The Immunotherapeutic Role of Type I and III Interferons in Melanoma and Non-Melanoma Skin Cancers
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Type I and Type III Interferons and Their Biological Actions
3.1.1. Type I Interferons
3.1.2. Type III Interferons
3.2. Immunotherapy with Type I and III Interferons
3.2.1. Type I Interferons
3.2.2. The Clinical Consideration of Type I Interferons
3.2.3. Type III Interferons
4. Discussion
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Pestka, S.; Krause, C.D.; Walter, M.R. Interferons, interferon-like cytokines, and their receptors. Immunol. Rev. 2004, 202, 8–32. [Google Scholar] [CrossRef] [PubMed]
- Lazear, H.M.; Schoggins, J.W.; Diamond, M.S. Shared and Distinct Functions of Type I and Type III Interferons. Immunity 2019, 50, 907–923. [Google Scholar] [CrossRef] [PubMed]
- Aricò, E.; Castiello, L.; Capone, I.; Gabriele, L.; Belardelli, F. Type I Interferons and Cancer: An Evolving Story Demanding Novel Clinical Applications. Cancers 2019, 11, 1943. [Google Scholar] [CrossRef] [PubMed]
- Ismail, A.; Yusuf, N. Type I interferons: Key players in normal skin and select cutaneous malignancies. Dermatol. Res. Pract. 2014, 2014, 847545. [Google Scholar] [CrossRef]
- Isaacs, A.; Lindenmann, J. Virus interference. I. The interferon. Proc. R. Soc. Lond. B Biol. Sci. 1957, 147, 258–267. [Google Scholar] [CrossRef] [PubMed]
- Borden, E.C. The Molecular Basis of Cancer; Mendelsohn, J., Ed.; Elsevier: Amsterdam, The Netherlands, 2014; Volume 4. [Google Scholar]
- Li, M.; Rao, C.; Pei, D.; Wang, L.; Li, Y.; Gao, K.; Wang, M.; Wang, J. Novaferon, a novel recombinant protein produced by DNA-shuffling of IFN-α, shows antitumor effect in vitro and in vivo. Cancer Cell Int. 2014, 14, 8. [Google Scholar] [CrossRef] [PubMed]
- Walter, M.R. The Role of Structure in the Biology of Interferon Signaling. Front. Immunol. 2020, 11, 606489. [Google Scholar] [CrossRef]
- Bach, E.A.; Aguet, M.; Schreiber, R.D. The IFN gamma receptor: A paradigm for cytokine receptor signaling. Annu. Rev. Immunol. 1997, 15, 563–591. [Google Scholar] [CrossRef]
- Stanifer, M.L.; Pervolaraki, K.; Boulant, S. Differential Regulation of Type I and Type III Interferon Signaling. Int. J. Mol. Sci. 2019, 20, 1445. [Google Scholar] [CrossRef]
- Jorgovanovic, D.; Song, M.; Wang, L.; Zhang, Y. Roles of IFN-γ in tumor progression and regression: A review. Biomark. Res. 2020, 8, 49. [Google Scholar] [CrossRef]
- Schroder, K.; Hertzog, P.J.; Ravasi, T.; Hume, D.A. Interferon-gamma: An overview of signals, mechanisms and functions. J. Leukoc. Biol. 2004, 75, 163–189. [Google Scholar] [CrossRef] [PubMed]
- Negishi, H.; Osawa, T.; Ogami, K.; Ouyang, X.; Sakaguchi, S.; Koshiba, R.; Yanai, H.; Seko, Y.; Shitara, H.; Bishop, K.; et al. A critical link between Toll-like receptor 3 and type II interferon signaling pathways in antiviral innate immunity. Proc. Natl. Acad. Sci. USA 2008, 105, 20446–20451. [Google Scholar] [CrossRef] [PubMed]
- Novick, D.; Cohen, B.; Rubinstein, M. The human interferon alpha/beta receptor: Characterization and molecular cloning. Cell 1994, 77, 391–400. [Google Scholar] [CrossRef] [PubMed]
- Leist-Welsh, P.; Bjornson, A.B. Requirements of immunoglobulin and the classical and alternative complement pathways for phagocytosis and intracellular killing of multiple strains of Gram-negative aerobic bacilli. Infect. Immun. 1979, 26, 99–109. [Google Scholar] [CrossRef]
- Sommereyns, C.; Paul, S.; Staeheli, P.; Michiels, T. IFN-lambda (IFN-lambda) is expressed in a tissue-dependent fashion and primarily acts on epithelial cells in vivo. PLoS Pathog. 2008, 4, e1000017. [Google Scholar] [CrossRef]
- Malik, A.E.; Issekutz, T.B.; Derfalvi, B. The Role of Type III Interferons in Human Disease. Clin. Investig. Med. 2021, 44, E5–E18. [Google Scholar] [CrossRef]
- Donnelly, R.P.; Kotenko, S.V. Interferon-lambda: A new addition to an old family. J. Interferon Cytokine Res. 2010, 30, 555–564. [Google Scholar] [CrossRef]
- Kotenko, S.V.; Gallagher, G.; Baurin, V.V.; Lewis-Antes, A.; Shen, M.; Shah, N.K.; Langer, J.A.; Sheikh, F.; Dickensheets, H.; Donnelly, R.P. IFN-lambdas mediate antiviral protection through a distinct class II cytokine receptor complex. Nat. Immunol. 2003, 4, 69–77. [Google Scholar] [CrossRef]
- Sheppard, P.; Kindsvogel, W.; Xu, W.; Henderson, K.; Schlutsmeyer, S.; Whitmore, T.E.; Kuestner, R.; Garrigues, U.; Birks, C.; Roraback, J.; et al. IL-28, IL-29 and their class II cytokine receptor IL-28R. Nat. Immunol. 2003, 4, 63–68. [Google Scholar] [CrossRef]
- van den Bulk, J.; Verdegaal, E.M.; de Miranda, N.F. Cancer immunotherapy: Broadening the scope of targetable tumours. Open Biol. 2018, 8, 180037. [Google Scholar] [CrossRef]
- Ding, C.; Li, L.; Zhang, Y.; Ji, Z.; Zhang, C.; Liang, T.; Guo, X.; Liu, X.; Kang, Q. Toll-like receptor agonist rMBP-NAP enhances antitumor cytokines production and CTL activity of peripheral blood mononuclear cells from patients with lung cancer. Oncol. Lett. 2018, 16, 4707–4712. [Google Scholar] [CrossRef] [PubMed]
- Immunotherapy to Treat Cancer; National Cancer Institute: Bethesda, MD, USA, 2019.
- Yang, Y. Cancer immunotherapy: Harnessing the immune system to battle cancer. J. Clin. Investig. 2015, 125, 3335–3337. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, S.; Zhu, Y.; Zhang, M.; Zhao, Y.; Yan, Z.; Wang, Q.; Li, X. Double-edged effects of interferons on the regulation of cancer-immunity cycle. Oncoimmunology 2021, 10, 1929005. [Google Scholar] [CrossRef] [PubMed]
- Boukhaled, G.M.; Harding, S.; Brooks, D.G. Opposing Roles of Type I Interferons in Cancer Immunity. Annu. Rev. Pathol. 2021, 16, 167–198. [Google Scholar] [CrossRef] [PubMed]
- Caraglia, M.; Dicitore, A.; Marra, M.; Castiglioni, S.; Persani, L.; Sperlongano, P.; Tagliaferri, P.; Abbruzzese, A.; Vitale, G. Type I interferons: Ancient peptides with still under-discovered anti-cancer properties. Protein Pept. Lett. 2013, 20, 412–423. [Google Scholar]
- Yaar, M.; Karassik, R.L.; Schnipper, L.E.; Gilchrest, B.A. Effects of alpha and beta interferons on cultured human keratinocytes. J. Investig. Dermatol. 1985, 85, 70–74. [Google Scholar] [CrossRef]
- Stout, A.J.; Gresser, I.; Thompson, W.D. Inhibition of wound healing in mice by local interferon alpha/beta injection. Int. J. Exp. Pathol. 1993, 74, 79–85. [Google Scholar]
- Krasagakis, K.; Garbe, C.; Krüger, S.; Orfanos, C.E. Effects of interferons on cultured human melanocytes in vitro: Interferon-beta but not-alpha or -gamma inhibit proliferation and all interferons significantly modulate the cell phenotype. J. Investig. Dermatol. 1991, 97, 364–372. [Google Scholar] [CrossRef]
- Niederwieser, D.; Auböck, J.; Troppmair, J.; Herold, M.; Schuler, G.; Boeck, G.; Lotz, J.; Fritsch, P.; Huber, C. IFN-mediated induction of MHC antigen expression on human keratinocytes and its influence on in vitro alloimmune responses. J. Immunol. 1988, 140, 2556–2564. [Google Scholar] [CrossRef]
- Buechner, S.A.; Wernli, M.; Harr, T.; Hahn, S.; Itin, P.; Erb, P. Regression of basal cell carcinoma by intralesional interferon-alpha treatment is mediated by CD95 (Apo-1/Fas)-CD95 ligand-induced suicide. J. Clin. Investig. 1997, 100, 2691–2696. [Google Scholar] [CrossRef]
- Di Franco, S.; Turdo, A.; Todaro, M.; Stassi, G. Role of Type I and II Interferons in Colorectal Cancer and Melanoma. Front. Immunol. 2017, 8, 878. [Google Scholar] [CrossRef] [PubMed]
- Bufalieri, F.; Basili, I.; Di Marcotullio, L.; Infante, P. Harnessing the Activation of RIG-I Like Receptors to Inhibit Glioblastoma Tumorigenesis. Front. Mol. Neurosci. 2021, 14, 710171. [Google Scholar] [CrossRef] [PubMed]
- Tagawa, M.; Kawamura, K.; Li, Q.; Tada, Y.; Hiroshima, K.; Shimada, H. A possible anticancer agent, type III interferon, activates cell death pathways and produces antitumor effects. Clin. Dev. Immunol. 2011, 2011, 479013. [Google Scholar] [CrossRef] [PubMed]
- Weiner, D.M.; Durgin, J.S.; Wysocka, M.; Rook, A.H. The immunopathogenesis and immunotherapy of cutaneous T cell lymphoma: Current and future approaches. J. Am. Acad. Dermatol. 2021, 84, 597–604. [Google Scholar] [CrossRef] [PubMed]
- Amouzegar, A.; Chelvanambi, M.; Filderman, J.N.; Storkus, W.J.; Luke, J.J. STING Agonists as Cancer Therapeutics. Cancers 2021, 13, 2695. [Google Scholar] [CrossRef]
- Lasfar, A.; Zloza, A.; Silk, A.W.; Lee, L.Y.; Cohen-Solal, K.A. Interferon Lambda: Toward a Dual Role in Cancer. J. Interferon Cytokine Res. 2019, 39, 22–29. [Google Scholar] [CrossRef]
- Muir, A.J.; Shiffman, M.L.; Zaman, A.; Yoffe, B.; de la Torre, A.; Flamm, S.; Gordon, S.C.; Marotta, P.; Vierling, J.M.; Lopez-Talavera, J.C.; et al. Phase 1b study of pegylated interferon lambda 1 with or without ribavirin in patients with chronic genotype 1 hepatitis C virus infection. Hepatology 2010, 52, 822–832. [Google Scholar] [CrossRef]
- Muir, A.J.; Arora, S.; Everson, G.; Flisiak, R.; George, J.; Ghalib, R.; Gordon, S.C.; Gray, T.; Greenbloom, S.; Hassanein, T.; et al. A randomized phase 2b study of peginterferon lambda-1a for the treatment of chronic HCV infection. J. Hepatol. 2014, 61, 1238–1246. [Google Scholar] [CrossRef]
- Lasfar, A.; Lewis-Antes, A.; Smirnov, S.V.; Anantha, S.; Abushahba, W.; Tian, B.; Reuhl, K.; Dickensheets, H.; Sheikh, F.; Donnelly, R.P.; et al. Characterization of the mouse IFN-lambda ligand-receptor system: IFN-lambdas exhibit antitumor activity against B16 melanoma. Cancer Res. 2006, 66, 4468–4477. [Google Scholar] [CrossRef]
- Stadler, W.M. Gemcitabine doublets in advanced urothelial cancer. Semin. Oncol. 2002, 29 (Suppl. S3), 15–19. [Google Scholar] [CrossRef]
- Lindner, D.J. Interferons as antiangiogenic agents. Curr. Oncol. Rep. 2002, 4, 510–514. [Google Scholar] [CrossRef]
- Cornell, R.C.; Greenway, H.T.; Tucker, S.B.; Edwards, L.; Ashworth, S.; Vance, J.C.; Tanner, D.J.; Taylor, E.L.; Smiles, K.A.; Peets, E.A. Intralesional interferon therapy for basal cell carcinoma. J. Am. Acad. Dermatol. 1990, 23 Pt 1, 694–700. [Google Scholar] [CrossRef] [PubMed]
- Ikić, D.; Padovan, I.; Pipić, N.; Knezević, M.; Djaković, N.; Rode, B.; Kosutić, I.; Belicza, M.; Cajkovac, V. Interferon therapy for basal cell carcinoma and squamous cell carcinoma. Int. J. Clin. Pharmacol. Ther. Toxicol. 1991, 29, 342–346. [Google Scholar]
- Amini, S.; Viera, M.H.; Valins, W.; Berman, B. Nonsurgical innovations in the treatment of nonmelanoma skin cancer. J. Clin. Aesthet. Dermatol. 2010, 3, 20–34. [Google Scholar]
- Kirby, J.S.; Miller, C.J. Intralesional chemotherapy for nonmelanoma skin cancer: A practical review. J. Am. Acad. Dermatol. 2010, 63, 689–702. [Google Scholar] [CrossRef] [PubMed]
- Lasfar, A.; Gogas, H.; Zloza, A.; Kaufman, H.L.; Kirkwood, J.M. IFN-λ cancer immunotherapy: New kid on the block. Immunotherapy 2016, 8, 877–888. [Google Scholar] [CrossRef] [PubMed]
- Lasfar, A.; Abushahba, W.; Balan, M.; Cohen-Solal, K.A. Interferon lambda: A new sword in cancer immunotherapy. Clin. Dev. Immunol. 2011, 2011, 349575. [Google Scholar] [CrossRef]
- von Locquenghien, M.; Rozalén, C.; Celià-Terrassa, T. Interferons in cancer immunoediting: Sculpting metastasis and immunotherapy response. J. Clin. Investig 2021, 131. [Google Scholar] [CrossRef]
- Eslam, M.; George, J. Targeting IFN-λ: Therapeutic implications. Expert Opin. Ther. Targets 2016, 20, 1425–1432. [Google Scholar] [CrossRef]
- Xiong, F.; Wang, Q.; Wu, G.H.; Liu, W.Z.; Wang, B.; Chen, Y.J. Direct and indirect effects of IFN-α2b in malignancy treatment: Not only an archer but also an arrow. Biomark. Res. 2022, 10, 69. [Google Scholar] [CrossRef]
- Fenton, S.E.; Saleiro, D.; Platanias, L.C. Type I and II Interferons in the Anti-Tumor Immune Response. Cancers 2021, 13, 1037. [Google Scholar] [CrossRef] [PubMed]
Type I IFN | Type III IFN | |
---|---|---|
Squamous Cell Carcinoma | Route of administration: Peri- or Intra-lesional (IFN-α as a stand-alone therapy or in combination with IFN-γ) [44,45,46] Current Recommendations: Intra-lesional Type I IFN therapy is seldom used for BCC or SCC due to limited evidence on the long-term effectiveness of these treatments, typically reserved for patients who cannot undergo surgery [47] Therapeutic Concerns: side effects (influenza-like symptoms, which were mild and well tolerated) [46] | Currently, no studies investigating intra-lesional IFN-λ in the treatment of non-melanoma skin cancers |
Basal Cell Carcinoma | ||
Melanoma | Route of administration: Systemic Current recommendations: IFN-α standard of care in advanced melanoma [41] Anticancer mechanisms of action (also depicted in Figure 1): antiangiogenesis, cell cycle arrest, antimitotic, and proapoptotic [38] Therapeutic Concerns: Adverse effects include cytopenia (e.g., neutropenia, lymphopenia, and thrombocytopenia), gastrointestinal dysfunction (e.g., nausea, vomiting, and anorexia), and nervous system effects (e.g., fatigue, depression, and suicidal ideation) [35,38] | Route of administration: Systemic and dose-dependent antitumor effect [42] Current recommendations: IFN-λ beneficial as second-line therapy when combined with low-dose IFN-α or traditional anticancer agents [38,48,49] Anticancer mechanisms of action: antiangiogenesis, cell cycle arrest, antimitotic, proapoptotic, and immunomodulatory role [creates a microenvironment with T and NK cells] [48] Therapeutic Concerns to be investigated in future studies: May be prooncogenic; risk of inherent or acquired IFN insensitivity; adverse effects (although less than with Type I IFNs) [38,50] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Weir, S.A.; KC, K.; Shoaib, S.; Yusuf, N. The Immunotherapeutic Role of Type I and III Interferons in Melanoma and Non-Melanoma Skin Cancers. Life 2023, 13, 1310. https://doi.org/10.3390/life13061310
Weir SA, KC K, Shoaib S, Yusuf N. The Immunotherapeutic Role of Type I and III Interferons in Melanoma and Non-Melanoma Skin Cancers. Life. 2023; 13(6):1310. https://doi.org/10.3390/life13061310
Chicago/Turabian StyleWeir, Sydney A., Kailash KC, Shoaib Shoaib, and Nabiha Yusuf. 2023. "The Immunotherapeutic Role of Type I and III Interferons in Melanoma and Non-Melanoma Skin Cancers" Life 13, no. 6: 1310. https://doi.org/10.3390/life13061310
APA StyleWeir, S. A., KC, K., Shoaib, S., & Yusuf, N. (2023). The Immunotherapeutic Role of Type I and III Interferons in Melanoma and Non-Melanoma Skin Cancers. Life, 13(6), 1310. https://doi.org/10.3390/life13061310