Assessment of the Association between Entropy in PET/CT and Response to Anti-PD-1/PD-L1 Monotherapy in Stage III or IV NSCLC
Abstract
1. Introduction
2. Materials and Methods
2.1. Population
2.2. Study Protocol
2.3. Image Acquisition and Analysis
2.4. Radiomic Feature Extraction
2.5. Statistical Analyses
3. Results
3.1. Population Characteristics
3.2. PET/CT, Follow-Up, and Response to Immunotherapy
3.3. Radiomics Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer statistics, 2022. CA Cancer J. Clin. 2022, 72, 7–33. [Google Scholar] [CrossRef] [PubMed]
- Howlader, N.; Forjaz, G.; Mooradian, M.J.; Meza, R.; Kong, C.Y.; Cronin, K.A.; Mariotto, A.B.; Lowy, D.R.; Feuer, E.J. The Effect of Advances in Lung-Cancer Treatment on Population Mortality. N. Engl. J. Med. 2020, 383, 640–649. [Google Scholar] [CrossRef] [PubMed]
- Nardone, V.; Tini, P.; Pastina, P.; Botta, C.; Reginelli, A.; Carbone, S.F.; Giannicola, R.; Calabrese, G.; Tebala, C.; Guida, C.; et al. Radiomics predicts survival of patients with advanced non-small cell lung cancer undergoing PD-1 blockade using Nivolumab. Oncol. Lett. 2019, 19, 1559–1566. [Google Scholar] [CrossRef]
- Sacher, A.G.; Gandhi, L. Biomarkers for the Clinical Use of PD-1/PD-L1 Inhibitors in Non–Small-Cell Lung Cancer: A Review. JAMA Oncol. 2016, 2, 1217. [Google Scholar] [CrossRef]
- Scrivener, M.; de Jong, E.E.C.; van Timmeren, J.E.; Pieters, T.; Ghaye, B.; Geets, X. Radiomics applied to lung cancer: A review. Transl. Cancer Res. 2016, 5, 398–409. [Google Scholar] [CrossRef]
- Gillies, R.J.; Kinahan, P.E.; Hricak, H. Radiomics: Images Are More than Pictures, They Are Data. Radiology 2016, 278, 563–577. [Google Scholar] [CrossRef] [PubMed]
- Coroller, T.P.; Grossmann, P.; Hou, Y.; Velazquez, E.R.; Leijenaar, R.T.; Hermann, G.; Lambin, P.; Haibe-Kains, B.; Mak, R.H.; Aerts, H.J. CT-based radiomic signature predicts distant metastasis in lung adenocarcinoma. Radiother. Oncol. 2015, 114, 345–350. [Google Scholar] [CrossRef]
- Vicini, S.; Bortolotto, C.; Rengo, M.; Ballerini, D.; Bellini, D.; Carbone, I.; Preda, L.; Laghi, A.; Coppola, F.; Faggioni, L. A narrative review on current imaging applications of artificial intelligence and radiomics in oncology: Focus on the three most common cancers. Radiol. Med. 2022, 127, 819–836. [Google Scholar] [CrossRef]
- Aerts, H.J.; Velazquez, E.R.; Leijenaar, R.T.; Parmar, C.; Grossmann, P.; Carvalho, S.; Bussink, J.; Monshouwer, R.; Haibe-Kains, B.; Rietveld, D.; et al. Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nat. Commun. 2014, 5, 4006. [Google Scholar] [CrossRef]
- Lubner, M.G.; Smith, A.D.; Sandrasegaran, K.; Sahani, D.V.; Pickhardt, P.J. CT Texture Analysis: Definitions, Applications, Biologic Correlates, and Challenges. RadioGraphics 2017, 37, 1483–1503. [Google Scholar] [CrossRef]
- Coroller, T.P.; Agrawal, V.; Narayan, V.; Hou, Y.; Grossmann, P.; Lee, S.W.; Mak, R.H.; Aerts, H.J. Radiomic phenotype features predict pathological response in non-small cell lung cancer. Radiother. Oncol. 2016, 119, 480–486. [Google Scholar] [CrossRef]
- Sacconi, B.; Anzidei, M.; Leonardi, A.; Boni, F.; Saba, L.; Scipione, R.; Anile, M.; Rengo, M.; Longo, F.; Bezzi, M.; et al. Analysis of CT features and quantitative texture analysis in patients with lung adenocarcinoma: A correlation with EGFR mutations and survival rates. Clin. Radiol. 2017, 72, 443–450. [Google Scholar] [CrossRef] [PubMed]
- El Naqa, I.; Grigsby, P.W.; Apte, A.; Kidd, E.; Donnelly, E.; Khullar, D.; Chaudhari, S.; Yang, D.; Schmitt, M.; Laforest, R.; et al. Exploring feature-based approaches in PET images for predicting cancer treatment outcomes. Pattern Recognit. 2009, 42, 1162–1171. [Google Scholar] [CrossRef] [PubMed]
- Van Helden, E.J.; Vacher, Y.J.L.; Van Wieringen, W.N.; Van Velden, F.H.P.; Verheul, H.M.W.; Hoekstra, O.S.; Boellaard, R.; Menke-van der Houven van Oordt, C.W. Radiomics analysis of pre-treatment [18F]FDG PET/CT for patients with metastatic colorectal cancer undergoing palliative systemic treatment. Eur. J. Nucl. Med. Mol. Imaging 2018, 45, 2307–2317. [Google Scholar] [CrossRef] [PubMed]
- Tixier, F.; Le Rest, C.C.; Hatt, M.; Albarghach, N.; Pradier, O.; Metges, J.P.; Corcos, L.; Visvikis, D. Intratumor Heterogeneity Characterized by Textural Features on Baseline 18 F-FDG PET Images Predicts Response to Concomitant Radiochemotherapy in Esophageal Cancer. J. Nucl. Med. 2011, 52, 369–378. [Google Scholar] [CrossRef]
- Mu, W.; Tunali, I.; Gray, J.E.; Qi, J.; Schabath, M.B.; Gillies, R.J. Radiomics of 18F-FDG PET/CT images predicts clinical benefit of advanced NSCLC patients to checkpoint blockade immunotherapy. Eur. J. Nucl. Med. Mol. Imaging 2020, 47, 1168–1182. [Google Scholar] [CrossRef]
- Desseroit, M.C.; Tixier, F.; Weber, W.A.; Siegel, B.A.; Le Rest, C.C.; Visvikis, D.; Hatt, M. Reliability of PET/CT Shape and Heterogeneity Features in Functional and Morphologic Components of Non–Small Cell Lung Cancer Tumors: A Repeatability Analysis in a Prospective Multicenter Cohort. J. Nucl. Med. 2017, 58, 406–411. [Google Scholar] [CrossRef]
- Valentinuzzi, D.; Vrankar, M.; Boc, N.; Ahac, V.; Zupančič, Ž.; Unk, M.; Škalič, K.; Žagar, I.; Studen, A.; Simončič, U.; et al. [18F]FDG PET immunotherapy radiomics signature (iRADIOMICS) predicts response of non-small-cell lung cancer patients treated with pembrolizumab. Radiol. Oncol. 2020, 54, 285–294. [Google Scholar] [CrossRef]
- Moubtakir, A.; Chrusciel, J.; Lalire, P.; El Farsaoui, K.; Legendre, A.; Debreuve, A.; Dewolf, M.; Huglo, D.; Petyt, G.; Morland, D.; et al. Analyse texturale en TEP au FDG des cancers pulmonaires non à petites cellules de stade localement avancé: Valeur pronostique de l’entropie. Médecine Nucl. 2020, 44, 18–25. [Google Scholar] [CrossRef]
- Eisenhauer, E.A.; Therasse, P.; Bogaerts, J.; Schwartz, L.H.; Sargent, D.; Ford, R.; Dancey, J.; Arbuck, S.; Gwyther, S.; Mooney, M.; et al. New response evaluation criteria in solid tumours: Revised RECIST guideline (version 1.1). Eur. J. Cancer 2009, 45, 228–247. [Google Scholar] [CrossRef]
- Boellaard, R.; Delgado-Bolton, R.; Oyen, W.J.; Giammarile, F.; Tatsch, K.; Eschner, W.; Verzijlbergen, F.J.; Barrington, S.F.; Pike, L.C.; Weber, W.A.; et al. FDG PET/CT: EANM procedure guidelines for tumour imaging: Version 2.0. Eur. J. Nucl. Med. Mol. Imaging 2015, 42, 328–354. [Google Scholar] [CrossRef] [PubMed]
- Takada, K.; Toyokawa, G.; Yoneshima, Y.; Tanaka, K.; Okamoto, I.; Shimokawa, M.; Wakasu, S.; Haro, A.; Osoegawa, A.; Tagawa, T.; et al. 18F-FDG uptake in PET/CT is a potential predictive biomarker of response to anti-PD-1 antibody therapy in non-small cell lung cancer. Sci. Rep. 2019, 9, 13362. [Google Scholar] [CrossRef] [PubMed]
- Evangelista, L.; Cuppari, L.; Menis, J.; Bonanno, L.; Reccia, P.; Frega, S.; Pasello, G. 18F-FDG PET/CT in non-small-cell lung cancer patients: A potential predictive biomarker of response to immunotherapy. Nucl. Med. Commun. 2019, 40, 802–807. [Google Scholar] [CrossRef] [PubMed]
- Polverari, G.; Ceci, F.; Bertaglia, V.; Reale, M.L.; Rampado, O.; Gallio, E.; Passera, R.; Liberini, V.; Scapoli, P.; Arena, V.; et al. 18F-FDG Pet Parameters and Radiomics Features Analysis in Advanced Nsclc Treated with Immunotherapy as Predictors of Therapy Response and Survival. Cancers 2020, 12, 1163. [Google Scholar] [CrossRef]
- Chardin, D.; Paquet, M.; Schiappa, R.; Darcourt, J.; Bailleux, C.; Poudenx, M.; Sciazza, A.; Ilie, M.; Benzaquen, J.; Martin, N.; et al. Baseline metabolic tumor volume as a strong predictive and prognostic biomarker in patients with non-small cell lung cancer treated with PD1 inhibitors: A prospective study. J. Immunother. Cancer 2020, 8, e000645. [Google Scholar] [CrossRef] [PubMed]
- Seban, R.D.; Mezquita, L.; Berenbaum, A.; Dercle, L.; Botticella, A.; Le Pechoux, C.; Caramella, C.; Deutsch, E.; Grimaldi, S.; Adam, J.; et al. Baseline metabolic tumor burden on FDG PET/CT scans predicts outcome in advanced NSCLC patients treated with immune checkpoint inhibitors. Eur. J. Nucl. Med. Mol. Imaging 2020, 47, 1147–1157. [Google Scholar] [CrossRef] [PubMed]
- Monaco, L.; Gemelli, M.; Gotuzzo, I.; Bauckneht, M.; Crivellaro, C.; Genova, C.; Cortinovis, D.; Zullo, L.; Ammoni, L.C.; Bernasconi, D.P.; et al. Metabolic Parameters as Biomarkers of Response to Immunotherapy and Prognosis in Non-Small Cell Lung Cancer (NSCLC): A Real World Experience. Cancers 2021, 13, 1634. [Google Scholar] [CrossRef]
- Han, S.; Woo, S.; Suh, C.H.; Kim, Y.J.; Oh, J.S.; Lee, J.J. A systematic review of the prognostic value of texture analysis in 18F-FDG PET in lung cancer. Ann. Nucl. Med. 2018, 32, 602–610. [Google Scholar] [CrossRef] [PubMed]
- Huang, A.C.; Postow, M.A.; Orlowski, R.J.; Mick, R.; Bengsch, B.; Manne, S.; Xu, W.; Harmon, S.; Giles, J.R.; Wenz, B.; et al. T-cell invigoration to tumour burden ratio associated with anti-PD-1 response. Nature 2017, 545, 60–65. [Google Scholar] [CrossRef]
- Grootjans, W.; Tixier, F.; van der Vos, C.S.; Vriens, D.; Le Rest, C.C.; Bussink, J.; Oyen, W.J.; de Geus-Oei, L.F.; Visvikis, D.; Visser, E.P. The Impact of Optimal Respiratory Gating and Image Noise on Evaluation of Intratumor Heterogeneity on 18 F-FDG PET Imaging of Lung Cancer. J. Nucl. Med. 2016, 57, 1692–1698. [Google Scholar] [CrossRef]
- Orlhac, F.; Soussan, M.; Chouahnia, K.; Martinod, E.; Buvat, I. 18F-FDG PET-Derived Textural Indices Reflect Tissue-Specific Uptake Pattern in Non-Small Cell Lung Cancer. PLoS ONE 2015, 10, e0145063. [Google Scholar] [CrossRef] [PubMed]
- Mulkey, F.; Theoret, M.R.; Keegan, P.; Pazdur, R.; Sridhara, R. Comparison of iRECIST versus RECIST V.1.1 in patients treated with an anti-PD-1 or PD-L1 antibody: Pooled FDA analysis. J. Immunother. Cancer 2020, 8, e000146. [Google Scholar] [CrossRef] [PubMed]
Characteristics | Value |
---|---|
Age | |
Median (range)-year | 64 (32–84) |
Distribution-n (%) | |
<65 year | 25 (53.2) |
≥65 year | 22 (46.8) |
Sex-n (%) | |
Male | 33 (70.2) |
Female | 14 (29.8) |
ECOG 1 performance status score-n (%) | |
0 | 16 (34.0) |
1 | 21 (44.7) |
2 | 9 (19.2) |
3 | 1 (2.1) |
Histologic type of tumor-n (%) | |
Adenocarcinoma | 30 (63.8) |
Squamous cell carcinoma | 15 (31.9) |
Other (poorly differentiated, not otherwise specified) | 2 (4.3) |
Smoking status-n (%) | |
Never smoked | 6 (12.8) |
Current or former smoker | 40 (85.1) |
Unknown | 1 (2.1) |
PD-L1 expression level-n (%) | |
<1% | 11 (23.4) |
1–49% | 7 (14.9) |
≥50% | 15 (31.9) |
Unknown | 14 (29.8) |
Immunotherapy-n (%) | |
Atezolizumab | 2 (4.3) |
Nivolumab | 25 (53.2) |
Pembrolizumab | 20 (42.5) |
Lines of previous systemic therapy-n (%) | |
0 | 15 (31.9) |
1 | 19 (40.4) |
≥ 2 | 13 (27.7) |
PET Parameters | Minimum | Median | Maximum |
---|---|---|---|
SUVmax (g/mL) | 2.07 | 10.92 | 37.03 |
SUVmean (g/mL) | 0.64 | 2.77 | 5.97 |
TLG (g) | 4.12 | 142.36 | 4053.43 |
MTV (mL) | 2.14 | 54.07 | 1696.19 |
GLCM-entropy | 2.30 | 5.78 | 7.81 |
GLRLM-SRE | 0.53 | 0.81 | 0.92 |
PET Parameters | Status | Median | p Value |
---|---|---|---|
SUVmax (g/mL) | PD | 8.02 | 0.103 |
Non-PD | 13.04 | ||
SUVmean (g/mL) | PD | 2.54 | 0.519 |
Non-PD | 2.89 | ||
TLG (g) | PD | 192.54 | 0.428 |
Non-PD | 105.28 | ||
MTV (mL) | PD | 57.63 | 0.346 |
Non-PD | 30.87 | ||
GLCM-entropy | PD | 5.56 | 0.113 |
Non-PD | 6.15 | ||
GLRLM-SRE | PD | 0.80 | 0.727 |
Non-PD | 0.81 |
Characteristics | Value | p-Value | |
---|---|---|---|
GLCM-Entropy | |||
<median (n = 24) | ≥median (n = 23) | ||
Age | |||
Median (range)-year | 64 (44–84) | 64 (32–82) | 0.975 |
Sex-n (%) | |||
Male | 17 (70.8) | 16 (69.6) | 0.924 |
Female | 7 (29.2) | 7 (30.4) | |
ECOG 1 performance status score-n (%) | |||
0 | 8 (33.3) | 8 (34.8) | 0.677 |
1 | 10 (41.7) | 11 47.8) | |
2 | 5 (20.8) | 4 17.4) | |
3 | 1 (4.2) | 0 (0) | |
Histologic type of tumor-n (%) | |||
Adenocarcinoma | 17 (70.8) | 13 (63.8) | 0.572 |
Squamous cell carcinoma | 6 (25.0) | 9 (31.9) | |
Other (poorly differentiated, not otherwise specified) | 1 (4.2) | 1 (4.3) | |
Smoking status-n (%) | |||
Never smoked | 2 (8.3) | 4 (17.4)) | 0.472 |
Current or former smoker | 22 (91.7) | 18 (78.3) | |
Unknown | 0 (0) | 1 (4.3) | |
PD-L1 expression level-n (%) | |||
<1% | 6 (25.0) | 5 (21.7) | 0.572 |
1–49% | 5 (20.8) | 2 (8.7) | |
≥50% | 6 (25.0) | 9 (39.1) | |
Unknown | 7 (29.2) | 7 (30.4) | |
Immunotherapy-n (%) | |||
Atezolizumab | 1 (4.2) | 1 (4.3) | 0.763 |
Nivolumab | 14 (58.3) | 11 (47.8) | |
Pembrolizumab | 9 (37.5) | 11 (47.8) | |
Lines of previous systemic therapy-n (%) | |||
0 | 7 (29.2) | 8 (34.8) | 0.114 |
1 | 13 (54.2) | 6 (26.1) | |
≥2 | 4 (16.7) | 9 (39.1) |
Factor | HR (95% CI) | p-Value |
---|---|---|
Age | 0.94 [0.87–1.02] | 0.15 |
Male sex | 0.55 [0.04–6.99] | 0.65 |
Current smokers | 1 [1–1] | 1 |
Sub-type histology | 1.05 [0.13–8.25] | 0.96 |
ECOG PS-0 | 0.42 [0.02–6.9] | 0.548 |
No previous treatment | 6.05 [0.6–61.07] | 0.13 |
PDL-1 > 50% | 0.09 [0–11.31] | 0.33 |
GLCM-entropy < median | 0.14 [0.02–0.79] | 0.03 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Malet, J.; Ancel, J.; Moubtakir, A.; Papathanassiou, D.; Deslée, G.; Dewolf, M. Assessment of the Association between Entropy in PET/CT and Response to Anti-PD-1/PD-L1 Monotherapy in Stage III or IV NSCLC. Life 2023, 13, 1051. https://doi.org/10.3390/life13041051
Malet J, Ancel J, Moubtakir A, Papathanassiou D, Deslée G, Dewolf M. Assessment of the Association between Entropy in PET/CT and Response to Anti-PD-1/PD-L1 Monotherapy in Stage III or IV NSCLC. Life. 2023; 13(4):1051. https://doi.org/10.3390/life13041051
Chicago/Turabian StyleMalet, Julie, Julien Ancel, Abdenasser Moubtakir, Dimitri Papathanassiou, Gaëtan Deslée, and Maxime Dewolf. 2023. "Assessment of the Association between Entropy in PET/CT and Response to Anti-PD-1/PD-L1 Monotherapy in Stage III or IV NSCLC" Life 13, no. 4: 1051. https://doi.org/10.3390/life13041051
APA StyleMalet, J., Ancel, J., Moubtakir, A., Papathanassiou, D., Deslée, G., & Dewolf, M. (2023). Assessment of the Association between Entropy in PET/CT and Response to Anti-PD-1/PD-L1 Monotherapy in Stage III or IV NSCLC. Life, 13(4), 1051. https://doi.org/10.3390/life13041051