5 |
S. cristatus | 1 | 1.5 |
Streptococcus mutans group | 11 | 16.7 |
S. mutans | 8 | 12.1 |
S. sobrinus | 3 | 4.5 |
Streptococcus salivarius group | 6 | 9.1 |
S. vestibularis | 4 | 6.1 |
S. salivarius | 2 | 3.0 |
Streptococcus sanguinis group | 1 | 1.5 |
S. sanguinis | 1 | 1.5 |
Total | 66 |
Better Recovery Course (n = 29) | Worse Recovery Course (n = 7) | p Value (Two-Tailed) | OR (95% CI) *** | |
---|---|---|---|---|
Gender: n (%) | 2.35 (0.42–13.18) | |||
Female gender: n (%) | 22 (75.9) | 4 (57.1) | 0.370 | |
Male gender: n (%) | 7 (24.1) | 3 (42.9) | ||
Age (y): median (* IQR) | 25.0 (22.5–31.0) | 27.0 (24.0–35.0) | 0.434 | 1.04 (0.93–1.15) |
Body mass index (kg/m2): median (IQR) Previous oral surgery procedures: median (IQR) | 22.8 (21.3–25.5) 0 (0.0–0.5) | 23.9 (21.9–24.9) 1 (0.0–1.0) | 0.780 0.019 | 0.99 (0.77–1.29) 7.85 (1.23–49.83) |
Number of pericoronitis episodes before alveotomy: median (IQR) | 2 (1.0–5.0) | 1 (1.0–5.0) | 0.731 | |
** Oral health assessment: n (%) | 0.96 (0.81–1.14) | |||
Grade 1 | 1 (3.4) | 0 (0.0) | 0.625 | |
Grade 2 | 3 (10.3) | 3 (42.9) | 0.040 | |
Grade 3 | 11 (37.9) | 4 (57.1) | 0.362 | |
Grade 4 | 14 (48.3) | 0 (0.0) | 0.020 |
Better Recovery Course (n = 252) | Worse Recovery Course (n = 43) | p | |
---|---|---|---|
Bacterial isolates | |||
Streptococcus spp. (n = 66) | 56 (22.2) | 10 (23.3) | 0.873 |
Fusobacterium spp. (n = 35) | 28 (11.1) | 7 (16.3) | 0.330 |
Tannerella forsythia (n = 27) | 22 (8.7) | 5 (11.6) | 0.542 |
Parvimonas micra (n = 26) | 25 (9.9) | 1 (2.3) | 0.104 |
Prevotella spp. (n = 25) | 22 (8.7) | 3 (7.0) | 0.712 |
Treponema denticola (n = 22) | 16 (6.3) | 6 (14.0) | 0.075 |
Veilonella spp. (n = 22) | 17 (6.7) | 5 (11.6) | 0.257 |
Lactobacillus spp. (n = 19) | 16 (6.3) | 3 (7.0) | 0.862 |
Campylobacter rectus (n = 13) | 13 (5.2) | 0 (0.0) | 0.127 |
Eubacterium nodatum (n = 11) | 11 (4.4) | 0 (0.0) | 0.162 |
Eikenella corrodens (n = 11) | 10 (4.0) | 1 (2.3) | 0.588 |
Bifidobacterium spp. (n = 6) | 5 (2.0) | 1 (2.3) | 0.897 |
Actinomyces spp. (n = 4) | 4 (1.6) | 0 (0.0) | 0.404 |
Porphyromonas gingivalis (n = 3) | 3 (1.2) | 0 (0.0) | 0.471 |
Aggregatibacter spp. (n = 3) | 2 (0.8) | 1 (2.3) | 0.366 |
Coagulase-negative staphylococci (n = 2) | 2 (0.8) | 0 (0.0) | 0.556 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Todorić, Z.; Milošević, M.; Mareković, I.; Biočić, J. Impact of Pericoronary Microbiota Composition on Course of Recovery after Third Molar Alveotomy. Life 2024, 14, 580. https://doi.org/10.3390/life14050580
Todorić Z, Milošević M, Mareković I, Biočić J. Impact of Pericoronary Microbiota Composition on Course of Recovery after Third Molar Alveotomy. Life. 2024; 14(5):580. https://doi.org/10.3390/life14050580
Chicago/Turabian StyleTodorić, Zrinka, Milan Milošević, Ivana Mareković, and Josip Biočić. 2024. "Impact of Pericoronary Microbiota Composition on Course of Recovery after Third Molar Alveotomy" Life 14, no. 5: 580. https://doi.org/10.3390/life14050580
APA StyleTodorić, Z., Milošević, M., Mareković, I., & Biočić, J. (2024). Impact of Pericoronary Microbiota Composition on Course of Recovery after Third Molar Alveotomy. Life, 14(5), 580. https://doi.org/10.3390/life14050580