Influence of Keratoconus Severity on Detecting True Progression with Scheimpflug Imaging and Anterior Segment Optical Coherence Tomography
Abstract
1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Devices
2.3. Measurement Procedure
2.4. Statistical Analysis
3. Results
3.1. Patient Demographics
3.2. Intrasession Repeatability
3.3. Intersession Reproducibility
3.4. Cut-off Values to Consider a Corneal Shape Change
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gomes, J.A.; Tan, D.; Rapuano, C.J.; Belin, M.W.; Ambrósio, R.; Guell, J.L.; Malecaze, F.; Nishida, K.; Sangwan, V.S.; Group of Panelists for the Global Delphi Panel of Keratoconus and Ectatic Diseases. Global consensus on keratoconus and ectatic diseases. Cornea 2015, 34, 359–369. [Google Scholar] [CrossRef]
- Romero-Jiménez, M.; Santodomingo-Rubido, J.; Wolffsohn, J.S. Keratoconus: A review. Cont. Lens. Anterior Eye 2010, 33, 157–166. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Abad, A.; Piñero, D.P. New perspectives on the detection and progression of keratoconus. J. Cataract Refract. Surg. 2017, 43, 1213–1227. [Google Scholar] [CrossRef]
- Mastropasqua, L. Collagen cross-linking: When and how? A review of the state of the art of the technique and new perspectives. Eye Vis. 2015, 2, 19. [Google Scholar] [CrossRef] [PubMed]
- Sykakis, E.; Karim, R.; Evans, J.R.; Bunce, C.; Amissah-Arthur, K.N.; Patwary, S.; McDonnell, P.J.; Hamada, S. Corneal collagen cross-linking for treating keratoconus. Cochrane Database Syst. Rev. 2015, 3, CD010621. [Google Scholar] [CrossRef] [PubMed]
- Brunner, M.; Czanner, G.; Vinciguerra, R.; Romano, V.; Ahmad, S.; Batterbury, M.; Britten, C.; Willoughby, C.E.; Kaye, S.B. Improving precision for detecting change in the shape of the cornea in patients with keratoconus. Sci. Rep. 2018, 8, 12345. [Google Scholar] [CrossRef] [PubMed]
- Holladay, J.T. Keratoconus detection using corneal topography. J. Refract. Surg. 2009, 25, S958–S962. [Google Scholar] [CrossRef] [PubMed]
- Ortiz-Toquero, S.; Rodriguez, G.; de Juan, V.; Martin, R. Repeatability of placido-based corneal topography in keratoconus. Optom. Vis. Sci. 2014, 91, 1467–1473. [Google Scholar] [CrossRef]
- de Luis Eguileor, B.; Escudero Argaluza, J.; Pijoán Zubizarreta, J.I.; Santamaria Carro, A.; Etxebarria Ecenarro, J. Evaluation of the Reliability and repeatability of scheimpflug system measurement in keratoconus. Cornea 2018, 37, 177–181. [Google Scholar] [CrossRef]
- McMahon, T.T.; Anderson, R.J.; Roberts, C.; Mahmoud, A.M.; Szczotka-Flynn, L.B.; Raasch, T.W.; Friedman, N.E.; Davis, L.J. Repeatability of corneal topography measurement in keratoconus with the TMS-1. Optom. Vis. Sci. 2005, 82, 405–415. [Google Scholar] [CrossRef]
- Szalai, E.; Berta, A.; Hassan, Z.; Módis, L. Reliability and repeatability of swept-source fourier-domain optical coherence tomography and scheimpflug imaging in keratoconus. J. Cataract Refract. Surg. 2012, 38, 485–494. [Google Scholar] [CrossRef] [PubMed]
- Kreps, E.O.; Jimenez-Garcia, M.; Issarti, I.; Claerhout, I.; Koppen, C.; Rozema, J.J. Repeatability of the Pentacam HR in various grades of keratoconus. Am. J. Ophthalmol. 2020, 219, 154–162. [Google Scholar] [CrossRef] [PubMed]
- McAlinden, C.; Khadka, J.; Pesudovs, K. Precision (repeatability and reproducibility) studies and sample-size calculation. J. Cataract Refract. Surg. 2015, 41, 2598–2604. [Google Scholar] [CrossRef] [PubMed]
- Krumeich, J.H.; Daniel, J.; Knülle, A. Live-epikeratophakia for keratoconus. J. Cataract Refract. Surg. 1998, 24, 456–463. [Google Scholar] [CrossRef]
- McAlinden, C.; Khadka, J.; Pesudovs, K. Statistical methods for conducting agreement (comparison of clinical tests) and precision (repeatability or reproducibility) studies in optometry and ophthalmology. Ophthalmic Physiol. Opt. 2011, 31, 330–338. [Google Scholar] [CrossRef]
- Bland, J.M. An Introduction to Medical Statistics, 3rd ed.; Oxford University Press: Oxford, UK, 2000; pp. 137–155. [Google Scholar]
- McGraw, K.O.; Wong, S.P. Forming inferences about some intraclass correlation coefficients. Psychol. Methods 1996, 1, 30–46. [Google Scholar] [CrossRef]
- Bland, J.M.; Altman, D.G. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1986, 1, 307–310. [Google Scholar] [CrossRef]
- Ferdi, A.C.; Nguyen, V.; Gore, D.M.; Allan, B.D.; Rozema, J.J.; Watson, S.L. Keratoconus natural progression: A systematic review and meta-analysis of 11 529 eyes. Ophthalmology 2019, 126, 935–945. [Google Scholar] [CrossRef]
- Wagner, H.; Barr, J.T.; Zadnik, K. Collaborative Longitudinal Evaluation of Keratoconus (CLEK) study: Methods and findings to date. Cont. Lens Anterior Eye 2007, 30, 223–232. [Google Scholar] [CrossRef]
- Ferdi, A.; Nguyen, V.; Kandel, H.; Tan, J.C.K.; Arnalich-Montiel, F.A.; Abbondanza, M.; Watson, S. Predictors of progression in untreated keratoconus: A Save Sight Keratoconus Registry Study. Br. J. Ophthalmol. 2022, 106, 1206–1211. [Google Scholar] [CrossRef]
- Guber, I.; McAlinden, C.; Majo, F.; Bergin, C. Identifying more reliable parameters for the detection of change during the follow-up of mild to moderate keratoconus patients. Eye. Vis. 2017, 4, 24. [Google Scholar] [CrossRef] [PubMed]
- de Luis Eguileor, B.; Arriola-Villalobos, P.; Pijoan Zubizarreta, J.I.; Feijoo Lera, R.; Santamaria Carro, A.; Diaz-Valle, D.; Etxebarria, J. Multicentre Study: Reliability and repeatability of Scheimpflug system measurement in keratoconus. Br. J. Ophthalmol. 2021, 105, 22–26. [Google Scholar] [CrossRef] [PubMed]
- Hashemi, K.; Guber, I.; Bergin, C.; Majo, F. Reduced precision of the Pentacam HR in eyes with mild to moderate keratoconus. Ophthalmology 2015, 122, 211–212. [Google Scholar] [CrossRef]
- Flockerzi, E.; Elzer, B.; Daas, L.; Xanthopoulou, K.; Eppig, T.; Langenbucher, A.; Seitz, B. The reliability of successive scheimpflug imaging and anterior segment optical coherence tomography measurements decreases with increasing keratoconus severity. Cornea 2021, 40, 1433–1439. [Google Scholar] [CrossRef]
- Flynn, T.H.; Sharma, D.P.; Bunce, C.; Wilkins, M.R. Differential precision of corneal Pentacam HR measurements in early and advanced keratoconus. Br. J. Ophthalmol. 2016, 100, 1183–1187. [Google Scholar] [CrossRef] [PubMed]
- Epstein, R.L.; Chiu, Y.L.; Epstein, G.L. Pentacam HR criteria for curvature change in keratoconus and postoperative LASIK Ectasia. J. Refract. Surg. 2012, 28, 890–894. [Google Scholar] [CrossRef] [PubMed]
- Neuhann, S.; Schuh, A.; Krause, D.; Liegl, R.; Schmelter, V.; Kreutzer, T.; Mayer, W.J.; Kohnen, T.; Priglinger, S. Comparison of variables measured with a Scheimpflug device for evaluation of progression and detection of keratoconus. Sci. Rep. 2020, 10, 19308. [Google Scholar] [CrossRef] [PubMed]
- Gustafsson, I.; Bergström, A.; Myers, A.C.; Ivarsen, A.; Hjortdal, J. Association between keratoconus disease severity and repeatability in measurements of parameters for the assessment of progressive disease. PLoS ONE 2020, 15, e0228992. [Google Scholar] [CrossRef]
- Claesson, M.; Zetterberg, M. Repeated same-day versus single tomography measurements of keratoconic eyes for analysis of disease progression. Cornea 2018, 37, 474–479. [Google Scholar]
- Shetty, R.; Pahuja, N.K.; Nuijts, R.M.M.A.; Ajani, A.; Jayadev, C.; Sharma, C.; Nagaraja, H. Current protocols of corneal collagen cross-linking: Visual, refractive, and tomographic outcomes. Am. J. Ophthalmol. 2015, 160, 243–249. [Google Scholar] [CrossRef]
Parameter | Group | Mean ± SD | Sw | r | CV (%) | 95% LOA | ICC | p-Value |
---|---|---|---|---|---|---|---|---|
PENTACAM | ||||||||
K1 (D) | Control | 43.29 ± 1.11 | 0.06 | 0.16 | 0.15 | −0.29 to 0.27 | 0.99 | 0.76 |
Mild | 44.09 ± 1.90 | 0.10 | 0.28 | 0.23 | −0.40 to 0.37 | 0.99 | 0.82 | |
Moderate | 44.60 ± 2.98 | 0.13 | 0.36 | 0.30 | −0.48 to 0.42 | 0.99 | 0.49 | |
Severe | 47.27 ± 4.20 | 0.24 | 0.66 | 0.52 | −0.86 to 0.85 | 0.99 | 0.96 | |
K2 (D) | Control | 44.09 ± 0.94 | 0.08 | 0.23 | 0.18 | −0.32 to 0.36 | 0.99 | 0.61 |
Mild | 46.47 ± 2.03 | 0.12 | 0.33 | 0.26 | −0.48 to 0.46 | 0.99 | 0.92 | |
Moderate | 48.48 ± 2.47 | 0.14 | 0.39 | 0.29 | −0.53 to 0.50 | 0.99 | 0.73 | |
Severe | 51.41 ± 4.70 | 0.23 | 0.63 | 0.44 | −1.07 to 0.75 | 0.99 | 0.14 | |
Kmax-A (D) | Control | 44.47 ± 1.15 | 0.10 | 0.28 | 0.18 | −0.43 to 0.41 | 0.99 | 0.83 |
Mild | 49.03 ± 2.15 | 0.23 | 0.63 | 0.46 | −0.95 to 0.79 | 0.98 | 0.48 | |
Moderate | 53.64 ± 2.72 | 0.25 | 0.70 | 0.47 | −1.09 to 0.80 | 0.98 | 0.18 | |
Severe | 59.71 ± 5.73 | 0.29 | 0.81 | 0.49 | −1.11 to 1.02 | 0.98 | 0.72 | |
Kmax-P (D) | Control | −7.02 ± 0.83 | 0.03 | 0.08 | 0.39 | −0.11 to 0.08 | 0.99 | 0.66 |
Mild | −7.59 ± 0.54 | 0.07 | 0.20 | 0.88 | −0.25 to 0.16 | 0.98 | 0.37 | |
Moderate | −8.57 ± 0.65 | 0.11 | 0.30 | 1.36 | −0.50 to 0.35 | 0.96 | 0.12 | |
Severe | −9.76 ± 0.95 | 0.15 | 0.41 | 1.41 | −0.54 to 0.58 | 0.96 | 0.64 | |
TCT (µm) | Control | 560.42 ± 31.78 | 2.90 | 8.02 | 0.52 | −9.58 to 9.58 | 0.99 | 0.86 |
Mild | 495.00 ± 35.80 | 2.92 | 8.09 | 0.60 | −10.82 to 9.82 | 0.99 | 0.71 | |
Moderate | 480.33 ± 44.97 | 4.48 | 12.40 | 0.96 | −15.87 to 15.70 | 0.99 | 0.96 | |
Severe | 456.17 ± 34.47 | 5.11 | 14.15 | 1.13 | −15.56 to 18.67 | 0.98 | 0.50 | |
CASIA SS-1000 | ||||||||
K1 (D) | Control | 43.16 ± 0.83 | 0.04 | 0.11 | 0.08 | −0.16 to 0.11 | 0.99 | 0.98 |
Mild | 44.05 ± 1.90 | 0.06 | 0.16 | 0.14 | −0.24 to 0.12 | 0.99 | 0.65 | |
Moderate | 44.52 ± 2.70 | 0.12 | 0.33 | 0.27 | −0.44 to 0.42 | 0.99 | 0.71 | |
Severe | 46.24 ± 3.07 | 0.16 | 0.44 | 0.34 | −0.61 to 0.72 | 0.99 | 0.32 | |
K2 (D) | Control | 43.71 ± 1.03 | 0.05 | 0.14 | 0.10 | −0.20 to 0.11 | 0.99 | 0.75 |
Mild | 45.54 ± 2.04 | 0.05 | 0.15 | 0.11 | −0.18 to 0.14 | 0.99 | 0.63 | |
Moderate | 47.07 ± 2.21 | 0.12 | 0.33 | 0.25 | −0.36 to 0.49 | 0.99 | 0.16 | |
Severe | 49.46 ± 3.30 | 0.13 | 0.36 | 0.26 | −0.36 to 0.50 | 0.99 | 0.11 | |
Kmax-A (D) | Control | 44.31 ± 0.89 | 0.08 | 0.22 | 0.18 | −0.33 to 0.23 | 0.99 | 0.19 |
Mild | 47.83 ± 1.96 | 0.17 | 0.47 | 0.35 | −0.65 to 0.56 | 0.99 | 0.44 | |
Moderate | 51.62 ± 2.37 | 0.18 | 0.50 | 0.35 | −0.47 to 0.76 | 0.99 | 0.14 | |
Severe | 56.15 ± 4.39 | 0.23 | 0.63 | 0.39 | −0.86 to 0.81 | 0.99 | 0.84 | |
Kmax-P (D) | Control | −6.39 ± 0.16 | 0.01 | 0.02 | 0.13 | −0.07 to 0.07 | 0.99 | 0.71 |
Mild | −7.41 ± 0.56 | 0.02 | 0.05 | 0.24 | −0.11 to 0.11 | 0.99 | 0.54 | |
Moderate | −8.14 ± 0.54 | 0.03 | 0.08 | 0.34 | −0.15 to 0.11 | 0.99 | 0.14 | |
Severe | −9.06 ± 0.85 | 0.05 | 0.13 | 0.56 | −0.24 to 0.23 | 0.99 | 0.85 | |
TCT (µm) | Control | 538.24 ± 28.66 | 0.75 | 2.07 | 0.13 | −3.21 to 2.97 | 0.99 | 0.31 |
Mild | 482.50 ± 32.64 | 0.81 | 2.24 | 0.17 | −3.32 to 3.63 | 0.99 | 0.19 | |
Moderate | 466.88 ± 40.63 | 1.06 | 2.93 | 0.23 | −3.79 to 4.79 | 0.99 | 0.27 | |
Severe | 438.55 ± 32.62 | 1.08 | 2.99 | 0.26 | −5.40 to 5.08 | 0.99 | 0.63 |
Reproducibility (Method 1) | Reproducibility (Method 2) | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Parameter | Group | SD of Diff | SR | R | CV (%) | 95% LOA | ICC | p-Value | SD of Diff | SR | R | CV (%) | 95% LOA | ICC | p-Value |
PENTACAM | |||||||||||||||
K1 (D) | Control | 0.16 | 0.10 | 0.27 | 0.23 | −0.24 to 0.40 | 0.99 | 0.45 | 0.16 | 0.08 | 0.22 | 0.19 | −0.26 to 0.35 | 0.99 | 0.90 |
Mild | 0.26 | 0.16 | 0.44 | 0.36 | −0.55 to 0.48 | 0.99 | 0.58 | 0.19 | 0.10 | 0.27 | 0.23 | −0.41 to 0.33 | 0.99 | 0.75 | |
Moderate | 0.32 | 0.19 | 0.52 | 0.42 | −0.7 to 0.55 | 0.99 | 0.27 | 0.24 | 0.16 | 0.44 | 0.36 | −0.59 to 0.36 | 0.99 | 0.81 | |
Severe | 0.51 | 0.28 | 0.77 | 0.58 | −1.04 to 0.98 | 0.99 | 0.79 | 0.39 | 0.25 | 0.69 | 0.52 | −0.78 to 0.76 | 0.99 | 0.84 | |
K2 (D) | Control | 0.23 | 0.13 | 0.36 | 0.30 | −0.39 to 0.53 | 0.98 | 0.21 | 0.14 | 0.09 | 0.24 | 0.20 | −0.23 to 0.33 | 0.99 | 0.19 |
Mild | 0.25 | 0.15 | 0.41 | 0.33 | −0.46 to 0.54 | 0.98 | 0.71 | 0.19 | 0.12 | 0.33 | 0.26 | −0.34 to 0.35 | 0.99 | 0.24 | |
Moderate | 0.34 | 0.19 | 0.52 | 0.39 | −0.77 to 0.55 | 0.98 | 0.12 | 0.23 | 0.13 | 0.36 | 0.30 | −0.52 to 0.37 | 0.99 | 0.31 | |
Severe | 0.67 | 0.29 | 0.80 | 0.57 | −1.55 to 1.06 | 0.98 | 0.11 | 0.54 | 0.24 | 0.66 | 0.46 | −1.15 to 0.97 | 0.99 | 0.46 | |
Kmax-A (D) | Control | 0.41 | 0.24 | 0.66 | 0.50 | −0.83 to 0.78 | 0.98 | 0.82 | 0.27 | 0.16 | 0.44 | 0.36 | −0.53 to 0.53 | 0.99 | 0.82 |
Mild | 0.47 | 0.26 | 0.72 | 0.52 | −0.82 to 1.04 | 0.98 | 0.38 | 0.43 | 0.24 | 0.66 | 0.48 | −0.84 to 0.84 | 0.99 | 0.74 | |
Moderate | 0.67 | 0.38 | 1.05 | 0.71 | −1.37 to 1.26 | 0.98 | 0.70 | 0.55 | 0.30 | 0.83 | 0.57 | −1.09 to 1.07 | 0.99 | 0.55 | |
Severe | 1.22 | 0.59 | 1.63 | 0.95 | −2.58 to 2.19 | 0.98 | 0.48 | 1.00 | 0.49 | 1.35 | 0.81 | −2.00 to 1.93 | 0.99 | 0.87 | |
Kmax-P (D) | Control | 0.06 | 0.03 | 0.08 | 0.51 | −0.13 to 0.12 | 0.99 | 0.68 | 0.05 | 0.03 | 0.08 | 0.41 | −0.09 to 0.11 | 0.99 | 0.33 |
Mild | 0.18 | 0.10 | 0.27 | 1.34 | −0.44 to 0.27 | 0.97 | 0.15 | 0.15 | 0.09 | 0.24 | 1.22 | −0.36 to 0.24 | 0.97 | 0.43 | |
Moderate | 0.26 | 0.14 | 0.38 | 1.65 | −0.50 to 0.53 | 0.96 | 0.66 | 0.17 | 0.09 | 0.24 | 1.45 | −0.35 to 0.33 | 0.97 | 0.49 | |
Severe | 0.30 | 0.17 | 0.47 | 1.71 | −0.49 to 0.65 | 0.96 | 0.17 | 0.28 | 0.14 | 0.38 | 1.53 | −0.51 to 0.59 | 0.97 | 0.54 | |
TCT (µm) | Control | 6.57 | 3.83 | 10.60 | 0.70 | −12.72 to 13.03 | 0.98 | 0.60 | 4.54 | 2.62 | 7.25 | 0.47 | −9.40 to 8.38 | 0.99 | 0.59 |
Mild | 6.85 | 3.67 | 10.16 | 0.74 | −11.86 to 14.99 | 0.98 | 0.38 | 6.20 | 3.46 | 9.46 | 0.68 | −10.42 to 13.88 | 0.98 | 0.34 | |
Moderate | 12.96 | 7.13 | 19.75 | 1.50 | −26.83 to 23.99 | 0.97 | 0.59 | 9.63 | 5.37 | 14.87 | 1.02 | −20.60 to 17.13 | 0.98 | 0.39 | |
Severe | 15.42 | 9.15 | 25.34 | 2.01 | −28.06 to 32.39 | 0.95 | 0.52 | 10.21 | 5.58 | 15.45 | 1.20 | −18.09 to 21.94 | 0.98 | 0.44 | |
CASIA SS-1000 | |||||||||||||||
K1 (D) | Control | 0.10 | 0.05 | 0.13 | 0.12 | −0.23 to 0.18 | 0.99 | 0.53 | 0.10 | 0.05 | 0.13 | 0.12 | −0.20 to 0.18 | 0.99 | 0.34 |
Mild | 0.16 | 0.10 | 0.27 | 0.23 | −0.40 to 0.23 | 0.99 | 0.08 | 0.15 | 0.08 | 0.22 | 0.18 | −0.32 to 0.25 | 0.99 | 0.54 | |
Moderate | 0.28 | 0.15 | 0.41 | 0.35 | −0.60 to 0.50 | 0.99 | 0.27 | 0.21 | 0.12 | 0.33 | 0.26 | −0.42 to 0.40 | 0.99 | 0.71 | |
Severe | 0.43 | 0.21 | 0.58 | 0.47 | −0.81 to 0.90 | 0.99 | 0.16 | 0.29 | 0.15 | 0.42 | 0.49 | −0.49 to 0.65 | 0.99 | 0.07 | |
K2 (D) | Control | 0.14 | 0.09 | 0.24 | 0.20 | −0.32 to 0.24 | 0.99 | 0.08 | 0.11 | 0.06 | 0.16 | 0.14 | −0.24 to 0.20 | 0.99 | 0.10 |
Mild | 0.15 | 0.09 | 0.25 | 0.21 | −0.36 to 0.24 | 0.99 | 0.34 | 0.15 | 0.10 | 0.27 | 0.20 | −0.35 to 0.24 | 0.99 | 0.37 | |
Moderate | 0.22 | 0.12 | 0.33 | 0.25 | −0.51 to 0.36 | 0.99 | 0.10 | 0.20 | 0.10 | 0.28 | 0.21 | −0.47 to 0.31 | 0.99 | 0.42 | |
Severe | 0.39 | 0.24 | 0.66 | 0.49 | −0.68 to 0.86 | 0.99 | 0.15 | 0.30 | 0.16 | 0.44 | 0.32 | −0.57 to 0.62 | 0.99 | 0.09 | |
Kmax-A (D) | Control | 0.30 | 0.15 | 0.42 | 0.34 | −0.64 to 0.55 | 0.98 | 0.51 | 0.20 | 0.11 | 0.30 | 0.22 | −0.41 to 0.37 | 0.99 | 0.64 |
Mild | 0.35 | 0.20 | 0.55 | 0.42 | −0.64 to 0.72 | 0.98 | 0.55 | 0.22 | 0.13 | 0.36 | 0.23 | −0.42 to 0.43 | 0.99 | 0.62 | |
Moderate | 0.47 | 0.24 | 0.66 | 0.46 | −0.97 to 0.88 | 0.98 | 0.10 | 0.42 | 0.23 | 0.63 | 0.45 | −0.90 to 0.74 | 0.99 | 0.22 | |
Severe | 0.72 | 0.37 | 1.02 | 0.69 | −1.26 to 1.57 | 0.98 | 0.21 | 0.71 | 0.36 | 0.99 | 0.68 | −1.20 to 1.57 | 0.99 | 0.08 | |
Kmax-P (D) | Control | 0.06 | 0.02 | 0.05 | 0.29 | −0.13 to 0.11 | 0.99 | 0.21 | 0.06 | 0.02 | 0.05 | 0.29 | −0.14 to 0.10 | 0.99 | 0.13 |
Mild | 0.08 | 0.02 | 0.05 | 0.32 | −0.17 to 0.14 | 0.98 | 0.17 | 0.06 | 0.02 | 0.05 | 0.32 | −0.13 to 0.11 | 0.99 | 0.19 | |
Moderate | 0.07 | 0.03 | 0.08 | 0.39 | −0.15 to 0.12 | 0.98 | 0.20 | 0.07 | 0.03 | 0.08 | 0.38 | −0.14 to 0.12 | 0.99 | 0.39 | |
Severe | 0.15 | 0.08 | 0.22 | 0.68 | −0.34 to 0.23 | 0.98 | 0.11 | 0.09 | 0.05 | 0.13 | 0.53 | −0.23 to 0.14 | 0.99 | 0.42 | |
TCT (µm) | Control | 2.98 | 1.46 | 4.04 | 0.27 | −6.03 to 5.67 | 0.99 | 0.75 | 2.44 | 1.36 | 3.76 | 0.25 | −4.85 to 4.70 | 0.99 | 0.73 |
Mild | 3.71 | 2.37 | 6.56 | 0.50 | −6.81 to 7.73 | 0.99 | 0.42 | 2.72 | 1.90 | 5.26 | 0.39 | −4.41 to 6.25 | 0.99 | 0.41 | |
Moderate | 4.67 | 2.74 | 7.58 | 0.60 | −7.36 to 10.85 | 0.99 | 0.44 | 4.24 | 2.51 | 6.95 | 0.55 | −6.61 to 10.00 | 0.99 | 0.25 | |
Severe | 5.91 | 2.75 | 7.61 | 0.64 | −12.42 to 10.94 | 0.99 | 0.45 | 5.42 | 2.74 | 7.58 | 0.63 | −10.81 to 10.42 | 0.99 | 0.43 |
Cut-Off for Corneal Consistent Change | |||||
---|---|---|---|---|---|
PENTACAM | CASIA SS-1000 | ||||
Parameter | Group | Single Measurement (Method 1) | Repeated Measurements (Method 2) | Single Measurement (Method 1) | Repeated Measurements (Method 2) |
K1 (D) | Control | 0.53 | 0.48 | 0.26 | 0.25 |
Mild | 0.72 | 0.50 | 0.38 | 0.37 | |
Moderate | 0.78 | 0.54 | 0.70 | 0.53 | |
Severe | 1.40 | 1.09 | 1.25 | 0.88 | |
K2 (D) | Control | 0.72 | 0.44 | 0.35 | 0.29 |
Mild | 0.77 | 0.51 | 0.38 | 0.37 | |
Moderate | 0.80 | 0.53 | 0.51 | 0.46 | |
Severe | 1.60 | 1.41 | 1.17 | 0.87 | |
Kmax-A (D) | Control | 1.12 | 0.75 | 0.80 | 0.54 |
Mild | 1.48 | 1.24 | 1.04 | 0.65 | |
Moderate | 1.74 | 1.46 | 1.22 | 1.04 | |
Severe | 3.18 | 2.74 | 2.16 | 2.15 | |
Kmax-P (D) | Control | 0.17 | 0.15 | 0.15 | 0.15 |
Mild | 0.44 | 0.38 | 0.22 | 0.17 | |
Moderate | 0.72 | 0.45 | 0.17 | 0.17 | |
Severe | 0.88 | 0.82 | 0.35 | 0.22 | |
TCT (µm) | Control | 18.38 | 12.07 | 7.65 | 7.34 |
Mild | 21.36 | 19.64 | 11.19 | 8.78 | |
Moderate | 33.26 | 24.01 | 14.29 | 13.03 | |
Severe | 42.65 | 28.68 | 15.55 | 14.83 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ortiz-Toquero, S.; Fuente, C.; Auladell, C.; Arnalich-Montiel, F. Influence of Keratoconus Severity on Detecting True Progression with Scheimpflug Imaging and Anterior Segment Optical Coherence Tomography. Life 2023, 13, 1474. https://doi.org/10.3390/life13071474
Ortiz-Toquero S, Fuente C, Auladell C, Arnalich-Montiel F. Influence of Keratoconus Severity on Detecting True Progression with Scheimpflug Imaging and Anterior Segment Optical Coherence Tomography. Life. 2023; 13(7):1474. https://doi.org/10.3390/life13071474
Chicago/Turabian StyleOrtiz-Toquero, Sara, Carlota Fuente, Clara Auladell, and Francisco Arnalich-Montiel. 2023. "Influence of Keratoconus Severity on Detecting True Progression with Scheimpflug Imaging and Anterior Segment Optical Coherence Tomography" Life 13, no. 7: 1474. https://doi.org/10.3390/life13071474
APA StyleOrtiz-Toquero, S., Fuente, C., Auladell, C., & Arnalich-Montiel, F. (2023). Influence of Keratoconus Severity on Detecting True Progression with Scheimpflug Imaging and Anterior Segment Optical Coherence Tomography. Life, 13(7), 1474. https://doi.org/10.3390/life13071474