The Prognostic Value of Olfactory Dysfunction in Patients with COVID-19: The COVIDORA Study
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Ethics
2.3. Population
2.4. Statistical Analysis
3. Results
3.1. Baseline Demographics and Evolution of Clinical Courses along Follow-Up
3.2. Predictive Factors Associated with Hospitalization
3.3. Prevalence of OD
3.4. Clinical Features of COVID-19 Disease
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Huang, C.; Wang, Y.; Li, X.; Ren, L.; Zhao, J.; Hu, Y.; Zhang, L.; Fan, G.; Xu, J.; Gu, X.; et al. Clinical Features of Patients Infected with 2019 Novel Coronavirus in Wuhan, China. Lancet 2020, 395, 497–506. [Google Scholar] [CrossRef] [PubMed]
- Zhou, F.; Yu, T.; Du, R.; Fan, G.; Liu, Y.; Liu, Z.; Xiang, J.; Wang, Y.; Song, B.; Gu, X.; et al. Clinical Course and Risk Factors for Mortality of Adult Inpatients with COVID-19 in Wuhan, China: A Retrospective Cohort Study. Lancet 2020, 395, 1054–1062. [Google Scholar] [CrossRef] [PubMed]
- Rothan, H.A.; Byrareddy, S.N. The Epidemiology and Pathogenesis of Coronavirus Disease (COVID-19) Outbreak. J. Autoimmun. 2020, 109, 102433. [Google Scholar] [CrossRef] [PubMed]
- Eliezer, M.; Hautefort, C.; Hamel, A.-L.; Verillaud, B.; Herman, P.; Houdart, E.; Eloit, C. Sudden and Complete Olfactory Loss of Function as a Possible Symptom of COVID-19. JAMA Otolaryngol.—Head Neck Surg. 2020, 146, 674–675. [Google Scholar] [CrossRef]
- Hopkins, C.; Surda, P.; Kumar, N. Presentation of New Onset Anosmia during the COVID-19 Pandemic. Rhinology 2020, 58, 295–298. [Google Scholar] [CrossRef]
- Mullol, J.; Alobid, I.; Mariño-Sánchez, F.; Izquierdo-Domínguez, A.; Marin, C.; Klimek, L.; Wang, D.-Y.; Liu, Z. The Loss of Smell and Taste in the COVID-19 Outbreak: A Tale of Many Countries. Curr. Allergy Asthma Rep. 2020, 20, 61. [Google Scholar] [CrossRef]
- Lisan, Q.; Fieux, M.; Tran Khai, N.; Nevoux, J.; Papon, J.-F. Prevalence and Characteristics of Altered Sense of Smell/Taste during COVID-19 First Wave: A French Nationwide Cross-Sectional Study. Eur. Ann. Otorhinolaryngol. Head Neck Dis. 2021, 139, 9–12. [Google Scholar] [CrossRef]
- Speth, M.M.; Singer-Cornelius, T.; Oberle, M.; Gengler, I.; Brockmeier, S.J.; Sedaghat, A.R. Olfactory Dysfunction and Sinonasal Symptomatology in COVID-19: Prevalence, Severity, Timing, and Associated Characteristics. Otolaryngol.—Head Neck Surg. 2020, 163, 114–120. [Google Scholar] [CrossRef] [PubMed]
- Tong, J.Y.; Wong, A.; Zhu, D.; Fastenberg, J.H.; Tham, T. The Prevalence of Olfactory and Gustatory Dysfunction in COVID-19 Patients: A Systematic Review and Meta-Analysis. Otolaryngol.—Head Neck Surg. 2020, 163, 3–11. [Google Scholar] [CrossRef] [PubMed]
- Molnár, A.; Maihoub, S.; Mavrogeni, P.; Krasznai, M.; Tamás, L.; Kraxner, H. The Correlation between the Results of the Sniffin’ Sticks Test, Demographic Data, and Questionnaire of Olfactory Disorders in a Hungarian Population after a SARS-CoV-2 Infection. J. Clin. Med. 2023, 12, 1041. [Google Scholar] [CrossRef]
- Barillari, M.R.; Bastiani, L.; Lechien, J.R.; Mannelli, G.; Molteni, G.; Cantarella, G.; Coppola, N.; Costa, G.; Trecca, E.M.C.; Grillo, C.; et al. A Structural Equation Model to Examine the Clinical Features of Mild-to-Moderate COVID-19: A Multicenter Italian Study. J. Med. Virol. 2021, 93, 983–994. [Google Scholar] [CrossRef] [PubMed]
- Lechien, J.R.; Chiesa-Estomba, C.M.; Place, S.; Van Laethem, Y.; Cabaraux, P.; Mat, Q.; Huet, K.; Plzak, J.; Horoi, M.; Hans, S.; et al. Clinical and Epidemiological Characteristics of 1420 European Patients with Mild-to-Moderate Coronavirus Disease 2019. J. Intern. Med. 2020, 288, 335–344. [Google Scholar] [CrossRef] [PubMed]
- Corman, V.M.; Landt, O.; Kaiser, M.; Molenkamp, R.; Meijer, A.; Chu, D.K.; Bleicker, T.; Brünink, S.; Schneider, J.; Schmidt, M.L.; et al. Detection of 2019 Novel Coronavirus (2019-nCoV) by Real-Time RT-PCR. Euro Surveill. 2020, 25, 2000045. [Google Scholar] [CrossRef] [PubMed]
- Bonnet, G.; Weizman, O.; Trimaille, A.; Pommier, T.; Cellier, J.; Geneste, L.; Panagides, V.; Marsou, W.; Deney, A.; Attou, S.; et al. Characteristics and Outcomes of Patients Hospitalized for COVID-19 in France: The Critical COVID-19 France (CCF) Study. Arch. Cardiovasc. Dis. 2021, 114, 352–363. [Google Scholar] [CrossRef]
- Gupta, A.; Marzook, H.; Ahmad, F. Comorbidities and Clinical Complications Associated with SARS-CoV-2 Infection: An Overview. Clin. Exp. Med. 2022, 23, 313–331. [Google Scholar] [CrossRef]
- Grasselli, G.; Zangrillo, A.; Zanella, A.; Antonelli, M.; Cabrini, L.; Castelli, A.; Cereda, D.; Coluccello, A.; Foti, G.; Fumagalli, R.; et al. Baseline Characteristics and Outcomes of 1591 Patients Infected with SARS-CoV-2 Admitted to ICUs of the Lombardy Region, Italy. JAMA 2020, 323, 1574–1581. [Google Scholar] [CrossRef]
- Wu, Z.; McGoogan, J.M. Characteristics of and Important Lessons from the Coronavirus Disease 2019 (COVID-19) Outbreak in China: Summary of a Report of 72,314 Cases From the Chinese Center for Disease Control and Prevention. JAMA 2020, 323, 1239–1242. [Google Scholar] [CrossRef]
- Portuondo-Jimenez, J.; Bilbao-González, A.; Tíscar-González, V.; Garitano-Gutiérrez, I.; García-Gutiérrez, S.; Martínez-Mejuto, A.; Santiago-Garin, J.; Arribas-García, S.; García-Asensio, J.; Chart-Pascual, J.; et al. Modelling the Risk of Hospital Admission of Lab Confirmed SARS-CoV-2-Infected Patients in Primary Care: A Population-Based Study. Intern. Emerg. Med. 2022, 17, 1211–1221. [Google Scholar] [CrossRef]
- COVID-ICU Group on behalf of the REVA Network and the COVID-ICU Investigators. Clinical Characteristics and Day-90 Outcomes of 4244 Critically Ill Adults with COVID-19: A Prospective Cohort Study. Intensive Care Med. 2021, 47, 60–73. [Google Scholar] [CrossRef]
- Qu, H.-Q.; Qu, J.; Glessner, J.; Hakonarson, H. Mendelian Randomization Study of Obesity and Type 2 Diabetes in Hospitalized COVID-19 Patients. Metabolism 2022, 129, 155156. [Google Scholar] [CrossRef]
- Basu, A.; Agwu, J.C.; Barlow, N.; Lee, B. Hypertension Is the Major Predictor of Poor Outcomes among Inpatients with COVID-19 Infection in the UK: A Retrospective Cohort Study. BMJ Open 2021, 11, e047561. [Google Scholar] [CrossRef]
- Simonnet, A.; Chetboun, M.; Poissy, J.; Raverdy, V.; Noulette, J.; Duhamel, A.; Labreuche, J.; Mathieu, D.; Pattou, F.; Jourdain, M.; et al. High Prevalence of Obesity in Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) Requiring Invasive Mechanical Ventilation. Obesity 2020, 28, 1195–1199. [Google Scholar] [CrossRef]
- Miwa, T.; Mori, E.; Sekine, R.; Kimura, Y.; Kobayashi, M.; Shiga, H.; Tsuzuki, K.; Suzuki, M.; Kondo, K.; Suzaki, I.; et al. Olfactory and Taste Dysfunctions Caused by COVID-19: A Nationwide Study. Rhinology 2023, 61, 552–560. [Google Scholar] [CrossRef] [PubMed]
- Saniasiaya, J.; Islam, M.A.; Abdullah, B. Prevalence of Olfactory Dysfunction in Coronavirus Disease 2019 (COVID-19): A Meta-Analysis of 27,492 Patients. Laryngoscope 2021, 131, 865–878. [Google Scholar] [CrossRef]
- von Bartheld, C.S.; Wang, L. Prevalence of Olfactory Dysfunction with the Omicron Variant of SARS-CoV-2: A Systematic Review and Meta-Analysis. Cells 2023, 12, 430. [Google Scholar] [CrossRef]
- Vaira, L.A.; Boscolo-Rizzo, P.; Lechien, J.R.; Mayo-Yáñez, M.; Petrocelli, M.; Pistidda, L.; Salzano, G.; Maglitto, F.; Hopkins, C.; De Riu, G. Olfactory Recovery Following Omicron Variant Infection: A Psychophysical Prospective Case-Control Study with Six-Month Follow Up. J. Laryngol. Otol. 2023, 137, 1395–1400. [Google Scholar] [CrossRef] [PubMed]
- DiLena, D.D.; Warton, E.M.; Vinson, D.R.; Siqueiros, M.H.; Rauchwerger, A.S.; Mark, D.G.; Skarbinski, J.; Cholleti, S.M.; Durant, E.J.; Reed, M.E.; et al. Smells like a Variant: How the Association between COVID-19 and Olfactory Dysfunction Changed between 2019 and 2022. J. Intern. Med. 2023. ahead of print. [Google Scholar] [CrossRef]
- Li, W.; Moore, M.J.; Vasilieva, N.; Sui, J.; Wong, S.K.; Berne, M.A.; Somasundaran, M.; Sullivan, J.L.; Luzuriaga, K.; Greenough, T.C.; et al. Angiotensin-Converting Enzyme 2 Is a Functional Receptor for the SARS Coronavirus. Nature 2003, 426, 450–454. [Google Scholar] [CrossRef]
- Hoffmann, M.; Kleine-Weber, H.; Schroeder, S.; Krüger, N.; Herrler, T.; Erichsen, S.; Schiergens, T.S.; Herrler, G.; Wu, N.-H.; Nitsche, A.; et al. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell 2020, 181, 271–280.e8. [Google Scholar] [CrossRef]
- Zou, X.; Chen, K.; Zou, J.; Han, P.; Hao, J.; Han, Z. Single-Cell RNA-Seq Data Analysis on the Receptor ACE2 Expression Reveals the Potential Risk of Different Human Organs Vulnerable to 2019-nCoV Infection. Front. Med. 2020, 14, 185–192. [Google Scholar] [CrossRef]
- Wrapp, D.; Wang, N.; Corbett, K.S.; Goldsmith, J.A.; Hsieh, C.-L.; Abiona, O.; Graham, B.S.; McLellan, J.S. Cryo-EM Structure of the 2019-nCoV Spike in the Prefusion Conformation. Science 2020, 367, 1260–1263. [Google Scholar] [CrossRef]
- Bilinska, K.; Jakubowska, P.; Von Bartheld, C.S.; Butowt, R. Expression of the SARS-CoV-2 Entry Proteins, ACE2 and TMPRSS2, in Cells of the Olfactory Epithelium: Identification of Cell Types and Trends with Age. ACS Chem. Neurosci. 2020, 11, 1555–1562. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Shen, W.; Rowan, N.R.; Kulaga, H.; Hillel, A.; Ramanathan, M.; Lane, A.P. Elevated ACE-2 Expression in the Olfactory Neuroepithelium: Implications for Anosmia and Upper Respiratory SARS-CoV-2 Entry and Replication. Eur. Respir. J. 2020, 56, 2001948. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.; Yoo, S.-J.; Clijsters, M.; Backaert, W.; Vanstapel, A.; Speleman, K.; Lietaer, C.; Choi, S.; Hether, T.D.; Marcelis, L.; et al. Visualizing in Deceased COVID-19 Patients How SARS-CoV-2 Attacks the Respiratory and Olfactory Mucosae but Spares the Olfactory Bulb. Cell 2021, 184, 5932–5949.e15. [Google Scholar] [CrossRef]
- Butowt, R.; Bilinska, K.; von Bartheld, C.S. Olfactory Dysfunction in COVID-19: New Insights into the Underlying Mechanisms. Trends Neurosci. 2023, 46, 75–90. [Google Scholar] [CrossRef]
- Kumar, S.; Thambiraja, T.S.; Karuppanan, K.; Subramaniam, G. Omicron and Delta Variant of SARS-CoV-2: A Comparative Computational Study of Spike Protein. J. Med. Virol. 2022, 94, 1641–1649. [Google Scholar] [CrossRef] [PubMed]
- Jackson, C.B.; Farzan, M.; Chen, B.; Choe, H. Mechanisms of SARS-CoV-2 Entry into Cells. Nat. Rev. Mol. Cell Biol. 2022, 23, 3–20. [Google Scholar] [CrossRef]
- Peacock, T.P.; Brown, J.C.; Zhou, J.; Thakur, N.; Sukhova, K.; Newman, J.; Kugathasan, R.; Yan, A.W.C.; Furnon, W.; Lorenzo, G.D.; et al. The Altered Entry Pathway and Antigenic Distance of the SARS-CoV-2 Omicron Variant Map to Separate Domains of Spike Protein. bioRxiv 2022. bioRxiv:2021-12. [Google Scholar] [CrossRef]
- Boscolo-Rizzo, P.; Tirelli, G.; Meloni, P.; Hopkins, C.; Lechien, J.R.; Madeddu, G.; Bonini, P.; Gardenal, N.; Cancellieri, E.; Lazzarin, C.; et al. Recovery from Olfactory and Gustatory Dysfunction Following COVID-19 Acquired during Omicron BA.1 Wave in Italy. Am. J. Otolaryngol. 2023, 44, 103944. [Google Scholar] [CrossRef]
- Shelton, J.F.; Shastri, A.J.; Fletez-Brant, K.; 23andMe COVID-19 Team; Aslibekyan, S.; Auton, A. The UGT2A1/UGT2A2 Locus Is Associated with COVID-19-Related Loss of Smell or Taste. Nat. Genet. 2022, 54, 121–124. [Google Scholar] [CrossRef]
- Heydel, J.-M.; Coelho, A.; Thiebaud, N.; Legendre, A.; Le Bon, A.-M.; Faure, P.; Neiers, F.; Artur, Y.; Golebiowski, J.; Briand, L. Odorant-Binding Proteins and Xenobiotic Metabolizing Enzymes: Implications in Olfactory Perireceptor Events. Anat. Rec. 2013, 296, 1333–1345. [Google Scholar] [CrossRef] [PubMed]
- Schwartz, M.; Menetrier, F.; Heydel, J.-M.; Chavanne, E.; Faure, P.; Labrousse, M.; Lirussi, F.; Canon, F.; Mannervik, B.; Briand, L.; et al. Interactions between Odorants and Glutathione Transferases in the Human Olfactory Cleft. Chem. Senses 2020, 45, 645–654. [Google Scholar] [CrossRef] [PubMed]
- Lazard, D.; Zupko, K.; Poria, Y.; Nef, P.; Lazarovits, J.; Horn, S.; Khen, M.; Lancet, D. Odorant Signal Termination by Olfactory UDP Glucuronosyl Transferase. Nature 1991, 349, 790–793. [Google Scholar] [CrossRef]
- Ninchritz-Becerra, E.; Soriano-Reixach, M.M.; Mayo-Yánez, M.; Calvo-Henríquez, C.; Martínez-Ruiz de Apodaca, P.; Saga-Gutiérrez, C.; Parente-Arias, P.; Villareal, I.M.; Viera-Artiles, J.; Poletti-Serafini, D.; et al. Subjective Evaluation of Smell and Taste Dysfunction in Patients with Mild COVID-19 in Spain. Med. Clin. (Engl. Ed.) 2021, 156, 61–64. [Google Scholar] [CrossRef] [PubMed]
- Leclerc, S.; Heydel, J.-M.; Amossé, V.; Gradinaru, D.; Cattarelli, M.; Artur, Y.; Goudonnet, H.; Magdalou, J.; Netter, P.; Pelczar, H.; et al. Glucuronidation of Odorant Molecules in the Rat Olfactory System: Activity, Expression and Age-Linked Modifications of UDP-Glucuronosyltransferase Isoforms, UGT1A6 and UGT2A1, and Relation to Mitral Cell Activity. Brain Res. Mol. Brain Res. 2002, 107, 201–213. [Google Scholar] [CrossRef]
- Buckley, D.B.; Klaassen, C.D. Tissue- and Gender-Specific mRNA Expression of UDP-Glucuronosyltransferases (UGTs) in Mice. Drug Metab. Dispos. Biol. Fate Chem. 2007, 35, 121–127. [Google Scholar] [CrossRef]
- Gori, A.; Leone, F.; Loffredo, L.; Cinicola, B.L.; Brindisi, G.; De Castro, G.; Spalice, A.; Duse, M.; Zicari, A.M. COVID-19-Related Anosmia: The Olfactory Pathway Hypothesis and Early Intervention. Front. Neurol. 2020, 11, 956. [Google Scholar] [CrossRef]
- Bajaj, V.; Gadi, N.; Spihlman, A.P.; Wu, S.C.; Choi, C.H.; Moulton, V.R. Aging, Immunity, and COVID-19: How Age Influences the Host Immune Response to Coronavirus Infections? Front. Physiol. 2020, 11, 571416. [Google Scholar] [CrossRef]
- Takahashi, T.; Ellingson, M.K.; Wong, P.; Israelow, B.; Lucas, C.; Klein, J.; Silva, J.; Mao, T.; Oh, J.E.; Tokuyama, M.; et al. Sex Differences in Immune Responses That Underlie COVID-19 Disease Outcomes. Nature 2020, 588, 315–320. [Google Scholar] [CrossRef] [PubMed]
- Vadakedath, S.; Kandi, V.; Mohapatra, R.K.; Pinnelli, V.B.K.; Yegurla, R.R.; Shahapur, P.R.; Godishala, V.; Natesan, S.; Vora, K.S.; Sharun, K.; et al. Immunological Aspects and Gender Bias during Respiratory Viral Infections Including Novel Coronavirus Disease-19 (COVID-19): A Scoping Review. J. Med. Virol. 2021, 93, 5295–5309. [Google Scholar] [CrossRef] [PubMed]
- Lechien, J.R.; Chiesa-Estomba, C.M.; Vaira, L.A.; De Riu, G.; Cammaroto, G.; Chekkoury-Idrissi, Y.; Circiu, M.; Distinguin, L.; Journe, F.; de Terwangne, C.; et al. Epidemiological, Otolaryngological, Olfactory and Gustatory Outcomes According to the Severity of COVID-19: A Study of 2579 Patients. Eur. Arch. Oto-Rhino-Laryngol. 2021, 278, 2851–2859. [Google Scholar] [CrossRef]
- Lechien, J.R.; Chiesa-Estomba, C.M.; Vaira, L.A.; De Riu, G.; Cammaroto, G.; Chekkoury-Idrissi, Y.; Circiu, M.; Distinguin, L.; Journe, F.; de Terwangne, C.; et al. Correction to: Epidemiological, Otolaryngological, Olfactory and Gustatory Outcomes According to the Severity of COVID-19: A Study of 2579 Patients. Eur. Arch. Oto-Rhino-Laryngol. 2021, 278, 2861. [Google Scholar] [CrossRef]
- Rass, V.; Tymoszuk, P.; Sahanic, S.; Heim, B.; Ausserhofer, D.; Lindner, A.; Kofler, M.; Mahlknecht, P.; Boehm, A.; Hüfner, K.; et al. Distinct Smell and Taste Disorder Phenotype of Post-Acute COVID-19 Sequelae. Eur. Arch. Oto-Rhino-Laryngol. 2023, 280, 5115–5128. [Google Scholar] [CrossRef]
- Roshanravan, N.; Seif, F.; Ostadrahimi, A.; Pouraghaei, M.; Ghaffari, S. Targeting Cytokine Storm to Manage Patients with COVID-19: A Mini-Review. Arch. Med. Res. 2020, 51, 608–612. [Google Scholar] [CrossRef]
- Que, Y.; Hu, C.; Wan, K.; Hu, P.; Wang, R.; Luo, J.; Li, T.; Ping, R.; Hu, Q.; Sun, Y.; et al. Cytokine Release Syndrome in COVID-19: A Major Mechanism of Morbidity and Mortality. Int. Rev. Immunol. 2022, 41, 217–230. [Google Scholar] [CrossRef]
- Purja, S.; Shin, H.; Lee, J.-Y.; Kim, E. Is Loss of Smell an Early Predictor of COVID-19 Severity: A Systematic Review and Meta-Analysis. Arch. Pharm. Res. 2021, 44, 725–740. [Google Scholar] [CrossRef] [PubMed]
- Goshtasbi, K.; Pang, J.; Lehrich, B.M.; Vasudev, M.; Birkenbeuel, J.L.; Abiri, A.; Kuan, E.C. Association Between Olfactory Dysfunction and Critical Illness and Mortality in COVID-19: A Meta-Analysis. Otolaryngol.—Head Neck Surg. 2022, 166, 388–392. [Google Scholar] [CrossRef]
- Talavera, B.; García-Azorín, D.; Martínez-Pías, E.; Trigo, J.; Hernández-Pérez, I.; Valle-Peñacoba, G.; Simón-Campo, P.; de Lera, M.; Chavarría-Miranda, A.; López-Sanz, C.; et al. Anosmia Is Associated with Lower In-Hospital Mortality in COVID-19. J. Neurol. Sci. 2020, 419, 117163. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Liu, P.; Zhang, Y.; Du, T.; Zhou, Y.; Lu, S.; Peng, X. Characteristic Analysis of Omicron-Included SARS-CoV-2 Variants of Concern. MedComm 2022, 3, e129. [Google Scholar] [CrossRef]
- Hannum, M.E.; Ramirez, V.A.; Lipson, S.J.; Herriman, R.D.; Toskala, A.K.; Lin, C.; Joseph, P.V.; Reed, D.R. Objective Sensory Testing Methods Reveal a Higher Prevalence of Olfactory Loss in COVID-19-Positive Patients Compared to Subjective Methods: A Systematic Review and Meta-Analysis. Chem. Senses 2020, 45, 865–874. [Google Scholar] [CrossRef] [PubMed]
Total: n = 481 | OD at First Consultation: n = 292 (60.7%) | Normal Olfactory Function: n = 189 (39.3%) | p-Value | |
---|---|---|---|---|
Sex female | 326 (67.8%) | 217 (74.3%) | 109 (57.7%) | <0.001 * |
Age | <0.001 * | |||
<65 years | 417 (86.7%) | 270 (92.5%) | 147 (77.8%) | |
≥65 years | 49 (10.2%) | 19 (6.5%) | 30 (15.9%) | |
Body Mass Index (BMI) | 0.62 | |||
<30 | 397 (82.5%) | 243 (83.2%) | 154 (81.5%) | |
Obese | 64 (13.3%) | 49 (16.8%) | 35 (18.5%) | |
Tobacco | ||||
Non-smoker | 324 (67.4%) | 189 (64.7%) | 135 (71.4%) | 0.027 * |
History of tobacco use | 142 (29.5%) | 92 (31.5%) | 50 (26.4%) | 0.19 |
Comorbidities | ||||
Immunosuppression | 17 (3.5%) | 8 (2.7%) | 9 (4.8%) | 0.247 |
Diabetes | 48 (10%) | 19 (6.5%) | 29 (15.3%) | 0.002 * |
Hypertension | 86 (17.9%) | 38 (13%) | 48 (25.4%) | <0.001 * |
Renal insufficiency | 20 (4.2%) | 4 (1.4%) | 16 (8.5%) | <0.001 * |
Cancer | 19 (4%) | 11 (3.8%) | 8 (4.2%) | 0.81 |
Auto-immune disease | 19 (4%) | 12 (4.1%) | 7 (3.7%) | 0.83 |
Allergic rhinitis | 120 (24.9%) | 82 (28.1%) | 38 (20.1%) | 0.057 |
Personal treatments | ||||
Antihypertensive drugs | 78 (16.2%) | 32 (11%) | 46 (24.3%) | <0.001 * |
Corticosteroids | 11 (2.3%) | 3 (1%) | 8 (4.2%) | 0.029 * |
Non-steroidal anti-inflammatory drugs | 2 (0.4%) | 1 (0.3%) | 1 (0.5%) | 0.95 |
Antihistamine | 21 (4.4%) | 13 (4.5%) | 8 (4.2%) | 0.91 |
Work | <0.001 * | |||
Liberal | 90 (18.7%) | 49 (16.8%) | 41 (21.7%) | |
Retirement | 56 (11.6%) | 17 (5.8%) | 39 (20.6%) | |
Unemployed | 16 (3.3%) | 7 (2.4%) | 9 (4.8%) | |
Healthcare worker | 275 (57.2%) | 195 (66.8%) | 80 (42.3%) | |
Other | 40 (8.3%) | 24 (8.2%) | 16 (8.4%) | |
Worst clinical situation | <0.001 * | |||
Outpatient care | 377 (78.4%) | 256 (87.7%) | 121 (64.0%) | |
Hospitalized in medicine | 84 (17.5%) | 34 (11.6%) | 50 (26.4%) | |
Hospitalized in the ICU | 20 (4.1%) | 2 (0.7%) | 18 (9.5%) | |
Total hospitalization | 104 (21.6%) | 36 (12.3%) | 68 (36.0%) | <0.001 * |
Standard Hospital Admission/Outpatient Care | Hospitalization in the ICU/Outpatient Care | |||||||
---|---|---|---|---|---|---|---|---|
Univariate Analyses | Multivariate Analyses | Univariate Analyses | Multivariate Analyses | |||||
Characteristics | OR (95% CI) | p-value | OR (95% CI) | p-value | OR (95% CI) | p-value | OR (95% CI) | p-value |
OD at 1st cs | 0.32 [0.20, 0.52] | <0.001 * | 0.51 [0.29, 0.89] | 0.018 * | 0.05 [0.01, 0.23] | <0.001 * | 0.09 [0.02, 0.43] | 0.003 * |
Age | ||||||||
<65 years | Ref | Ref | Ref | Ref | ||||
≥65 years | 10.1 [5.03, 20.2] | <0.001 * | 6.31 [2.86, 13.96] | <0.001 * | 17.2 [6.30, 47.1] | <0.001 * | 5.02 [1.34, 18.8] | 0.017 * |
Sex | ||||||||
F | Ref | Ref | Ref | Ref | ||||
M | 3.03 [1.86, 4.92] | <0.001 * | 2.62 [1.49, 4.63] | <0.001 * | 8.66 [3.07, 24.4] | <0.001 * | 5.97 [1.71, 20.8] | 0.005 * |
BMI in class | ||||||||
BMI < 30 | Ref | Ref | Ref | Ref | ||||
Obese | 1.13 [0.62, 2.07] | 0.69 | 1.51 [0.76, 3.02] | 0.24 | 0.85 [0.24, 2.97] | 0.80 | 0.73 [0.16, 3.38] | 0.69 |
Diabetes | ||||||||
No | Ref | Ref | Ref | Ref | ||||
Yes | 3.23 [1.57, 6.61] | <0.001 * | 1.95 [0.80,4.79] | 0.14 | 24.20 [8.97, 65.3] | <0.001 * | 11.59 [3.36, 40.0] | <0.001 * |
Hypertension | ||||||||
No | Ref | Ref | Ref | Ref | ||||
Yes | 3.99 [2.31, 6.91] | <0.001 * | 1.26 [0.59, 2.71] | 0.55 | 14.1 [5.32, 37.1] | <0.001 * | 3.37 [0.92, 12.3] | 0.067 |
Total (n = 481) | Outpatients (n = 377) | Inpatients (n = 104) | p-Value | |
---|---|---|---|---|
Fever | 281 (58.4%) | 199 (52.8%) | 82 (78.8%) | <0.001 a,* |
NA | 4 | 4 | 0 | |
Cough | 310 (64.4%) | 233 (61.8%) | 77 (74.0%) | 0.023 a |
NA | 1 | 1 | 0 | |
Dyspnea | 159 (33.1%) | 94 (24.9%) | 65 (62.5%) | <0.001 a,* |
NA | 1 | 1 | 0 | |
Asthenia | 402 (83.6%) | 309 (82.0%) | 93 (89.4%) | 0.076 a |
NA | 1 | 1 | 0 | |
Myalgia | 276 (57.4%) | 234 (62.1%) | 42 (40.4%) | <0.001 a,* |
NA | 1 | 1 | 0 | |
Headache | 324 (67.4%) | 273 (72.4%) | 51 (49.0%) | <0.001 a,* |
NA | 2 | 1 | 1 | |
Rhinorrhea | 178 (37.0%) | 159 (42.2%) | 19 (18.3%) | <0.001 b,* |
NA | 6 | 3 | 3 | |
Nasal obstruction | 153 (31.9%) | 132 (35.0%) | 21 (20.2%) | 0.013 b,* |
NA | 27 | 15 | 12 | |
Olfactory dysfunction | 292 (60.7%) | 256 (67.9%) | 36 (34.6%) | <0.001 a,* |
NA | 0 | 0 | 0 | |
Taste dysfunction | 260 (54.1%) | 227 (60.2%) | 33 (31.7%) | <0.001 a,* |
NA | 2 | 1 | 1 | |
Simultaneous OD and TD | 241 (50.1%) | 216 (57.3%) | 25 (24.0%) | <0.001 b,* |
NA | 0 | 0 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hamel, A.-L.; Delbos, L.; Natella, P.-A.; Radulesco, T.; Alexandru, M.; Bartaire, E.; Bartier, S.; Benoite, G.; Bequignon, E.; Castillo, L.; et al. The Prognostic Value of Olfactory Dysfunction in Patients with COVID-19: The COVIDORA Study. Life 2024, 14, 293. https://doi.org/10.3390/life14030293
Hamel A-L, Delbos L, Natella P-A, Radulesco T, Alexandru M, Bartaire E, Bartier S, Benoite G, Bequignon E, Castillo L, et al. The Prognostic Value of Olfactory Dysfunction in Patients with COVID-19: The COVIDORA Study. Life. 2024; 14(3):293. https://doi.org/10.3390/life14030293
Chicago/Turabian StyleHamel, Anne-Laure, Léo Delbos, Pierre-André Natella, Thomas Radulesco, Mihaela Alexandru, Emmanuel Bartaire, Sophie Bartier, Gonda Benoite, Emilie Bequignon, Laurent Castillo, and et al. 2024. "The Prognostic Value of Olfactory Dysfunction in Patients with COVID-19: The COVIDORA Study" Life 14, no. 3: 293. https://doi.org/10.3390/life14030293
APA StyleHamel, A.-L., Delbos, L., Natella, P.-A., Radulesco, T., Alexandru, M., Bartaire, E., Bartier, S., Benoite, G., Bequignon, E., Castillo, L., Canouï-Poitrine, F., Carsuzaa, F., Corré, A., Coste, A., Couloigner, V., Daveau, C., De Boissieu, P., De Bonnecaze, G., De Gabory, L., ... Fieux, M. (2024). The Prognostic Value of Olfactory Dysfunction in Patients with COVID-19: The COVIDORA Study. Life, 14(3), 293. https://doi.org/10.3390/life14030293