Chemical Composition and Biological Activities of Centranthus longiflorus Stems Extracts Recovered Using Ired-Irrad®, an Innovative Infrared Technology, Compared to Water Bath and Ultrasound
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material Preparation
2.2. Dry Matter Content
2.3. Chemicals, Bacterial Strains and Media
2.4. Experimental Protocol
2.4.1. Extraction Parameters
2.4.2. Water Bath Extraction (WB)
2.4.3. Ultrasound-Assisted Extraction (US)
2.4.4. Infrared-Assisted Extraction (IR)
2.4.5. Experimental Design
2.5. Quantification of Total Phenolic Content (TPC)
2.6. Evaluation of the Antioxidant Activities
2.7. RP-UHPLC-PDA-MS Analysis
2.8. Antibacterial Activity
2.8.1. Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC) Assays
2.8.2. Antibiofilm Activities
Biofilm Formation
Biofilm Eradication Assay
Biofilm Prevention Assay
2.9. Statistical Analysis
3. Results and Discussion
3.1. Optimization of Extraction Parameters and Their Effects on TPC
3.1.1. Effect of Particle Size
3.1.2. Effect of Solid to Liquid Ratio
3.1.3. Effect of Ultrasound Frequencies
3.2. Effect of Time, Temperature, and Ethanol Percentage by Response Surface Methodology
3.3. Antiradical and Antioxidant Activities of C. longiflorus Extracts
3.4. Antibacterial Activity of C. longiflorus Extracts
3.5. Antibiofilm Activity of C. longiflorus Extracts
3.5.1. Biofilm Eradication Activity
3.5.2. Biofilm Prevention Activity
3.6. Identification of Phenolic Compounds by RP-UHPLC-PDA-MS
4. Conclusions
5. Patent
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sasidharan, S.; Chen, Y.; Saravanan, D.; Sundram, K.M.; Yoga Latha, L. Extraction, Isolation and Characterization of Bioactive Compounds from Plants’ Extracts. African J. Tradit. Complement. Altern. Med. 2011, 8, 1–10. [Google Scholar] [CrossRef]
- Chacar, S.; Itani, T.; Hajal, J.; Saliba, Y.; Louka, N.; Faivre, J.-F.; Maroun, R.; Fares, N. The Impact of Long-Term Intake of Phenolic Compounds-Rich Grape Pomace on Rat Gut Microbiota. J. Food Sci. 2018, 83, 246–251. [Google Scholar] [CrossRef] [PubMed]
- Roleira, F.M.F.; Tavares-Da-Silva, E.J.; Varela, C.L.; Costa, S.C.; Silva, T.; Garrido, J.; Borges, F. Plant Derived and Dietary Phenolic Antioxidants: Anticancer Properties. Food Chem. 2015, 183, 235–258. [Google Scholar] [CrossRef] [PubMed]
- Stalikas, C.D. Extraction, Separation, and Detection Methods for Phenolic Acids and Flavonoids. J. Sep. Sci. 2007, 30, 3268–3295. [Google Scholar] [CrossRef] [PubMed]
- Azmir, J.; Zaidul, I.S.M.; Rahman, M.M.; Sharif, K.M.; Mohamed, A.; Sahena, F.; Jahurul, M.H.A.; Ghafoor, K.; Norulaini, N.A.N.; Omar, A.K.M. Techniques for Extraction of Bioactive Compounds from Plant Materials: A Review. J. Food Eng. 2013, 117, 426–436. [Google Scholar] [CrossRef]
- Altemimi, A.; Lakhssassi, N.; Baharlouei, A.; Watson, D.G.; Lightfoot, D.A. Phytochemicals: Extraction, Isolation, and Identification of Bioactive Compounds from Plant Extracts. Plants 2017, 6, 42. [Google Scholar] [CrossRef]
- Escobedo, R.; Miranda, R.; Martínez, J. Infrared Irradiation: Toward Green Chemistry: A Review. Int. J. Mol. Sci. 2016, 17, 453. [Google Scholar] [CrossRef]
- Tohmé, G.; Tohmé, H. Illustrated Flora of Lebanon; National Council for Scientific Research: Beirut, Lebanon, 2007. [Google Scholar]
- Makki, R.; Rammal, H.; Farhan, H.; Nasser, M.; El Drina, Z.; Hijazi, A.; Bassal, A.; Kobeissy, A.; Badran, B. The Antioxidant and Anti-Tumor Activities of the Lebanese Centranthus longiflorus L. World J. Pharm. Sci. 2015, 3, 347–354. [Google Scholar]
- Rammal, H.; Farhan, H.; Hijazi, A.; Bassal, A.; Kobeissy, A.; Badran, B. Phytochemical Screening and Antioxidant Activity of Centranthus longiflorus L. J. Nat. Prod. Plants Resour. 2013, 3, 29–36. [Google Scholar]
- Arslan, D.; Özcan, M.M. Evaluation of Drying Methods with Respect to Drying Kinetics, Mineral Content and Colour Characteristics of Rosemary Leaves. Energy Convers. Manag. 2005, 49, 1258–1264. [Google Scholar] [CrossRef]
- Hammoud, M.; Chokr, A.; Rajha, H.N.; Safi, C.; van Erven, G.; Broek, B.V.D.; Debs, E.; Maroun, R.G.; Louka, N.; Rammal, H. Intensification of Polyphenols Extraction from Eryngium Creticum Leaves Using Ired-Irrad® and Evaluation of Antibiofilm and Antibacterial Activities. Plants 2022, 11, 2458. [Google Scholar] [CrossRef]
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventós, R.M. Analysis of Total Phenols and Other Oxidation Substrates and Antioxidants by Means of Folin-Ciocalteu Reagent. Methods Enzymol. 1999, 299, 152–178. [Google Scholar] [CrossRef]
- Kallithraka, S.; Mohdaly, A.A.A.; Makris, D.P.; Kefalas, P. Determination of Major Anthocyanin Pigments in Hellenic Native Grape Varieties (Vitis Vinifera Sp.): Association with Antiradical Activity. J. Food Compos. Anal. 2005, 18, 375–386. [Google Scholar] [CrossRef]
- Clinical and Laboratory Standards Institute (CLSI). Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically; Approved Standard—Seventh Edition; Clinical Laboratory Standards Institute: Wayne, PA, USA, 2006; ISBN 1-56238-989-0. [Google Scholar]
- Christenssen, G.D.; Simpson, W.A.; Younger, J.J.; Baddour, L.M.; Barrett, F.F.; Melton, D.M.; Beachey, E. Adherence of Coagulase-Negative Staphylococci to Plastic Tissue Culture Plates: A Quantitative Model for the Adherence of Staphylococci to Medical Devices. J. Clin. Microbiol. 1985, 22, 966–1006. [Google Scholar] [CrossRef]
- Baldosano, H.; Castillo, M.G.; Elloran, C.; Bacani, F.T. Effect of Particle Size, Solvent and Extraction Time on Tannin Extract from Spondias Purpurea Bark Through Soxhlet Extraction. Proc. DLSU Res. Congr. 2015, 3, 4–9. [Google Scholar]
- Spigno, G.; Tramelli, L.; De Faveri, D.M. Effects of Extraction Time, Temperature and Solvent on Concentration and Antioxidant Activity of Grape Marc Phenolics. J. Food Eng. 2007, 81, 200–208. [Google Scholar] [CrossRef]
- Gómez-Caravaca, A.M.; Verardo, V.; Segura-Carretero, A.; Fernández-Gutiérrez, A.; Carboni, M. Chapter 3. Phenolic Compounds and Saponins in Plants Grown under Different Irrigation Regimes. In Polyphenols in Plants: Isolation, Purification and Extract Preparation; Elsevier Inc.: Amsterdam, The Netherlands, 2014; pp. 37–52. [Google Scholar]
- Cai, Y.; Yu, Y.; Duan, G.; Li, Y. Study on Infrared-Assisted Extraction Coupled with High Performance Liquid Chromatography (HPLC) for Determination of Catechin, Epicatechin, and Procyanidin B2 in Grape Seeds. Food Chem. 2011, 127, 1872–1877. [Google Scholar] [CrossRef]
- Bandar, H.; Hijazi, A.; Rammal, H.; Hachem, A.; Saad, Z. Techniques for the Extraction of Bioactive Compounds from Lebanese Urtica Dioica. Am. J. Phytomed. Clin. Ther. 2013, 1, 507–513. [Google Scholar]
- Garcia-Salas, P.; Morales-Soto, A.; Segura-Carretero, A.; Fernández-Gutiérrez, A. Phenolic-Compound-Extraction Systems for Fruit and Vegetable Samples. Molecules 2010, 15, 8813–8826. [Google Scholar] [CrossRef]
- Cacace, J.E.; Mazza, G. Mass Transfer Process during Extraction of Phenolic Compounds from Milled Berries. J. Food Eng. 2003, 59, 379–389. [Google Scholar] [CrossRef]
- Ramos, L.; Kristenson, E.M.; Brinkman, U.A.T. Current Use of Pressurised Liquid Extraction and Subcritical Water Extraction in Environmental Analysis. J. Chromatogr. A 2002, 975, 3–29. [Google Scholar] [CrossRef] [PubMed]
- El Kantar, S.; Rajha, H.N.; Maroun, R.G.; Louka, N. Intensification of Polyphenols Extraction from Orange Peels Using Infrared as a Novel and Energy Saving Pretreatment. Food Eng. Mater. Sci. Nanotechnol. 2020, 85, 414–420. [Google Scholar] [CrossRef] [PubMed]
- Rajha, H.N.; Mhanna, T.; El Kantar, S.; El Khoury, A.; Louka, N.; Maroun, R.G. Innovative Process of Polyphenol Recovery from Pomegranate Peels by Combining Green Deep Eutectic Solvents and a New Infrared Technology. LWT Food Sci. Technol. 2019, 111, 138–146. [Google Scholar] [CrossRef]
- Khadhraoui, B.; Turk, M.; Fabiano-Tixier, A.S.; Petitcolas, E.; Robinet, P.; Imbert, R. Histo-Cytochemistry and Scanning Electron Microscopy for Studying Spatial and Temporal Extraction of Metabolites Induced by Ultrasound. Towards Chain Detexturation Mechanism. Ultrason. Sonochem. 2018, 42, 482–492. [Google Scholar] [CrossRef] [PubMed]
- Esclapez, M.D.; García-Pérez, J.V.; Mulet, A.; Cárcel, J.A. Ultrasound-Assisted Extraction of Natural Products. Food Eng. Rev. 2011, 3, 108–120. [Google Scholar] [CrossRef]
- Abi-Khattar, A.-M.; Rajha, H.N.; Abdel-Massih, R.M.; Maroun, R.G.; Louka, N.; Debs, E. Intensification of Polyphenols Extraction from Olive Leaves Using Ired-Irrad an Environmentally-Friendly Innovative Technology. Antioxidants 2020, 8, 227. [Google Scholar] [CrossRef]
- El Kantar, S.; Rajha, H.N.; El Khoury, A.; Koubaa, M.; Nachef, S.; Debs, E.; Maroun, R.G.; Louka, N. Phenolic Compounds Recovery from Blood Orange Peels Using a Novel Green Infrared Technology Ired-Irrad®, and Their Effect on the Inhibition of Aspergillus Flavus Proliferation and Aflatoxin B1 Production. Molecules 2022, 27, 8061. [Google Scholar] [CrossRef]
- Rajha, H.N.; El Khoury, G.; El Darra, N.; Raafat, K.; Debs, E.; Maroun, R.G.; Louka, N. Biological Activities of Saussurea Lappa Antioxidants Recovered by Solid–Liquid, Ultrasound and Ired-Irrad®. Curr. Bioact. Compd. 2021, 17, 85–97. [Google Scholar] [CrossRef]
- Chen, Y.; Duan, G.; Xie, M.; Chen, B.; Li, Y. Infrared-Assisted Extraction Coupled with High-Performance Liquid Chromatography for Simultaneous Determination of Eight Active Compounds in Radix Salviae miltiorrhizae. J. Sep. Sci. 2010, 33, 2888–2897. [Google Scholar] [CrossRef]
- Makki, R.; Ze, D.; Rammal, H.; Sweidan, A.; Al Bazzal, A.; Chokr, A. Antibacterial Activity of Two Lebanese Plants: Eryngium Creticum and Nanomedicine & Nanotechnology Antibacterial Activity of Two Lebanese Plants: Eryngium Creticum and Centranthus longiflorus. J. Nanomed. Nanotechnol. 2015, 6, 1. [Google Scholar] [CrossRef]
- Ayar, E.; Kandemir, N.; Kandemir, S.; Celikoglu, U.; Idil, O. Investigation of Some Biological Activities of Extracts Centranthus longiflorus Subsp. Longiflorus. Int. J. Second. Metab. 2020, 7, 253–265. [Google Scholar] [CrossRef]
- Aliyazicioglu, R.; Korkmaz, N.; Akkaya, S.; Sener, S.O.; Badem, M.; Karaoglu, S.A.; Eyüpoglu, O.E. Phenolic Components, Antioxidant and Antimicrobial Activities of Centranthus longiflorus L. Int. J. Adv. Res. Biol. Sci. 2016, 3, 80–87. [Google Scholar] [CrossRef]
- Chokr, A.; Watier, D.; Eleaume, H.; Pangon, B.; Ghnassia, J.-C.; Dietrich, M.; Jabbouri, S. Correlation between Biofilm Formation and Production of Polysaccharide Intercellular Adhesin in Clinical Isolates of Coagulase-Negative Staphylococci. Int. J. Med. Microbiol. 2006, 296, 381–388. [Google Scholar] [CrossRef]
- Avdić, M.; Džuzić, N.; Hasanić, O.; Spahić, A.; Smajlović Skenderagić, L.; Badnjević, A.; Hukić, M. Development of a Novel Biofilm Classification Tool and Comparative Analysis of Result Interpretation Methodologies for the Evaluation of Biofilm Forming Capacity of Bacteria Using Tissue Culture Plate Method. Med. Glas. 2019, 16, 13–21. [Google Scholar] [CrossRef]
- O’Toole, G.; Kaplan, H.B.; Kolter, R. Biofilm Formation as Microbial Development. Annu. Rev. Microbiol. 2000, 54, 49–79. [Google Scholar] [CrossRef]
- Brito, A.; Ramirez, J.E.; Areche, C.; Sepulveda, B.; Simirgiotis, M.J. HPLC-UV-MS Profiles of Phenolic Compounds and Antioxidant Activity of Fruits from Three Citrus Species Consumed in Northern Chile. Molecules 2014, 19, 17400–17421. [Google Scholar] [CrossRef]
- Lin, L.Z.; Harnly, J.M. Identification of the Phenolic Components of Chrysanthemum Flower (Chrysanthemum morifolium Ramat). Food Chem. 2010, 120, 319–326. [Google Scholar] [CrossRef]
- Lin, L.Z.; Harnly, J.M. LC-PDA-ESI/MS Identification of the Phenolic Components of Three Compositae Spices: Chamomile, Tarragon, and Mexican Arnica. Nat. Prod. Commun. 2012, 7, 749–752. [Google Scholar] [CrossRef]
- Jin, H.; Qing-Yuan, L.; Shi-Ying, J.; Tian-Tian, Z.; Shi-Xiao, J.; Xian-Yi, L.; Hai-Long, Y. Comparison of Anti-Bacterial Activity of Three Types of Di-O-Caffeoylquinic Acids in Lonicera Japonica Flowers Based on Microcalorimetry. Chin. J. Nat. Med. 2014, 12, 0108–0113. [Google Scholar] [CrossRef]
- Souhila, M.; Nacéra, M. Biological Activities of Phenolics in Different Parts of Local Cultivar of Globe Artichoke (Cynara cardunculus, var. scolymus L.). Biol. Life Sci. Forum 2022, 16, 30. [Google Scholar] [CrossRef]
- Kim, J.K.; Park, S.U. Quercetin and Its Role in Biological Functions: An Updated Review. EXCLI J. 2018, 17, 856–863. [Google Scholar] [PubMed]
Run | Independent Parameters | Response Variables | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Time (min) | Temperature (°C) | Ethanol Percentage (%) | WB | US | IR | |||||
TPC (mg GAE/g DM) | DPPH Inhibition % | TPC (mg GAE/g DM) | DPPH Inhibition % | TPC (mg GAE/g DM) | DPPH Inhibition % | |||||
Factorial design | 1 | 70 | 35 | 30 | 71.50 | 44.54 | 50.75 | 71.73 | 61.10 | 56.62 |
2 | 170 | 35 | 30 | 52.96 | 45.64 | 59.25 | 73.28 | 65.57 | 71.12 | |
3 | 70 | 75 | 30 | 80.26 | 54.47 | 73.49 | 71.59 | 57.56 | 79.48 | |
4 | 170 | 75 | 30 | 73.53 | 47.04 | 77.83 | 62.8 | 67.34 | 74.38 | |
5 | 70 | 35 | 70 | 45.30 | 37.34 | 48.8 | 60.13 | 60.35 | 51.73 | |
6 | 170 | 35 | 70 | 51.50 | 46.63 | 61.15 | 59.21 | 62.69 | 65.46 | |
7 | 70 | 75 | 70 | 56.02 | 81.98 | 52.3 | 65.19 | 71.24 | 67.16 | |
8 | 170 | 75 | 70 | 87.96 | 71.12 | 68.23 | 74.12 | 65.08 | 69.28 | |
Star points | 9 | 36 | 55 | 50 | 58.01 | 76.52 | 57.96 | 85.23 | 69.25 | 53.50 |
10 | 204 | 55 | 50 | 60.75 | 63.72 | 74.99 | 83.75 | 71.06 | 78.27 | |
11 | 120 | 21 | 50 | 51.81 | 47.77 | 59.20 | 65.15 | 56.50 | 76.57 | |
12 | 120 | 88 | 50 | 81.46 | 86.69 | 91.06 | 69.76 | 69.95 | 68.65 | |
13 | 120 | 55 | 16 | 62.87 | 20.07 | 59.60 | 60.87 | 73.67 | 70.49 | |
14 | 120 | 55 | 83 | 65.75 | 28.59 | 40.26 | 49.41 | 58.71 | 51.17 | |
Central points | 15 | 120 | 55 | 50 | 60.93 | 41.11 | 58.94 | 74.04 | 82.21 | 74.45 |
16 | 120 | 55 | 50 | 62.08 | 39.18 | 59.33 | 73.91 | 80.62 | 74.09 | |
17 | 120 | 55 | 50 | 60.62 | 41.34 | 57.92 | 74.70 | 81.19 | 74.80 | |
18 | 120 | 55 | 50 | 60.88 | 40.19 | 55.53 | 75.43 | 80.61 | 74.52 | |
19 | 120 | 55 | 50 | 61.10 | 40.98 | 58.09 | 74.97 | 80.66 | 74.17 | |
20 | 120 | 55 | 50 | 61.77 | 39.64 | 56.63 | 73.78 | 80.97 | 75.58 | |
21 | 120 | 55 | 50 | 61.50 | 41.25 | 58.49 | 70.69 | 81.19 | 74.66 | |
22 | 120 | 55 | 50 | 60.66 | 40.69 | 57.61 | 74.51 | 80.35 | 75.02 |
Extraction Technique | R2 (%) | Equation |
---|---|---|
WB | 94 | TPC = 156 − 0.59·t − 0.98·T − 1.72·E − 0.00015·t2 + 0.0047·t·T + 0.008·t·E + 0.0055·T2 + 0.0056·T·E + 0.0034·E2 |
98 | DPPH = 126 − 0.86·t − 2.47·T + 0.64·E + 0.004·t2 − 0.0036·t·T + 0.0006·t·E + 0.023·T2 + 0.018·T·E − 0.015·E2 | |
US | 97 | TPC = 56 − 0.23·t − 0.65·T + 0.9·E + 0.001·t2 − 0.00007·t·T + 0.002·t·E + 0.014·T2 − 0.0096·T·E − 0.00839598·E2 |
95 | DPPH = 71.7 − 0.42·t + 0.31·T + 0.84·E + 0.0014·t2 − 0.00006·t·T + 0.0019·t·E − 0.0066·T2 + 0.0096·T·E − 0.017·E2 | |
IR | 91 | TPC = −37.7 + 0.56·t + 1.77·T + 1.35·E − 0.0017·t2 − 0.0004·t·T − 0.0023·t·E − 0.017·T2 + 0.0047·T·E − 0.014·E2 |
90 | DPPH = −9.3 + 0.55·t + 0.84·T + 0.97·E − 0.0012·t2 − 0.0039·t·T + 0.0008·t·E − 0.013·T2 − 0.002·T·E − 0.012·E2 |
Antibacterial Activity | Antibiofilm Activity | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Eradication (%) | Prevention (%) | ||||||||||||||
Technique | Bacterial Strains | MIC mg/mL | MBC mg/mL | 100 | 50 | 25 | 12.5 | 6.25 | 3.12 | 100 | 50 | 25 | 12.5 | 6.25 | 3.12 |
WB | S. epidermidis | 50 | 100 | 72 | 63 | 57 | 52 | 51 | 50 | 80 | 73 | 68 | 63 | 46 | 39 |
E. coli | 50 | 100 | 87 | 82 | 74 | 76 | 67 | 66 | 69 | 64 | 59 | 41 | 35 | 26 | |
P. aeruginosa * | 50 | 100 | |||||||||||||
S. aureus * | 50 | 100 | |||||||||||||
US | S. epidermidis | 50 | 100 | 68 | 67 | 64 | 62 | 61 | 51 | 94 | 91 | 84 | 82 | 76 | 49 |
E. coli | 50 | 100 | 73 | 68 | 67 | 66 | 59 | 47 | 59 | 58 | 50 | 50 | 35 | 30 | |
P. aeruginosa * | 50 | 100 | |||||||||||||
S. aureus * | 50 | 100 | |||||||||||||
IR | S. epidermidis | 50 | 100 | 80 | 78 | 75 | 70 | 69 | 68 | 97 | 90 | 88 | 86 | 83 | 80 |
E. coli | 50 | 100 | 93 | 83 | 81 | 79 | 77 | 74 | 77 | 73 | 68 | 68 | 67 | 66 | |
P. aeruginosa * | 50 | 100 | |||||||||||||
S. aureus * | 50 | 100 |
No. | Rt UV (min) | λmax (nm) | Rt MS (min) | [M-H]− (m/z) | MS2 Fragments a | Tentative Annotation b |
---|---|---|---|---|---|---|
1 | 3.93 | 322 | 4.02 | 353 | 191, 179, 135 | 1-O-caffeyolquinic acid |
2 | 5.12 | 326 | 5.21 | 353 | 191, 179, 135 | 3-O-caffeyolquinic acid |
3 | 5.43 | 326 | 5.52 | 353 | 191, 179, 135 | 4-O-caffeyolquinic acid |
4 | 5.68 | 322 | 5.77 | 179 | 135 | Caffeic acid |
5 | 5.98 | 346 | 6.09 | 755 | 593, 285, 447 | Luteolin glycoside |
6 | 6.28 | 318 | 6.37 | 337 | 191, 163 | p-Coumaroylquinic acid |
7 | 6.88 | 326 | 6.97 | 367 | 191, 173, 193 | 5-Feruloylquinic acid |
8 | 7.26 | 354 | 7.37 | 741 | 300, 609, 591 | Quercetin triglycoside |
9 | 7.81 | 330 | 7.90 | 359 | 197, 153, 135 | ? |
10 | 7.87 | 354 | 7.97 | 609 | 301, 343, 271 | Quercetin rutinoside |
11 | 8.18 | 354 | 8.26 | 463 | 301, 343, 179 | Quercetin glucoside |
12 | 8.67 | 346 | 8.74 | 507 | 461, 179, 377 | ? |
13 | 8.67 | 346 | 8.75 | 593 | 285, 327, 257 | Luteolin glycoside |
14 | 8.84 | 330 | 8.94 | 623 | 315, 300, 577 | Isorhamnetin glycoside |
15 | 9.02 | 330 | 9.10 | 447 | 284, 285, 327, 255 | Luteolin glucoside |
16 | 9.02 | n.d. | 9.11 | 515 | 353, 447, 191 | Dicaffeoyl quinic acid |
17 | 9.02 | n.d. | 9.12 | 505 | 459, 265, 193 | ? |
18 | 9.57 | 326 | 9.66 | 515 | 353, 299, 202 | Dicaffeoyl quinic acid |
19 | 9.57 | n.d. | 9.68 | 359 | 193, 295, 211 | ? |
20 | 10.06 | 334 | 10.17 | 693 | 651, 301, 609 | Quercetin diacetyl diglycoside |
21 | 10.38 | 334 | 10.47 | 693 | 651, 301, 609 | Quercetin diacetyl diglycoside |
22 | 11.02 | 330 | 11.14 | 359 | 179, 161, 135, 315 | Rosmarinic acid isomer |
23 | 11.02 | n.d. | 11.14 | 677 | 635, 285 | Luteolin diacetyl diglycoside |
24 | 11.10 | 330 | 11.12 | 359 | 179, 161, 135, 315 | Rosmarinic acid isomer |
25 | 11.10 | n.d. | 11.12 | 677 | 635, 285 | Luteolin diacetyl diglycoside |
26 | 11.53 | 334 | 11.62 | 637 | 591, 283 | Acacetin glycoside |
27 | 12.13 | 354 | 12.23 | 735 | 693, 651, 301, 463 | Quercetin triacetyl diglycoside |
28 | 12.45 | 346 | 12.55 | 851 | 809, 719, 579, 284 | Luteolin triacetyl triglycoside |
29 | 13.01 | 350 | 13.09 | 719 | 677, 285, 635 | Luteolin triacetyl diglycoside |
30 | 13.24 | 334 | 13.34 | 285 | 285, 151, 257 | Luteolin |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hammoud, M.; Rajha, H.N.; Chokr, A.; Safi, C.; van den Broek, L.A.M.; van Erven, G.; Maroun, R.G.; Debs, E.; Rammal, H.; Louka, N. Chemical Composition and Biological Activities of Centranthus longiflorus Stems Extracts Recovered Using Ired-Irrad®, an Innovative Infrared Technology, Compared to Water Bath and Ultrasound. Life 2023, 13, 1288. https://doi.org/10.3390/life13061288
Hammoud M, Rajha HN, Chokr A, Safi C, van den Broek LAM, van Erven G, Maroun RG, Debs E, Rammal H, Louka N. Chemical Composition and Biological Activities of Centranthus longiflorus Stems Extracts Recovered Using Ired-Irrad®, an Innovative Infrared Technology, Compared to Water Bath and Ultrasound. Life. 2023; 13(6):1288. https://doi.org/10.3390/life13061288
Chicago/Turabian StyleHammoud, Mariam, Hiba N. Rajha, Ali Chokr, Carl Safi, Lambertus A. M. van den Broek, Gijs van Erven, Richard G. Maroun, Espérance Debs, Hassan Rammal, and Nicolas Louka. 2023. "Chemical Composition and Biological Activities of Centranthus longiflorus Stems Extracts Recovered Using Ired-Irrad®, an Innovative Infrared Technology, Compared to Water Bath and Ultrasound" Life 13, no. 6: 1288. https://doi.org/10.3390/life13061288