Communication Skills in Toddlers Exposed to Maternal SARS-CoV-2 during Pregnancy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Audiological Evaluation Procedures
2.2. MacArthur–Bates Communicative Development Inventory—Words and Gestures Form
2.3. Data Analysis
2.4. Statistics
2.5. Ethical Issues
3. Results
3.1. Audiological Evaluation
3.2. Communication Skills
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Heidlage, J.K.; Cunningham, J.E.; Kaiser, A.P.; Trivette, C.M.; Barton, E.E.; Frey, J.R.; Roberts, M.Y. The effects of parent-implemented language interventions on child linguistic outcomes: A meta-analysis. Early Child. Res. Q. 2020, 50 Pt. 1, 6–23. [Google Scholar] [CrossRef]
- Majorano, M.; Rainieri, C.; Corsano, P. Parents’ child-directed communication and child language development: A longitudinal study with Italian toddlers. J. Child Lang. 2013, 40, 836–859. [Google Scholar] [CrossRef] [PubMed]
- Airenti, G. Pragmatic Development in L Cummings, Research in Clinical Pragmatics 11; Springer: Cham, Switzerland, 2017; pp. 3–28. [Google Scholar]
- Saito, Y.; Kondo, T.; Aoyama, S.; Fukumoto, R.; Konishi, N.; Nakamura, K.; Kobayashi, M.; Toshima, T. The function of the frontal lobe in neonates for response to a prosodic voice. Early Hum. Dev. 2007, 83, 225–230. [Google Scholar] [CrossRef] [PubMed]
- Muluk, N.B.; Bayoğlu, B.; Anlar, B. A study of language development and affecting factors in children aged 5 to 27 months. Ear Nose Throat J. 2016, 95, E23–E29. [Google Scholar] [CrossRef] [PubMed]
- Yoshinaga-Itano, C.; Sedey, A.L.; Wiggin, M.; Chung, W. Early Hearing Detection and Vocabulary of Children With Hearing Loss. Pediatrics 2017, 140, e20162964. [Google Scholar] [CrossRef] [PubMed]
- Yoshimura, H.; Okubo, T.; Shinagawa, J.; Nishio, S.Y.; Takumi, Y.; Usami, S.I. Epidemiology, aetiology and diagnosis of congenital hearing loss via hearing screening of 153 913 newborns. Int. J. Epidemiol. 2024, 53, dyae052. [Google Scholar] [CrossRef] [PubMed]
- Coppens, K.M.; Tellings, A.; van der Veld, W.; Schreuder, R.; Verhoeven, L. Vocabulary development in children with hearing loss: The role of child, family, and educational variables. Res. Dev. Disabil. 2012, 33, 119–128. [Google Scholar] [CrossRef]
- Fortin, O.; Mulkey, S.B. Neurodevelopmental outcomes in congenital and perinatal infections. Curr. Opin. Infect. Dis. 2023, 36, 405–413. [Google Scholar] [CrossRef] [PubMed]
- Sanz López, L.; Lora Díaz, J.; Castañeda-Vozmediano, R.; Mata-Castro, N. Impact on the first year of life of newborns with gestational infection by SARS-COV-2. Analysis of auditory effects. Heliyon 2023, 10, e23482. [Google Scholar] [CrossRef]
- Buonsenso, D.; Costa, S.; Giordano, L.; Priolo, F.; Colonna, A.T.; Morini, S.; Sbarbati, M.; Pata, D.; Acampora, A.; Conti, G.; et al. Short- and mid-term multidisciplinary outcomes of newborns exposed to SARS-CoV-2 in utero or during the perinatal period: Preliminary findings. Eur. J. Pediatr. 2022, 181, 1507–1520. [Google Scholar] [CrossRef]
- Ghiselli, S.; Laborai, A.; Biasucci, G.; Carvelli, M.; Salsi, D.; Cuda, D. Auditory evaluation of infants born to COVID19 positive mothers. Am. J. Otolaryngol. 2022, 43, 103379. [Google Scholar] [CrossRef] [PubMed]
- Malesci, R.; Rizzo, D.; Del Vecchio, V.; Serra, N.; Tarallo, G.; D’Errico, D.; Coronella, V.; Bussu, F.; Lo Vecchio, A.; Auletta, G.; et al. The Absence of Permanent Sensorineural Hearing Loss in a Cohort of Children with SARS-CoV-2 Infection and the Importance of Performing the Audiological “Work-Up”. Children 2022, 9, 1681. [Google Scholar] [CrossRef] [PubMed]
- Apa, E.; Presutti, M.T.; Rossi, C.; Roversi, M.F.; Neri, S.; Gargano, G.; Bianchin, G.; Polizzi, V.; Caragli, V.; Monzani, D.; et al. Monitoring of Auditory Function in Newborns of Women Infected by SARS-CoV-2 during Pregnancy. Children 2023, 10, 194. [Google Scholar] [CrossRef]
- Fancello, V.; Fancello, G.; Genovese, E.; Pelucchi, S.; Palma, S.; Bianchini, C.; Ciorba, A. Auditory Screening in Newborns after Maternal SARS-CoV-2 Infection: An Overview. Children 2023, 10, 834. [Google Scholar] [CrossRef]
- Monroe, J.M.; Quach, H.Q.; Punia, S.; Enninga, E.A.L.; Fedyshyn, Y.; Girsch, J.H.; Fedyshyn, B.; Lemens, M.; Littlefield, D.; Behl, S.; et al. Vertical Transmission of SARS-CoV-2-Specific Antibodies and Cytokine Profiles in Pregnancy. J. Infect. Dis. 2024, 229, 473–484. [Google Scholar] [CrossRef] [PubMed]
- Dubey, H.; Sharma, R.K.; Krishnan, S.; Knickmeyer, R. SARS-CoV-2 (COVID-19) as a possible risk factor for neurodevelopmental disorders. Front. Neurosci. 2022, 16, 1021721. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- McMahon, C.L.; Hurley, E.M.; Muniz Perez, A.; Estrada, M.; Lodge, D.J.; Hsieh, J. Prenatal SARS-CoV-2 infection results in neurodevelopmental and behavioral outcomes in mice. JCI Insight 2024, 9, e179068. [Google Scholar] [CrossRef] [PubMed]
- The Joint Committee on Infant Hearing. Year 2019 Position Statement: Principles and Guidelines for Early Hearing Detection and Intervention Programs. JEHDI 2019, 4, 1–43. [CrossRef]
- Fenson, L.; Marchman, V.A.; Thal, D.J.; Dale, P.S.; Reznick, J.; Bates, E. MacArthur-Bates Communicative Development Inventories: User’s Guide and Technical Manual, 2nd ed.; Paul, H., Ed.; Brookes Publishing Co.: Baltimore, MD, USA, 2007. [Google Scholar]
- Bianchin, G.; Palma, S.; Polizzi, V.; Kaleci, S.; Stagi, P.; Cappai, M.; Baiocchi, M.P.; Benincasa, P.; Brandolini, C.; Casadio, L.; et al. A regional-based newborn hearing screening program: The Emilia-Romagna model after ten years of legislation. Ann. Ig. 2023, 35, 297–307. [Google Scholar]
- Silva, G.C.; Delecrode, C.R.; Kemp, A.T.; Martins, F.; Cardoso, A.C. Transient Evoked and Distortion Product Otoacoustic Emissions in a Group of Neonates. Int. Arch. Otorhinolaryngol. 2015, 19, 255–258. [Google Scholar] [CrossRef]
- Clark, J.G. Uses and abuses of hearing loss classification. ASHA 1981, 23, 493–500. [Google Scholar] [PubMed]
- Caselli, M.C.; Bello, A.; Rinaldi, P.; Stefanini, S.; Pasqualetti, P. Il Primo Vocabolario del Bambino: Gesti, Parole e Frasi. Valori di Riferimento fra 8 e 36 Mesi Delle Forme Complete e delle Forme Brevi del Questionario MacArthur-Bates CDI, 2nd ed.; Franco Angeli Ed: Milan, Italy, 2016; pp. 27–103+153–160. [Google Scholar]
- Oskovi-Kaplan, Z.A.; Ozgu-Erdinc, A.S.; Buyuk, G.N.; Sert-Dinc, U.Y.; Ali-Algan, C.; Demir, B.; Sahin, D.; Keskin, H.L.; Tayman, C.; Moraloglu-Tekin, Ö. Newborn Hearing Screening Results of Infants Born To Mothers Who Had COVID-19 Disease During Pregnancy: A Retrospective Cohort Study. Ear Hear. 2022, 43, 41–44. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Mostafa, B.E.; Mostafa, A.; Fiky, L.M.E.; Omara, A.; Teaima, A. Maternal COVID-19 and neonatal hearing loss: A multicentric survey. Eur. Arch. Otorhinolaryngol. 2022, 279, 3435–3438. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bacon, B.R.; Sharan, I.P.; Michele, M.C. Children with previous COVID-19 infection are more likely to present with recurrent acute otitis media or tube otorrhea. Int. J. Pediatr. Otorhinolaryngol. 2024, 184, 112072. [Google Scholar] [CrossRef]
- Fajardo-Martinez, V.; Ferreira, F.; Fuller, T.; Cambou, M.C.; Kerin, T.; Paiola, S.; Mok, T.; Rao, R.; Mohole, J.; Paravastu, R.; et al. Neurodevelopmental delay in children exposed to maternal SARS-CoV-2 in-utero. Sci Rep. 2024, 14, 11851. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Firestein, M.R.; Shuffrey, L.C.; Hu, Y.; Kyle, M.; Hussain, M.; Bianco, C.; Hott, V.; Hyman, S.P.; Kyler, M.; Rodriguez, C.; et al. Assessment of Neurodevelopment in Infants With and Without Exposure to Asymptomatic or Mild Maternal SARS-CoV-2 Infection During Pregnancy. JAMA Netw. Open 2023, 6, e237396. [Google Scholar] [CrossRef] [PubMed]
- Ayed, M.; Alsaffar, Z.; Bahzad, Z.; Buhamad, Y.; Abdulkareem, A.; AlQattan, A.; Embaireeg, A.; Kartam, M.; Alkandari, H. Coronavirus Infection in Neonates: Neurodevelopmental Outcomes at 18 Months of Age. Can. J. Infect. Dis. Med. Microbiol. 2023, 2023, 6140085. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Goyal, M.; Mascarenhas, D.; Rr, P.; Nanavati, R. Long-Term Growth and Neurodevelopmental Outcomes of Neonates Infected with SARS-CoV-2 during the COVID-19 Pandemic at 18-24 Months Corrected Age: A Prospective Observational Study. Neonatology 2024, 121, 450–459. [Google Scholar] [CrossRef] [PubMed]
- Eriksson, M.; Myrberg, K. How the communicative development inventories can contribute to clinical assessments of children with speech and language disorders. Front. Psychol. 2023, 14, 1176028. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lorang, E.; Hanania, A.; Venker, C.E. Parent Certainty and Consistency When Completing Vocabulary Checklists in Young Autistic Children. J. Speech Lang. Hear. Res. 2023, 66, 2750–2765. [Google Scholar] [CrossRef] [PubMed]
- Collisson, B.A.; Graham, S.A.; Preston, J.L.; Rose, M.S.; McDonald, S.; Tough, S. Risk and Protective Factors for Late Talking: An Epidemiologic Investigation. J. Pediatr. 2016, 172, 168–174.e1. [Google Scholar] [CrossRef] [PubMed]
- Hawa, V.V.; Spanoudis, G. Toddlers with delayed expressive language: An overview of the characteristics, risk factors and language outcomes. Res. Dev. Disabil. 2014, 35, 400–407. [Google Scholar] [CrossRef] [PubMed]
- Sato, K.; Fukai, T.; Fujisawa, K.K.; Nakamuro, M. Association Between the COVID-19 Pandemic and Early Childhood Development. JAMA Pediatr. 2023, 177, 930–938. [Google Scholar] [CrossRef] [PubMed]
- Lampis, V.; Mascheretti, S.; Cantiani, C.; Riva, V.; Lorusso, M.L.; Lecce, S.; Molteni, M.; Antonietti, A.; Giorgetti, M. Long-Lasting Effects of Changes in Daily Routine during the Pandemic-Related Lockdown on Preschoolers’ Language and Emotional-Behavioral Development: A Moderation Analysis. Children 2023, 10, 656. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Feijoo, S.; Amadó, A.; Sidera, F.; Aguilar-Mediavilla, E.; Serrat, E. Language acquisition in a post-pandemic context: The impact of measures against COVID-19 on early language development. Front. Psychol. 2023, 14, 1205294. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bergelson, E.; Soderstrom, M.; Schwarz, I.C.; Rowland, C.F.; Ramírez-Esparza, N.; RHamrick, L.; Marklund, E.; Kalashnikova, M.; Guez, A.; Casillas, M.; et al. Everyday language input and production in 1001 children from six continents. Proc. Natl. Acad. Sci. USA 2023, 120, e2300671120. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kujala, T.; Partanen, E.; Virtala, P.; Winkler, I. Prerequisites of language acquisition in the newborn brain. Trends Neurosci. 2023, 46, 726–737. [Google Scholar] [CrossRef] [PubMed]
- Marchman, V.A.; Dale, P.S. The MacArthur-Bates Communicative Development Inventories: Updates from the CDI Advisory Board. Front. Psychol. 2023, 14, 1170303, Erratum in: Front. Psychol. 2023, 14, 1258830. [Google Scholar] [CrossRef] [PubMed]
- Fasolo, M.; D’Odorico, I. Comunicazione gestuale nei bambini con sviluppo del linguaggio rallentato: Una ricerca longitudinale. Psicol. Clin. Dello Svilupp. 2002, 1, 119–138. [Google Scholar]
- Eriksson, M. Insufficient evidence for the validity of the Language Development Survey and the MacArthur-Bates Communicative Development Inventories as screening tools: A critical review. Int. J. Lang. Commun. Disord. 2023, 58, 555–575. [Google Scholar] [CrossRef]
- Heilmann, J.; Ellis Weismer, S.; Evans, J.; Hollar, C. Utility of the MacArthur-Bates communicative development inventory in identifying language abilities of late-talking and typically developing toddlers. Am. J. Speech Lang. Pathol. 2005, 14, 40–51. [Google Scholar] [CrossRef] [PubMed]
Total | 1st Trimester | 2nd and 3rd Trimester | p-Value | |
---|---|---|---|---|
Sample size | 115 | 23 (20%) | 92 (80%) | - |
Gender | 50 males (43.48%) 65 females (56.52%) | 9 males (43.48%) 14 females (56.52%) | 41 males (44.57%) 51 females (55.43%) | 0.815 a |
NHS—Evaluation at 2 Monthsof Age | ||||
OAE at birth | 229 (99.57%) pass | 46 (100%) pass | 183 (99.46%) pass | 0.995 a |
ABR | n = 55 29.63 dB nHL (20–50; ±4.14) | n = 5 28.50 dB nHL (20–30; ±3.38) | n = 50 29.74 dB nHL (20–50; ±4.21) | 0.328 b |
TEOAE | n = 31 26 (83.87%) p/p | n = 9 8 (88.89%) p/p | n = 22 18 (81.81%) p/p | 0.732 a |
DPOAE | n = 5 5 (100%) p/p | n = 3 3 (100%) p/p | n = 2 2 (100%) p/p | 1.000 a |
catarrhal patterns | n = 24 | n = 6 | n = 18 | 1.000 a |
Audiological Evaluation at 12–18 Months of Age | ||||
Age | 12.62 months (7–19; SD ± 2.46) | 11.97 months (7–18; SD ± 2.14) | 12.78 months (7–19; SD ± 2.52) | 0.102 b |
VRA | n = 110 26.09 dB nHL (20–50; SD ± 4.51) | n = 22 27.05 dB nHL (20–50; SD ± 6.11) | n = 88 25.85 dB nHL (20–35; SD ± 4.03) | 0.269 b |
TEOAE | n = 2 2 (100%) p/p | n = 0 - | n = 2 2 (100%) p/p | 1.000 a |
catarrhal patterns | n = 3 | n = 1 | n = 2 | 1.000 a |
Age (In Months) | Males | Females | Total |
---|---|---|---|
8 | 0 | 1 | 1 |
10 | 1 | 2 | 3 |
11 | 5 | 12 | 17 |
12 | 5 | 5 | 10 |
13 | 5 | 1 | 6 |
14 | 4 | 3 | 7 |
15 | 1 | 0 | 1 |
16 | 2 | 2 | 4 |
17 | 0 | 3 | 3 |
18 | 1 | 1 | 2 |
19 | 0 | 2 | 2 |
Total | 24 | 32 | 56 |
Total | 1st Trimester | 3rd Trimester | p-Value | |
---|---|---|---|---|
Sample size | 56 | 14 (25%) | 42 (75%) | - |
Gender | 24 males (42.90%) 32 females (57.10%) | 5 males (35.71%) 9 females (64.29%) | 19 males (45.24%) 23 females (54.76%) | 0.730 a |
Age | 12.95 months (8–19; SD ± 2.51) | 12.14 months (10–18; SD ± 2.07) | 13.21 months (8–19; SD ± 2.61) | 0.138 b |
CDI-Words | ||||
Phrases Understood | 5 < 5th percentile (8.9%) | 0 < 5th percentile (0.0%) | 5 < 5th percentile (11.9%) | 0.201 a |
Words Understood | 7 < 5th percentile (12.5%) | 1 < 5th percentile (7.1%) | 6 < 5th percentile (14.3%) | 0.437 a |
Words produced | 3 < 5th percentile (5.4%) | 0 < 5th percentile | 3 < 5th percentile (7.1%) | 0.408 a |
CDI-Gestures | ||||
Gestures | 2 < 5th percentile (3.6%) | 0 < 5th percentile | 2 < 5th percentile (4.8%) | 0.398 a |
Deictic gestures | 3.70 (1–4; SD ± 0.71) | 3.71 (2–4; SD ± 0.61) | 3.69 (1–4; SD ± 0.75) | 0.570 b |
Communicative gestures | 4.27 (1–8; SD ± 2.02) | 4.07 (2–8; SD ± 1.77) | 4.33 (1–8; SD ± 2.11) | 0.881 b |
Total gestures | 30.66 (8–57; SD ± 12.32) | 28.71 (9–57; SD ± 12.02) | 31.31 (8–57; SD ± 12.49) | 0.823 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Apa, E.; Tegmeyer, N.C.; D’Adamo, C.; Lovati, E.; Cocchi, C.; Allegra, P.; Ostello, F.; Monzani, D.; Genovese, E.; Palma, S. Communication Skills in Toddlers Exposed to Maternal SARS-CoV-2 during Pregnancy. Life 2024, 14, 1237. https://doi.org/10.3390/life14101237
Apa E, Tegmeyer NC, D’Adamo C, Lovati E, Cocchi C, Allegra P, Ostello F, Monzani D, Genovese E, Palma S. Communication Skills in Toddlers Exposed to Maternal SARS-CoV-2 during Pregnancy. Life. 2024; 14(10):1237. https://doi.org/10.3390/life14101237
Chicago/Turabian StyleApa, Enrico, Nicole Carrie Tegmeyer, Concetta D’Adamo, Eleonora Lovati, Chiara Cocchi, Paola Allegra, Francesco Ostello, Daniele Monzani, Elisabetta Genovese, and Silvia Palma. 2024. "Communication Skills in Toddlers Exposed to Maternal SARS-CoV-2 during Pregnancy" Life 14, no. 10: 1237. https://doi.org/10.3390/life14101237