Regulatory T Cells in Atherosclerosis: Is Adoptive Cell Therapy Possible?
Abstract
Simple Summary
Abstract
1. Introduction
2. Biology of Treg Cells
3. Treg Numbers and Balance in Atherosclerosis and Their Atheroprotective Roles
4. Emerging Clinical Evidence and the Rationale for Treg-Focused Therapies in Atherosclerosis
5. Adoptive Transfer of Treg Cells in Atherosclerosis: Advances and Challenges
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
APCs | antigen-presenting cell |
CAR | chimeric antigen receptor |
CAR-T cells | chimeric antigen receptor T cells |
Cas9 | CRISPR-associated protein 9 |
CITE-seq | cellular indexing of transcriptomes and epitopes |
CRISPR | clustered, regularly interspaced, short palindromic repeats |
CTLA-4 | cytotoxic T-lymphocyte antigen-4 |
CyTOF | cytometry by Time-Of-Flight |
DAMPs | damage-associated molecular patterns |
DCs | dendritic cells |
FOXP3 | transcription factor forkhead box P3 |
GITR | glucocorticoid induced TNFR family-related gene |
G-CSF | granulocyte colony-stimulating factor |
HMGB1 | high-mobility group protein B1 |
HSP60/65 | heat shock 60 and 65kD proteins |
IL | interleukin |
IL2 | interleukin-2 |
IFNγ | interferon-γ |
LDLs | low-density lipoproteins |
LAG-3 | lymphocyte-activation gene 3 |
NKs | natural killer cells |
PBMCs | peripheral blood mononuclear cells |
PD-1 | programmed cell death-1 |
PDL-1/2 | programmed cell death 1 ligand 1 and 2 |
RORγt | retinoic acid-related orphan receptor γt |
STAT | signal transducer and activator of transcription |
scRNA-Seq | Single-cell RNA sequencing |
TCR-T cells | T cell receptor-engineered T cells |
TGF-β | transforming growth factor β |
Th | T helper cell |
Th1 | T helper 1 |
Th17 | T helper 17 |
TIGIT | T cell immunoreceptor with Ig and ITIM domains |
TNFα | tumor necrosis factor-α |
Treg | regulatory T cell |
T1D | type 1 diabetes mellitus |
References
- Roth, G.A.; Mensah, G.A.; Johnson, C.O.; Addolorato, G.; Ammirati, E.; Baddour, L.M.; Barengo, N.C.; Beaton, A.Z.; Benjamin, E.J.; Benziger, C.P.; et al. GBD-NHLBI-JACC Global Burden of Cardiovascular Diseases Writing Group. Global Burden of Cardiovascular Diseases and Risk Factors, 1990–2019: Update from the GBD 2019 Study. J. Am. Coll. Cardiol. 2020, 76, 2982–3021, Erratum in J. Am. Coll. Cardiol. 2021, 77, 1958–1959. [Google Scholar] [CrossRef]
- Gisterå, A.; Hansson, G.K. The immunology of atherosclerosis. Nat. Rev. Nephrol. 2017, 13, 368–380. [Google Scholar] [CrossRef]
- Spitz, C.; Winkels, H.; Bürger, C.; Weber, C.; Lutgens, E.; Hansson, G.K.; Gerdes, N. Regulatory T cells in atherosclerosis: Critical immune regulatory function and therapeutic potential. Cell. Mol. Life Sci. 2016, 73, 901–922. [Google Scholar] [CrossRef]
- Strassheim, D.; Karoor, V.; Stenmark, K.; Verin, A.; Gerasimovskaya, E. A current view of G protein-coupled receptor—Mediated signaling in pulmonary hypertension: Finding opportunities for therapeutic intervention. Vessel Plus 2018, 2, 29. [Google Scholar] [CrossRef] [PubMed]
- Mikami, N.; Kawakami, R.; Sakaguchi, S. New Treg cell-based therapies of autoimmune diseases: Towards antigen-specific immune suppression. Curr. Opin. Immunol. 2020, 67, 36–41. [Google Scholar] [CrossRef] [PubMed]
- Kuan, R.; Agrawal, D.K.; Thankam, F.G. Treg cells in atherosclerosis. Mol. Biol. Rep. 2021, 48, 4897–4910. [Google Scholar] [CrossRef] [PubMed]
- Kravchenko, P.N.; Zhulai, G.A.; Churov, A.V.; Oleinik, E.K.; Oleinik, V.M.; Barysheva, O.Y.; Vezikova, N.N.; Marusenko, I.M. Subpopulations of regulatory T-lymphocytes in the peripheral blood of patients with rheumatoid arthritis. Ann. Russ. Acad. Med. Sci. 2016, 71, 148–153. [Google Scholar] [CrossRef][Green Version]
- Skartsis, N.; Muller, Y.D.; Ferreira, L.M.R. Regulatory T cell homeostasis: Requisite signals and implications for clinical development of biologics. Clin. Immunol. 2023, 246, 109201. [Google Scholar] [CrossRef] [PubMed]
- Dieckmann, D.; Plottner, H.; Berchtold, S.; Berger, T.; Schuler, G. Ex vivo isolation and characterization of CD4(+)CD25(+) T cells with regulatory properties from human blood. J. Exp. Med. 2001, 193, 1303–1310. [Google Scholar] [CrossRef] [PubMed]
- Taams, L.S.; Vukmanovic-Stejic, M.; Smith, J.; Dunne, P.J.; Fletcher, J.M.; Plunkett, F.J.; Ebeling, S.B.; Lombardi, G.; Rustin, M.H.; Bijlsma, J.W.; et al. Antigen-specific T cell suppression by human CD4+CD25+ regulatory T cells. Eur. J. Immunol. 2002, 32, 1621–1630. [Google Scholar]
- Fontenot, J.D.; Gavin, M.A.; Rudensky, A.Y. Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat. Immunol. 2003, 4, 330–336. [Google Scholar] [CrossRef] [PubMed]
- Khattri, R.; Cox, T.; Yasayko, S.A.; Ramsdell, F. An essential role for Scurfin in CD4+CD25+ T regulatory cells. Nat. Immunol. 2003, 4, 337–342. [Google Scholar] [CrossRef] [PubMed]
- Roncador, G.; Brown, P.J.; Maestre, L.; Hue, S.; Martínez-Torrecuadrada, J.L.; Ling, K.L.; Pratap, S.; Toms, C.; Fox, B.C.; Cerundolo, V.; et al. Analysis of FOXP3 protein expression in human CD4+CD25+ regulatory T cells at the single-cell level. Eur. J. Immunol. 2005, 35, 1681–1691. [Google Scholar] [CrossRef] [PubMed]
- Georgiev, P.; Charbonnier, L.M.; Chatila, T.A. Regulatory T Cells: The Many Faces of Foxp3. J. Clin. Immunol. 2019, 39, 623–640. [Google Scholar] [CrossRef]
- Linterman, M.A.; Pierson, W.; Lee, S.K.; Kallies, A.; Kawamoto, S.; Rayner, T.F.; Srivastava, M.; Divekar, D.P.; Beaton, L.; Hogan, J.J.; et al. Foxp3+ follicular regulatory T cells control the germinal center response. Nat. Med. 2011, 17, 975–982. [Google Scholar] [CrossRef]
- Mackay, L.K.; Kallies, A. Transcriptional Regulation of Tissue-Resident Lymphocytes. Trends Immunol. 2017, 38, 94–103. [Google Scholar] [CrossRef] [PubMed]
- Hori, S. Control of regulatory T cell development by the transcription factor Foxp3. Science 2003, 299, 1057–1061. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Putnam, A.L.; Xu-Yu, Z.; Szot, G.L.; Lee, M.R.; Zhu, S.; Gottlieb, P.A.; Kapranov, P.; Gingeras, T.R.; de St. Groth, B.F.; et al. CD127 expression inversely correlates with FoxP3 and suppressive function of human CD4+ Treg cells. J. Exp. Med. 2006, 203, 1701–1711. [Google Scholar] [CrossRef]
- Rohm, I.; Atiskova, Y.; Drobnik, S.; Fritzenwanger, M.; Kretzschmar, D.; Pistulli, R.; Zanow, J.; Krönert, T.; Mall, G.; Figulla, H.R.; et al. Decreased regulatory T cells in vulnerable atherosclerotic lesions: Imbalance between pro- and anti-inflammatory cells in atherosclerosis. Mediat. Inflamm. 2015, 2015, 364710. [Google Scholar] [CrossRef] [PubMed]
- Li, M.O.; Wan, Y.Y.; Sanjabi, S.; Robertson, A.K.; Flavell, R.A. Transforming growth factor-beta regulation of immune responses. Annu. Rev. Immunol. 2006, 24, 99–146. [Google Scholar] [CrossRef] [PubMed]
- Yi, H.; Zhen, Y.; Jiang, L.; Zheng, J.; Zhao, Y. The phenotypic characterization of naturally occurring regulatory CD4+CD25+ T cells. Cell. Mol. Immunol. 2006, 3, 189–195. [Google Scholar] [PubMed]
- Wang, R.; Zhu, J.; Dong, X.; Shi, M.; Lu, C.; Springer, T.A. GARP regulates the bioavailability and activation of TGFβ. Mol. Biol. Cell 2012, 23, 1129–1139. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Jin, H.; Li, H. GARP: A surface molecule of regulatory T cells that is involved in the regulatory function and TGF-β releasing. Oncotarget 2016, 7, 42826–42836. [Google Scholar] [CrossRef]
- Thornton, A.M.; Korty, P.E.; Tran, D.Q.; Wohlfert, E.A.; Murray, P.E.; Belkaid, Y.; Shevach, E.M. Expression of Helios, an Ikaros transcription factor family member, differentiates thymic-derived from peripherally induced Foxp3+ T regulatory cells. J. Immunol. 2010, 184, 3433–3441. [Google Scholar] [CrossRef]
- Jiang, L.; Chen, F.; Hu, X.; Hu, Y.; Wang, Y.; Zhang, W.; Peng, Y.; Cheng, L. Decreased Helios Expression in Regulatory T Cells in Acute Coronary Syndrome. Dis. Markers 2017, 2017, 7909407. [Google Scholar] [CrossRef] [PubMed]
- Francisco, L.M.; Sage, P.T.; Sharpe, A.H. The PD-1 pathway in tolerance and autoimmunity. Immunol. Rev. 2010, 236, 219–242. [Google Scholar] [CrossRef]
- Joller, N.; Lozano, E.; Burkett, P.R.; Patel, B.; Xiao, S.; Zhu, C.; Xia, J.; Tan, T.G.; Sefik, E.; Yajnik, V.; et al. Treg cells expressing the coinhibitory molecule TIGIT selectively inhibit proinflammatory Th1 and Th17 cell responses. Immunity 2014, 40, 569–581. [Google Scholar] [CrossRef]
- De Simone, M.; Arrigoni, A.; Rossetti, G.; Gruarin, P.; Ranzani, V.; Politano, C.; Bonnal, R.J.P.; Provasi, E.; Sarnicola, M.L.; Panzeri, I.; et al. Transcriptional Landscape of Human Tissue Lymphocytes Unveils Uniqueness of Tumor-Infiltrating T Regulatory Cells. Immunity 2016, 45, 1135–1147. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Jin, R.; Zhu, X.; Yan, J.; Li, G. Function of CD147 in atherosclerosis and atherothrombosis. J. Cardiovasc. Transl. Res. 2015, 8, 59–66. [Google Scholar] [CrossRef] [PubMed]
- Ait-Oufella, H.; Salomon, B.L.; Potteaux, S.; Robertson, A.K.; Gourdy, P.; Zoll, J.; Merval, R.; Esposito, B.; Cohen, J.L.; Fisson, S.; et al. Natural regulatory T cells control the development of atherosclerosis in mice. Nat. Med. 2006, 12, 178–180. [Google Scholar] [CrossRef] [PubMed]
- Klingenberg, R.; Gerdes, N.; Badeau, R.M.; Gisterå, A.; Strodthoff, D.; Ketelhuth, D.F.; Lundberg, A.M.; Rudling, M.; Nilsson, S.K.; Olivecrona, G.; et al. Depletion of FOXP3+ regulatory T cells promotes hypercholesterolemia and atherosclerosis. J. Clin. Investig. 2013, 123, 1323–1334. [Google Scholar] [CrossRef] [PubMed]
- De Boer, O.J.; van der Meer, J.J.; Teeling, P.; van der Loos, C.M.; van der Wal, A.C. Low numbers of FOXP3 positive regulatory T cells are present in all developmental stages of human atherosclerotic lesions. PLoS ONE 2007, 2, e779. [Google Scholar] [CrossRef] [PubMed]
- George, J.; Schwartzenberg, S.; Medvedovsky, D.; Jonas, M.; Charach, G.; Afek, A.; Shamiss, A. Regulatory T cells and IL-10 levels are reduced in patients with vulnerable coronary plaques. Atherosclerosis 2012, 222, 519–523. [Google Scholar] [CrossRef]
- Liu, Z.D.; Wang, L.; Lu, F.H.; Pan, H.; Zhao, Y.X.; Wang, S.J.; Sun, S.W.; Li, C.L.; Hu, X.L. Increased Th17 cell frequency concomitant with decreased Foxp3+ Treg cell frequency in the peripheral circulation of patients with carotid artery plaques. Inflamm. Res. 2012, 61, 1155–1165. [Google Scholar] [CrossRef] [PubMed]
- Dietel, B.; Cicha, I.; Voskens, C.J.; Verhoeven, E.; Achenbach, S.; Garlichs, C.D. Decreased numbers of regulatory T cells are associated with human atherosclerotic lesion vulnerability and inversely correlate with infiltrated mature dendritic cells. Atherosclerosis 2013, 230, 92–99. [Google Scholar] [CrossRef] [PubMed]
- Mailer, R.K.W.; Gisterå, A.; Polyzos, K.A.; Ketelhuth, D.F.J.; Hansson, G.K. Hypercholesterolemia enhances T cell receptor signaling and increases the regulatory T cell population. Sci. Rep. 2017, 7, 15655. [Google Scholar] [CrossRef]
- Kologrivova, I.; Suslova, T.; Koshelskaya, O.; Kravchenko, E.; Haritonova, O.; Trubacheva, O.; Gusakova, A. FOXP3+ T-regulatory lymphocytes in hypertensive patients association with coronary atherosclerosis. J. Hypertens. 2019, 37, E153. [Google Scholar] [CrossRef]
- Li, Q.; Wang, Y.; Li, H.; Shen, G.; Hu, S. Ox-LDL influences peripheral Th17/Treg balance by modulating Treg apoptosis and Th17 proliferation in atherosclerotic cerebral infarction. Cell. Physiol. Biochem. 2014, 33, 1849–1862. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.C.; Wang, J.; Shu, Y.W.; Tang, T.T.; Zhu, Z.F.; Xia, N.; Nie, S.F.; Liu, J.; Zhou, S.F.; Li, J.J.; et al. Impaired thymic export and increased apoptosis account for regulatory T cell defects in patients with non-ST segment elevation acute coronary syndrome. J. Biol. Chem. 2012, 287, 34157–34166. [Google Scholar] [CrossRef] [PubMed]
- Klingenberg, R.; Brokopp, C.E.; Grivès, A.; Courtier, A.; Jaguszewski, M.; Pasqual, N.; Vlaskou Badra, E.; Lewandowski, A.; Gaemperli, O.; Hoerstrup, S.P.; et al. Clonal restriction and predominance of regulatory T cells in coronary thrombi of patients with acute coronary syndromes. Eur. Heart J. 2015, 36, 1041–1048. [Google Scholar] [CrossRef] [PubMed]
- Butcher, M.J.; Filipowicz, A.R.; Waseem, T.C.; McGary, C.M.; Crow, K.J.; Magilnick, N.; Boldin, M.; Lundberg, P.S.; Galkina, E.V. Atherosclerosis-Driven Treg Plasticity Results in Formation of a Dysfunctional Subset of Plastic IFNγ+ Th1/Tregs. Circ. Res. 2016, 119, 1190–1203. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Z.F.; Meng, K.; Zhong, Y.C.; Qi, L.; Mao, X.B.; Yu, K.W.; Zhang, W.; Zhu, P.F.; Ren, Z.P.; Wu, B.W.; et al. Impaired circulating CD4+LAP+ regulatory T cells in patients with acute coronary syndrome and its mechanistic study. PLoS ONE 2014, 9, e88775. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.; Li, M.; Wang, Z.; He, S.; Ma, X.; Li, D. The role of CD4+CD25+ regulatory T cells in macrophage-derived foam-cell formation. J. Lipid Res. 2010, 51, 1208–1217. [Google Scholar] [CrossRef]
- Foks, A.C.; Frodermann, V.; ter Borg, M.; Habets, K.L.; Bot, I.; Zhao, Y.; van Eck, M.; van Berkel, T.J.; Kuiper, J.; van Puijvelde, G.H. Differential effects of regulatory T cells on the initiation and regression of atherosclerosis. Atherosclerosis 2011, 218, 53–60. [Google Scholar] [CrossRef] [PubMed]
- Meng, X.; Li, W.; Yang, J.; Zhang, K.; Qin, W.; An, G.; Gao, F.; Wang, Y.; Zhang, C.; Zhang, Y. Regulatory T cells prevent plaque disruption in apolipoprotein E-knockout mice. Int. J. Cardiol. 2013, 168, 2684–2692. [Google Scholar] [CrossRef] [PubMed]
- Mallat, Z.; Gojova, A.; Brun, V.; Esposito, B.; Fournier, N.; Cottrez, F.; Tedgui, A.; Groux, H. Induction of a regulatory T cell type 1 response reduces the development of atherosclerosis in apolipoprotein E-knockout mice. Circulation 2003, 108, 1232–1237. [Google Scholar] [CrossRef] [PubMed]
- Frutkin, A.D.; Otsuka, G.; Stempien-Otero, A.; Sesti, C.; Du, L.; Jaffe, M.; Dichek, H.L.; Pennington, C.J.; Edwards, D.R.; Nieves-Cintrón, M.; et al. TGF-[beta]1 limits plaque growth, stabilizes plaque structure, and prevents aortic dilation in apolipoprotein E-null mice. Arterioscler. Thromb. Vasc. Biol. 2009, 29, 1251–1257. [Google Scholar] [CrossRef] [PubMed]
- Baptista, D.; Mach, F.; Brandt, K.J. Follicular regulatory T cell in atherosclerosis. J. Leukoc. Biol. 2018, 104, 925–930. [Google Scholar] [CrossRef]
- Achour, A.; Simon, Q.; Mohr, A.; Séité, J.F.; Youinou, P.; Bendaoud, B.; Ghedira, I.; Pers, J.O.; Jamin, C. Human regulatory B cells control the TFH cell response. J. Allergy Clin. Immunol. 2017, 140, 215–222. [Google Scholar] [CrossRef]
- Qureshi, O.S.; Zheng, Y.; Nakamura, K.; Attridge, K.; Manzotti, C.; Schmidt, E.M.; Baker, J.; Jeffery, L.E.; Kaur, S.; Briggs, Z.; et al. Trans-endocytosis of CD80 and CD86: A molecular basis for the cell-extrinsic function of CTLA-4. Science 2011, 332, 600–603. [Google Scholar] [CrossRef] [PubMed]
- Gotsman, I.; Grabie, N.; Dacosta, R.; Sukhova, G.; Sharpe, A.; Lichtman, A.H. Proatherogenic immune responses are regulated by the PD-1/PD-L pathway in mice. J. Clin. Investig. 2007, 117, 2974–2982. [Google Scholar] [CrossRef] [PubMed]
- Desreumaux, P.; Foussat, A.; Allez, M.; Beaugerie, L.; Hébuterne, X.; Bouhnik, Y.; Nachury, M.; Brun, V.; Bastian, H.; Belmonte, N.; et al. Safety and efficacy of antigen-specific regulatory T-cell therapy for patients with refractory Crohn’s disease. Gastroenterology 2012, 143, 1207–1217. [Google Scholar] [CrossRef]
- Marek-Trzonkowska, N.; Myśliwiec, M.; Dobyszuk, A.; Grabowska, M.; Derkowska, I.; Juścińska, J.; Owczuk, R.; Szadkowska, A.; Witkowski, P.; Młynarski, W.; et al. Therapy of type 1 diabetes with CD4(+)CD25(high)CD127-regulatory T cells prolongs survival of pancreatic islets—Results of one year follow-up. Clin. Immunol. 2014, 153, 23–30. [Google Scholar] [CrossRef] [PubMed]
- Bluestone, J.A.; Buckner, J.H.; Fitch, M.; Gitelman, S.E.; Gupta, S.; Hellerstein, M.K.; Herold, K.C.; Lares, A.; Lee, M.R.; Li, K.; et al. Type 1 diabetes immunotherapy using polyclonal regulatory T cells. Sci. Transl. Med. 2015, 7, 315ra189. [Google Scholar] [CrossRef] [PubMed]
- Bullenkamp, J.; Dinkla, S.; Kaski, J.C.; Dumitriu, I.E. Targeting T cells to treat atherosclerosis: Odyssey from bench to bedside. Eur. Heart J. Cardiovasc. Pharmacother. 2016, 2, 194–199. [Google Scholar] [CrossRef] [PubMed]
- Van Leuven, S.I.; van Wijk, D.F.; Volger, O.L.; de Vries, J.P.; van der Loos, C.M.; de Kleijn, D.V.; Horrevoets, A.J.; Tak, P.P.; van der Wal, A.C.; de Boer, O.J.; et al. Mycophenolate mofetil attenuates plaque inflammation in patients with symptomatic carotid artery stenosis. Atherosclerosis 2010, 211, 231–236. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Chapman, N.M.; Karmaus, P.W.; Zeng, H.; Chi, H. mTOR and metabolic regulation of conventional and regulatory T cells. J. Leukoc. Biol. 2015, 97, 837–847. [Google Scholar] [CrossRef]
- Huang, K.; Li, S.Q.; Wang, W.J.; Liu, L.S.; Jiang, Y.G.; Feng, P.N.; Wang, Y.Q.; Wang, S.M. Oral FTY720 administration induces immune tolerance and inhibits early development of atherosclerosis in apolipoprotein E-deficient mice. Int. J. Immunopathol. Pharmacol. 2012, 25, 397–406. [Google Scholar] [CrossRef] [PubMed]
- Tian, Y.; Yuan, Z.; Liu, Y.; Liu, W.; Zhang, W.; Xue, J.; Shen, Y.; Liang, X.; Chen, T.; Kishimoto, C. Pioglitazone modulates the balance of effector and regulatory T cells in apolipoprotein E deficient mice. Nutr. Metab. Cardiovasc. Dis. 2011, 21, 25–32. [Google Scholar] [CrossRef] [PubMed]
- Takeda, M.; Yamashita, T.; Sasaki, N.; Nakajima, K.; Kita, T.; Shinohara, M.; Ishida, T.; Hirata, K. Oral administration of an active form of vitamin D3 (calcitriol) decreases atherosclerosis in mice by inducing regulatory T cells and immature dendritic cells with tolerogenic functions. Arterioscler. Thromb. Vasc. Biol. 2010, 30, 2495–2503. [Google Scholar] [CrossRef] [PubMed]
- Maganto-García, E.; Tarrio, M.L.; Grabie, N.; Bu, D.X.; Lichtman, A.H. Dynamic changes in regulatory T cells are linked to levels of diet-induced hypercholesterolemia. Circulation 2011, 124, 185–195. [Google Scholar] [CrossRef] [PubMed]
- Jiagang, D.; Li, C.; Wang, H.; Hao, E.; Du, Z.; Bao, C.; Lv, J.; Wang, Y. Amygdalin mediates relieved atherosclerosis in apolipoprotein E deficient mice through the induction of regulatory T cells. Biochem. Biophys. Res. Commun. 2011, 411, 523–529. [Google Scholar] [CrossRef]
- Kita, T.; Yamashita, T.; Sasaki, N.; Kasahara, K.; Sasaki, Y.; Yodoi, K.; Takeda, M.; Nakajima, K.; Hirata, K. Regression of atherosclerosis with anti-CD3 antibody via augmenting a regulatory T-cell response in mice. Cardiovasc. Res. 2014, 102, 107–117. [Google Scholar] [CrossRef] [PubMed]
- Kasahara, K.; Sasaki, N.; Yamashita, T.; Kita, T.; Yodoi, K.; Sasaki, Y.; Takeda, M.; Hirata, K. CD3 antibody and IL-2 complex combination therapy inhibits atherosclerosis by augmenting a regulatory immune response. J. Am. Heart Assoc. 2014, 3, e000719. [Google Scholar] [CrossRef]
- Uchiyama, R.; Hasegawa, H.; Kameda, Y.; Ueda, K.; Kobayashi, Y.; Komuro, I.; Takano, H. Role of regulatory T cells in atheroprotective effects of granulocyte colony-stimulating factor. J. Mol. Cell. Cardiol. 2012, 52, 1038–1047. [Google Scholar] [CrossRef] [PubMed]
- Kobiyama, K.; Saigusa, R.; Ley, K. Vaccination against atherosclerosis. Curr. Opin. Immunol. 2019, 59, 15–24. [Google Scholar] [CrossRef] [PubMed]
- Van Puijvelde, G.H.; van Es, T.; van Wanrooij, E.J.; Habets, K.L.; de Vos, P.; van der Zee, R.; van Eden, W.; van Berkel, T.J.; Kuiper, J. Induction of oral tolerance to HSP60 or an HSP60-peptide activates T cell regulation and reduces atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 2007, 27, 2677–2683. [Google Scholar] [CrossRef] [PubMed]
- Mathew, J.M.; Voss, J.H.; McEwen, S.T.; Konieczna, I.; Chakraborty, A.; Huang, X.; He, J.; Gallon, L.; Kornbluth, R.S.; Leventhal, J.R. Generation and Characterization of Alloantigen-Specific Regulatory T Cells for Clinical Transplant Tolerance. Sci. Rep. 2018, 8, 1136. [Google Scholar] [CrossRef]
- Kim, Y.C.; Zhang, A.H.; Yoon, J.; Culp, W.E.; Lees, J.R.; Wucherpfennig, K.W.; Scott, D.W. Engineered MBP-specific human Tregs ameliorate MOG-induced EAE through IL-2-triggered inhibition of effector T cells. J. Autoimmun. 2018, 92, 77–86. [Google Scholar] [CrossRef]
- Adair, P.R.; Kim, Y.C.; Zhang, A.-H.; Yoon, J.; Scott, D.W. Human Tregs Made Antigen Specific by Gene Modification: The Power to Treat Autoimmunity and Antidrug Antibodies with Precision. Front. Immunol. 2017, 8, 1117. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Lu, W.; Liang, C.-L.; Chen, Y.; Liu, H.; Qiu, F.; Dai, Z. Chimeric Antigen Receptor (CAR) Treg: A Promising Approach to Inducing Immunological Tolerance. Front. Immunol. 2018, 9, 2359. [Google Scholar] [CrossRef]
- Bonacina, F.; Martini, E.; Garetto, S.; Roselli, G.; Pellegatta, F.; Locatelli, S.; Cremonesi, M.; Catapano, A.L.; Kallikourdis, M.; Norata, G.D. Engineered Regulatory T Cell Adoptive Therapy As A Novel Tool For The Treatment Of Atherosclerosis. Atherosclerosis 2019, 287, e18. [Google Scholar] [CrossRef]
- Putnam, A.L.; Safinia, N.; Medvec, A.; Laszkowska, M.; Wray, M.; Mintz, M.A.; Trotta, E.; Szot, G.L.; Liu, W.; Lares, A.; et al. Clinical grade manufacturing of human alloantigen-reactive regulatory T cells for use in transplantation. Am. J. Transpl. 2013, 13, 3010–3020. [Google Scholar] [CrossRef]
- Ovcinnikovs, V.; Ross, E.M.; Petersone, L.; Edner, N.M.; Heuts, F.; Ntavli, E. CTLA-4–mediated transendocytosis of costimulatory molecules primarily targets migratory dendritic cells. Sci. Immunol. 2019, 4, eaaw0902. [Google Scholar] [CrossRef]
- Boardman, D.; Maher, J.; Lechler, R.; Smyth, L.; Lombardi, G. Antigen-specificity using chimeric antigen receptors: The future of regulatory T-cell therapy? Biochem. Soc. Trans. 2016, 44, 342–348. [Google Scholar] [CrossRef] [PubMed]
- Jain, M.D.; Davila, M.L. Concise review: Emerging principles from the clinical application of chimeric antigen receptor T cell therapies for B cell malignancies. Stem Cells 2018, 36, 36–44. [Google Scholar] [CrossRef] [PubMed]
- Gauthier, J.; Yakoub-Agha, I. Chimeric antigen-receptor T-cell therapy for hematological malignancies and solid tumors: Clinical data to date, current limitations and perspectives. Curr. Res. Transl. Med. 2017, 65, 93–102. [Google Scholar] [CrossRef]
- Ren, J.; Zhao, Y. Advancing chimeric antigen receptor T cell therapy with CRISPR/Cas9. Protein Cell 2017, 8, 634–643. [Google Scholar] [CrossRef] [PubMed]
- Rafiq, S.; Hackett, C.S.; Brentjens, R.J. Engineering strategies to overcome the current roadblocks in CAR T cell therapy. Nat. Rev. Clin. Oncol. 2020, 17, 147–167. [Google Scholar] [CrossRef] [PubMed]
- Van Zeebroeck, L.; Arroyo Hornero, R.; Côrte-Real, B.F.; Hamad, I.; Meissner, T.B.; Kleinewietfeld, M. Fast and Efficient Genome Editing of Human FOXP3+ Regulatory T Cells. Front. Immunol. 2021, 12, 655122. [Google Scholar] [CrossRef] [PubMed]
- Okada, M.; Kanamori, M.; Someya, K.; Nakatsukasa, H.; Yoshimura, A. Stabilization of Foxp3 expression by CRISPR-dCas9-based epigenome editing in mouse primary T cells. Epigenet. Chromatin 2017, 10, 24. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Zheng, L.; Qiao, M.; Zhao, T.; Zhang, R.; Dong, H. A Single-Cell Atlas of the Atherosclerotic Plaque in the Femoral Artery and the Heterogeneity in Macrophage Subtypes between Carotid and Femoral Atherosclerosis. J. Cardiovasc. Dev. Dis. 2022, 9, 465. [Google Scholar] [CrossRef] [PubMed]
- Fernandez, D.M.; Giannarelli, C. Immune cell profiling in atherosclerosis: Role in research and precision medicine. Nat. Rev. Cardiol. 2022, 19, 43–58. [Google Scholar] [CrossRef] [PubMed]
- Fernandez, D.M.; Rahman, A.H.; Fernandez, N.F.; Chudnovskiy, A.; Amir, E.D.; Amadori, L.; Khan, N.S.; Wong, C.K.; Shamailova, R.; Hill, C.A.; et al. Single-cell immune landscape of human atherosclerotic plaques. Nat. Med. 2019, 25, 1576–1588. [Google Scholar] [CrossRef] [PubMed]
- Depuydt, M.A.C.; Prange, K.H.M.; Slenders, L.; Örd, T.; Elbersen, D.; Boltjes, A.; de Jager, S.C.A.; Asselbergs, F.W.; De Borst, G.J.; Aavik, E.; et al. Microanatomy of the Human Atherosclerotic Plaque by Single-Cell Transcriptomics. Circ. Res. 2020, 127, 1437–1455. [Google Scholar] [CrossRef] [PubMed]
Marker | Description and Function | References |
---|---|---|
CD25high | IL-2 receptor α-chain, which is involved in Treg cell activation and proliferation. | [5] |
FOXP3 | Transcription factor (forkhead box P3), expressed by all Treg cells and regulates their activation and/or differentiation for the development and function. | [17] |
CD127low | IL-7 receptor α-chain, is down-regulated on Treg cells, also correlates with FOXP3 and the suppressive function of human CD4+ Treg cells. | [18] |
CD39 | The co-expression of CD39 and CD73 ectoenzymes induces the hydrolysis of ATP to produce adenosine, which has a suppressive effect on T-cells. | [5] |
CD45RO | Memory T cell-associated marker (isoforms of the leukocyte common antigen), plays an important role in TCR signal transduction. | [5] |
HLA-DR | Major histocompatibility antigen (MHC) class II. Up-regulated through activation of Treg cells. | [5,19] |
CTLA-4 | Cytotoxic T-lymphocyte antigen-4 (CTLA-4), acts as a potent negative regulator of immune responses and controls the suppressor activity of Treg cells. Modulates T-regulatory, T-follicular regulatory and T-follicular helper cells to control B-cells responses. | [3,5] |
LAG-3 | Lymphocyte-activation gene 3, is involved in the cell-contact dependent mechanism of Treg-mediated suppressive activity. | [14] |
GITR | Glucocorticoid induced TNFR family-related gene, has a high surface expression on activated Treg cells and low quantities on naive and memory T cells. Inhibits the immunosuppressive activity of Treg cells. | [5] |
CD62L | L-selectin, a cell adhesion molecule, decelerates lymphocytes and is involved in the homing of T cells to secondary lymphoid organs. | [5] |
TGF-β1 | Transforming growth factor β. Pleiotropic immunoregulatory cytokine, regulates the functional activity of Treg cells. | [20,21] |
GARP | Glycoprotein A Repetitions Predominant (GARP), also known as Leucine Rich Repeat Containing 32 (LRRC32). GARP is related to the bioavailability and activation of TGF-β and mediates upregulation of Foxp3. | [22,23] |
Helios | The zinc finger transcription factor, mediator in T lymphocyte immune homeostasis and a marker of T cell immune tolerance, which regulates the expression of IL-2 in Treg cells. | [24,25] |
PD-1 (CD279) | Programmed cell death-1, regulates the balance between Treg cell activation/tolerance/exhaustion, and also controls antigen-specific T cell responses. | [26] |
TIGIT | TIGIT is a T cell immunoreceptor with Ig and ITIM domains, which is highly expressed on Treg cells and inhibits T cell activation and proliferation. | [27,28] |
Basigin/ Emmprin (CD147) | Is involved in T cell activation and proliferation, plays a key role in the cytotoxicity to human neurons, as well as negatively regulates T cell responses by selective inhibition of specific downstream elements of the Vav1/Rac1 route. | [29] |
Function | Treg-Mediated Mechanism | Effect |
---|---|---|
Regulation of macrophage cholesterol metabolism | Treg cells downregulate the expression of scavenger receptor class A (SR-A) and CD36 preventing the accumulation of lipids in macrophages [43,44]. | Inhibition of foam cell formation |
Regulation of macrophage polarisation toward M2 phenotype | Treg cells may favor the differentiation of pro-inflammatory M1 macrophages to M2 macrophages by releasing IL-10 [43,44]. | Reduction in inflammation and pro-inflammatory cytokine production |
Treg cells may increase the stability of plaques by inducing M2-macrophages mediated collagen synthesis and vascular smooth muscle cell proliferation [45]. | Improving the stability of atherosclerotic plaques. | |
Regulation of pro-inflammatory T cell subsets | Treg cells suppress Th1- and Th17-mediated immune responses by various direct or indirect inhibitory mechanisms, including secretion of cytokines [34,44,46,47]. | Reduction of activation, proliferation, and induction of apoptosis of pro-atherogenic T cells. |
Regulation of pro-inflammatory and regulatory B cell subsets * | Treg cells may attenuate follicular B2 cell responses by diminishing their maturation, survival and by inhibiting antibody production [48]. | Reduction of antibody production. Decreased pro-inflammatory cytokine activity. |
Follicular Treg cells may activate B regulatory cells and facilitate their suppressive function [48,49]. | Diminishing the differentiation of pro-inflammatory CD4+ cells into atherogenic follicular T cells. | |
Regulation of APCs | Treg cells modulate APCs maturation and function by cytokines (IL-10 and TGF-β) and by surface molecules (PDL-1/2, CTLA-4, LAG-3) [50,51]. | Inhibition of APCs co-stimulatory potential and subsequent reduction in activation of effector cells. |
Approach | Examples | Therapeutic Effect |
---|---|---|
Modulation of Treg function by drugs [45,55,56,57,58,59] | Mycophenolate mofetil Rapamycin Fingolimod Pioglitazone Statins | Increase in Treg numbers; Treg/T effector ratio restoration |
Diet and nutrients [60,61,62] | Low cholesterol diet Vitamin D3 supplementation Vitamin B17 supplementation | Increase in Treg numbers; Treg/T effector ratio restoration |
Antibodies and cytokines to control Treg cells [63,64,65] | IL-2 CD3 antibody Granulocyte colony-stimulating factor (G-CSF) | Treg expansion and increased Treg-associated cytokine production |
Treg-inducing vaccines [66,67] | HSP60/65 and LDL-based Treg-inducing vaccines | Reduction in atherosclerotic lesions and induction of Treg cell numbers in the spleen and lymph nodes |
Adoptive therapy with conventional Treg cells * | Infusions of ex vivo expanded polyclonally activated Treg cells [53,54] | Increase in circulating polyclonal Treg cells with unknown antigen specificity |
Infusions of in vitro stimulated antigen-specific Treg cells * [68] | Increase in circulating antigen-specific Treg cells | |
Adoptive therapy with engineered Treg cells [69,70,71,72] | TCR-engineered Treg cells * CAR-modified Treg cells * Plaque-homing Treg cells | An increase in the number of antigen-specific cells or cells with desired characteristics. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Churov, A.V.; Chegodaev, Y.S.; Khotina, V.A.; Ofitserov, V.P.; Orekhov, A.N. Regulatory T Cells in Atherosclerosis: Is Adoptive Cell Therapy Possible? Life 2023, 13, 1931. https://doi.org/10.3390/life13091931
Churov AV, Chegodaev YS, Khotina VA, Ofitserov VP, Orekhov AN. Regulatory T Cells in Atherosclerosis: Is Adoptive Cell Therapy Possible? Life. 2023; 13(9):1931. https://doi.org/10.3390/life13091931
Chicago/Turabian StyleChurov, Alexey V., Yegor S. Chegodaev, Victoria A. Khotina, Vladimir P. Ofitserov, and Alexander N. Orekhov. 2023. "Regulatory T Cells in Atherosclerosis: Is Adoptive Cell Therapy Possible?" Life 13, no. 9: 1931. https://doi.org/10.3390/life13091931
APA StyleChurov, A. V., Chegodaev, Y. S., Khotina, V. A., Ofitserov, V. P., & Orekhov, A. N. (2023). Regulatory T Cells in Atherosclerosis: Is Adoptive Cell Therapy Possible? Life, 13(9), 1931. https://doi.org/10.3390/life13091931