Enzymatic Hydrolysis of Rutin: Evaluation of Kinetic Parameters and Anti-Proliferative, Mutagenic and Anti-Mutagenic Effects
Abstract
:1. Introduction
2. Materials and Methods
2.1. Enzymes and Reagents
2.2. Bioconversion Reaction
2.3. Determination of Kinetic Parameters
2.4. Mass Spectrometric Analysis by Ultra-Performance Liquid Chromatography/Time-of-Flight Mass Spectrometry (UHPLC/QTOF-MSE)
2.5. Partition Coefficient Determination in Octanol/Water (k)
2.6. In Vitro Evaluations
2.6.1. Cell Line
2.6.2. Samples Preparation
2.6.3. Anti-Proliferative Activity Assay
2.6.4. Cytokinesis-Block Micronucleus (CBMN) Assay
2.7. Statistical Analysis
3. Results
3.1. Hydrolysis Kinetics of Rutin
3.2. Analysis of the Reaction Products by UHPLC/QTOF-MSE
3.3. In Vitro Toxicological Evaluation
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Izquierdo-Vega, J.A.; Morales-González, J.A.; SánchezGutiérrez, M.; Betanzos-Cabrera, G.; Sosa-Delgado, S.M.; Sumaya-Martínez, M.T.; Morales-González, Á.; Paniagua-Pérez, R.; Madrigal-Bujaidar, E.; Madrigal-Santillán, E. Evidence of some natural products with antigenotoxic effects. Part 1: Fruits and polysaccharides. Nutrients 2017, 9, 102. [Google Scholar] [CrossRef] [Green Version]
- López-Romero, D.; Izquierdo-Vega, J.A.; Morales-González, J.A.; Madrigal-Bujaidar, E.; Chamorro-Cevallos, G.; Sánchez-Gutiérrez, M.; Betanzos-Cabrera, G.; Alvarez-Gonzalez, I.; Morales-González, Á.; Madrigal-Santillán, E. Evidence of some natural products with antigenotoxic effects. Part 2: Plants, vegetables, and natural resin. Nutrients 2018, 10, 1954. [Google Scholar] [CrossRef] [Green Version]
- Malik, S.; Kaur, K.; Prasad, S.; Jha, N.K.; Kumar, V. A perspective review on medicinal plant resources for their antimutagenic potentials. Environ. Sci. Pollut. Res. Int. 2022, 29, 62014–62029. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Cao, H.; Huang, Q.; Xiao, J.; Teng, H. Absorption, metabolism and bioavailability of flavonoids: A review. Crit. Rev. Food Sci. Nutr. 2022, 62, 7730–7742. [Google Scholar] [CrossRef] [PubMed]
- Slámová, K.; Kapešová, J.; Valentová, K. “Sweet flavonoids”: Glycosidase-catalyzed modifications. Int. J. Mol. Sci. 2018, 19, 2126. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, C.; Dai, T.; Chen, J.; Chen, M.; Liang, R.; Liu, C.; Du, L.; McClements, D.J. Modification of flavonoids: Methods and influences on biological activities. Crit. Rev. Food Sci. Nutr. 2022, in press. [Google Scholar] [CrossRef] [PubMed]
- Valentová, K.; Vrba, J.; Bancířová, M.; Ulrichová, J.; Křen, V. Isoquercitrin: Pharmacology, toxicology, and metabolism. Food Chem. Toxicol. 2014, 68, 267–282. [Google Scholar] [CrossRef] [PubMed]
- Orfali, G.D.; Duarte, A.C.; Bonadio, V.; Martinez, N.P.; de Araújo, M.E.; Priviero, F.B.; Carvalho, P.O.; Priolli, D.G. Review of anticancer mechanisms of isoquercitin. World J. Clin. Oncol. 2016, 7, 189–199. [Google Scholar] [CrossRef]
- de Araujo, M.E.; Moreira Franco, Y.E.; Alberto, T.G.; Sobreiro, M.A.; Conrado, M.A.; Priolli, D.G.; Frankland Sawaya, A.C.; Ruiz, A.L.T.G.; de Carvalho, J.E.; de Oliveira Carvalho, P. Enzymatic de-glycosylation of rutin improves its antioxidant and antiproliferative activities. Food Chem. 2013, 141, 266–273. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tatke, P.; Desai, S.; Gabhe, S.Y. Isolation of quercetin-3-O-β-D-glucoside from Azadirachta indica. AJPCT 2014, 2, 870–876. [Google Scholar]
- Franco, E.P.D.; Contesini, F.J.; Lima da Silva, B.; Alves de Piloto Fernandes, A.M.; Wielewski Leme, C.; Gonçalves Cirino, J.P.; Bueno Campos, P.R.; de Oliveira Carvalho, P. Enzyme-assisted modification of flavonoids from Matricaria chamomilla: Antioxidant activity and inhibitory effect on digestive enzymes. J. Enzyme Inhib. Med. Chem. 2020, 35, 42–49. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Monks, A.; Scudiero, D.; Skehan, P.; Shoemaker, R.; Paull, K.; Vistica, D.; Hose, C.; Langley, J.; Cronise, P.; Vaigro-Wolff, A.; et al. Feasibility of a high-flux anticancer drug screen using a diverse panel of cultured human tumor cell lines. J. Natl. Cancer Inst. 1991, 83, 757–766. [Google Scholar] [CrossRef]
- de Souza, L.B.; Tinti, S.V.; Sousa, I.M.O.; Montanari Jr, I.; da Costa, J.L.; de Carvalho, J.E.; Foglio, M.A.; Ruiz, A.L.T.G. Mentha aquatica L. aerial parts: In vitro anti-proliferative evaluation on human tumour and non-tumour cell lines. Nat. Prod. Res. 2022, 36, 3117–3123. [Google Scholar] [CrossRef] [PubMed]
- OECD. Test No. 487: In Vitro Mammalian Cell Micronucleus test, OECD Guidelines for the Testing of Chemicals, Section 4; OECD Publishing: Paris, France, 2016. [Google Scholar]
- da Silva, G.G.; Della Torre, A.; Braga, L.E.O.; Bachiega, P.; Tinti, S.V.; de Carvalho, J.E.; Dionísio, A.P.; Ruiz, A.L.T.G. Yellow-colored extract from cashew byproduct-Nonclinical safety assessment. Regul. Toxicol. Pharmacol. 2020, 115, 104699. [Google Scholar] [CrossRef] [PubMed]
- Dahan, A.; Beig, A.; Lindley, D.; Miller, J.M. The solubility-permeability interplay and oral drug formulation design: Two heads are better than one. Adv. Drug Deliv. Rev. 2016, 101, 99–107. [Google Scholar] [CrossRef] [PubMed]
- Rothwell, J.A.; Day, A.; Morgan, M.R.A. Experimental determination of octanol–water partition coefficients of quercetin and related flavonoids. J. Agric. Food Chem. 2005, 53, 4355–4360. [Google Scholar] [CrossRef]
- Murota, K.; Matsuda, N.; Kashino, Y.; Fujikura, Y.; Nakamura, T.; Kato, Y.; Shimizu, R.; Okuyama, S.; Tanaka, H.; Koda, T.; et al. α-Oligoglucosylation of a sugar moiety enhances the bioavailability of quercetin glucosides in humans. Arch. Biochem. Biophys. 2010, 501, 91–97. [Google Scholar] [CrossRef]
- Chebil, L.; Bouroukba, M.; Gaiani, C.; Charbonel, C.; Khaldi, M.; Engasser, J.M.; Ghoul, M. Elucidation of the kinetic behavior of quercetin, isoquercitrin, and rutin solubility by physicochemical and thermodynamic investigations. Ind. Eng. Chem. Res. 2013, 52, 1464–1470. [Google Scholar] [CrossRef]
- Galloway, S.; Lorge, E.; Aardema, M.J.; Eastmond, D.; Fellows, M.; Heflich, R.; Kirkland, D.; Levy, D.D.; Lynch, A.M.; Marzin, D.; et al. Workshop summary: Top concentration for in vitro mammalian cell genotoxicity assays; and report from working group on toxicity measures and top concentration for in vitro cytogenetics assays (chromosome aberrations and micronucleus). Mutat. Res. 2011, 723, 77–83. [Google Scholar] [CrossRef]
- Siivola, K.M.; Burgum, M.J.; Suárez-Merino, B.; Clift, M.J.D.; Doak, S.H.; Catalán, J. A systematic quality evaluation and review of nanomaterial genotoxicity studies: A regulatory perspective. Part. Fibre Toxicol. 2022, 19, 59. [Google Scholar] [CrossRef]
- Awan, M.; Buriak, I.; Fleck, R.; Fuller, B.; Goltsev, A.; Kerby, J.; Lowdell, M.; Mericka, P.; Petrenko, A.; Petrenko, Y.; et al. Dimethyl sulfoxide: A central player since the dawn of cryobiology, is efficacy balanced by toxicity? Regen. Med. 2020, 15, 1463–1491. [Google Scholar] [CrossRef] [PubMed]
- Api, A.M.; Belsito, D.; Biserta, S.; Botelho, D.; Bruze, M.; Burton, G.A., Jr.; Buschmann, J.; Cancellieri, M.A.; Dagli, M.L.; Date, M.; et al. RIFM fragrance ingredient safety assessment, dimethyl disulfide, CAS Registry Number 624-92-0. Food Chem. Toxicol. 2021, 149 (Suppl. 1), 112122. [Google Scholar] [CrossRef] [PubMed]
- Hebling, J.; Bianchi, L.; Basso, F.G.; Scheffel, D.L.; Soares, D.G.; Carrilho, M.R.; Pashley, D.H.; Tjäderhane, L.; de Souza Costa, C.A. Cytotoxicity of dimethyl sulfoxide (DMSO) in direct contact with odontoblast-like cells. Dent. Mater. 2015, 31, 399–405. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eremina, N.V.; Zhanataev, A.K.; Durnev, A.D. Induced cell death as a possible pathway of antimutagenic action. Bull. Exp. Biol. Med. 2021, 171, 1–14. [Google Scholar] [CrossRef]
- Barcelos, G.R.; Grotto, D.; Angeli, J.P.; Serpeloni, J.M.; Rocha, B.A.; Bastos, J.K.; Barbosa, F., Jr. Evaluation of antigenotoxic effects of plant flavonoids quercetin and rutin on HepG2 cells. Phytother. Res. 2011, 25, 1381–1388. [Google Scholar] [CrossRef]
- Engen, A.; Maeda, J.; Wozniak, D.E.; Brents, C.A.; Bell, J.J.; Uesaka, M.; Aizawa, Y.; Kato, T.A. Induction of cytotoxic and genotoxic responses by natural and novel quercetin glycosides. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 2015, 784–785, 15–22. [Google Scholar] [CrossRef]
- Valentová, K.; Šíma, P.; Rybková, Z.; Křížan, J.; Malachová, K.; Křen, V. (Anti)mutagenic and immunomodulatory properties of quercetin glycosides. J. Sci. Food Agric. 2016, 96, 1492–1499. [Google Scholar] [CrossRef]
- Heo, M.Y.; Yu, K.S.; Kim, K.H.; Kim, H.P.; Au, W.W. Anticlastogenic effect of flavonoids against mutagen-induced micronuclei in mice. Mutat. Res. 1992, 284, 243–249. [Google Scholar] [CrossRef]
- Caria, H.; Chaveca, T.; Laires, A.; Rueff, J. Genotoxicity of quercetin in the micronucleus assay in mouse bone marrow erythrocytes, human lymphocytes, V79 cell line and identification of kinetochore-containing (CREST staining) micronuclei in human lymphocytes. Mutat. Res. 1995, 343, 85–94. [Google Scholar] [CrossRef]
- da Silva, J.; Herrmann, S.M.; Heuser, V.; Peres, W.; Possa Marroni, N.; González-Gallego, J.; Erdtmann, B. Evaluation of the genotoxic effect of rutin and quercetin by comet assay and micronucleus test. Food Chem. Toxicol. 2002, 40, 941–947. [Google Scholar] [CrossRef]
- Utesch, D.; Feige, K.; Dasenbrock, J.; Broschard, T.H.; Harwood, M.; Danielewska-Nikiel, B.; Lines, T.C. Evaluation of the potential in vivo genotoxicity of quercetin. Mutat. Res. 2008, 654, 38–44. [Google Scholar] [CrossRef] [PubMed]
- Hobbs, C.A.; Koyanagi, M.; Swartz, C.; Davis, J.; Kasamoto, S.; Maronpot, R.; Recio, L.; Hayashi, S.M. Comprehensive evaluation of the flavonol anti-oxidants, alpha-glycosyl isoquercitrin and isoquercitrin, for genotoxic potential. Food Chem. Toxicol. 2018, 113, 218–227. [Google Scholar] [CrossRef] [PubMed]
Samples | k 1 | Q3G (mM) | Vmax (mM h−1) | Km (mM) 2 | Vmax/Km (×10−2 h−1) | |
---|---|---|---|---|---|---|
Hydrolyzed rutin | 01 | 0.64 | 6.54 ± 0.25 | 1.63 | 4.62 | 35.28 |
02 | 0.78 | 4.93 ± 0.16 | 0.62 | 5.36 | 11.57 | |
03 | 0.80 | 4.60 ± 0.21 | 0.38 | 5.72 | 6.64 | |
Rutin | 0.89 | - | - | - | - | |
Quercetin | 1.59 | - | - | - | - |
Sample 1 | GI50 (μg/mL) | ||
---|---|---|---|
4 + 20 h 2 | 48 h 2 | ||
Hydrolyzed rutin | 01 | 25.0 ± 0.9 | 29.6 ± 7.8 |
02 | 2.5 * | 31.1 ± 10.7 | |
03 | 2.5 * | 9.1 ± 3.4 | |
Rutin | >250 | >250 | |
Quercetin | 2.5 * | 11.8 ± 5.0 |
Control/Sample 1 | Parameters 2 | |||
---|---|---|---|---|
CBPI | RI | CBMN | ||
CHO-K1 | 1.7 ± 0.0 a,c | 100.0 ± 0.0 a | 1.05 ± 0.06 a,c | |
MMS | 1.58 ± 0.02 b | 88.5 ± 2.7 a | 4.6 ± 0.4 b | |
DMSO | 1.89 ± 0.03 c | 137.5 ± 4.5 b | 0.89 ± 0.09 a | |
Hydrolyzed rutin | 01 | 1.69 ± 0.06 a,b | 105.4 ± 9.1 a | 2.9 ± 0.2 b,c |
02 | 1.66 ± 0.06 a,b | 101.8 ± 9.3 a | 1.4 ± 0.2 a,c | |
03 | 1.645 ± 0.007 a,b | 99.7 ± 0.8 a | 1.6 ± 0.4 a,c | |
Rutin | 1.68 ± 0.02 a,b | 103.5 ± 3.3 a | 2.3 ± 0.2 a,c | |
Quercetin | 1.65 ± 0.05 a,b | 99.8 ± 7.3 a | 2.0 ± 1.2 a,c |
Control/Sample 1 | Parameters 2 | |||
---|---|---|---|---|
CBPI | RI | CBMN | ||
CHO-K1 | 1.82 ± 0.02 a | 100.0 ± 0.0 a | 1.395 ± 0.007 a | |
MMS | 1.8 ± 0.0 a | 100.1± 2.7 a | 8.0 ± 0.5 b | |
DMSO | 1.86 ± 0.03 a | 104.0 ± 6.3 a | 1.4 ± 0.2 a | |
MMS + | Hydrolyzed rutin 01 | 1.65 ± 0.04 b | 78.3 ± 3.2 b | 0.7 ± 0.3 a |
Rutin | 1.66 ± 0.04 b | 79.11 ± 1.9 b | 0.9 ± 0.4 a | |
Quercetin | 1.62 ± 0.03 b | 75.4 ± 5.5 b | 1.4 ± 0.3 a |
Sample | Model | Treatment | Effect | Ref. |
---|---|---|---|---|
Quercetin | Comet assay in HepG2 Cells | Up to 10.0 μg/mL | No genotoxic effect ↓ B[a]P, MMS or DXR-induced DNA damage | [26] |
SCE and MN frequency in CHO cells | Up to 30 μM | ↑ SCE (at 0.3 μM) and ↑ MN frequency (at 30 μM) | [27] | |
Ames test (S. typhimurium TA100, TA98 and TA102) | 1.0 and 0.3 μM | ↑ MN frequency ↓ H2O2-induced oxidative damage | [28] | |
MN frequency in mouse bone marrow erythrocytes | up to 10 mg/kg, v.o., 1–5 day-treatment | ↑ MN frequency ↓ B[a]P-induced MN frequency | [29] | |
MN frequency in mouse bone marrow erythrocytes (female and male) | Up to 558 mg/kg, i.p., single dose | No mutagenic effect | [30] | |
MN frequency in mice bone marrow (female and male) | Up to 2500 mg/kg, v.o., 2 day-treatment | No mutagenic effect | [31] | |
Comet assay in mice bone marrow (female and male) | ↑ DNA damage, dose-independent | |||
MN frequency in bone marrow in rats | Up to 2000 mg/kg, v.o., single dose | No mutagenic effect | [32] | |
Q3G | SCE and MN frequency in CHO cells | Up to 2 mM | ↑ SCE (at 2 mM) and ↑ MN frequency (at 2 mM) | [27] |
Ames test (S. typhimurium TA100, TA98 and TA102) | 0.1–2.2 μM | Negligible mutagenic effect ↓ H2O2-induced oxidative damage | [28] | |
Ames test (S. typhimurium TA100, TA98, TA1535, and TA1537) | Up to 5000 μg/mL | Dose-dependent mutagenic effect, with and without metabolic activation | [33] | |
MN frequency in human TP53 competent TK6 cells | Up to 1000 μg/mL | No mutagenic effect, with and without metabolic activation | ||
Chromosomal aberration assay in CHO-WBL cells | Up to 1500 μg/ml | No mutagenic effect, with metabolic activation | ||
MN frequency in peripheral blood in rats | Up to 2000 mg/kg, v.o., 3 day-treatment | No mutagenic effect | ||
Rutin | Comet assay in HepG2 Cells | Up to 50.0 μg/mL | No genotoxic effect ↓ B[a]P, MMS or DXR-induced DNA damage | [26] |
Ames test (S. typhimurium TA100, TA98 and TA102) | 0.1–1.6 μM | No mutagenic effect ↓ H2O2-induced oxidative damage | [28] | |
SCE and MN frequency in CHO cells | Up to 2 mM | ↑ SCE (at 10 μM) and ↑ MN frequency (at 2 mM) | [27] | |
MN frequency in mice bone marrow (female and male) | Up to 2500 mg/kg, v.o., 2 day-treatment | No mutagenic effect | [31] | |
Comet assay in mice bone marrow (female and male) | ↑ DNA damage at 1250 mg/kg |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sobreiro, M.A.; Della Torre, A.; de Araújo, M.E.M.B.; Canella, P.R.B.C.; de Carvalho, J.E.; Carvalho, P.d.O.; Ruiz, A.L.T.G. Enzymatic Hydrolysis of Rutin: Evaluation of Kinetic Parameters and Anti-Proliferative, Mutagenic and Anti-Mutagenic Effects. Life 2023, 13, 549. https://doi.org/10.3390/life13020549
Sobreiro MA, Della Torre A, de Araújo MEMB, Canella PRBC, de Carvalho JE, Carvalho PdO, Ruiz ALTG. Enzymatic Hydrolysis of Rutin: Evaluation of Kinetic Parameters and Anti-Proliferative, Mutagenic and Anti-Mutagenic Effects. Life. 2023; 13(2):549. https://doi.org/10.3390/life13020549
Chicago/Turabian StyleSobreiro, Mariana Alves, Adriana Della Torre, Maria Elisa Melo Branco de Araújo, Paula Renata Bueno Campos Canella, João Ernesto de Carvalho, Patrícia de Oliveira Carvalho, and Ana Lucia Tasca Gois Ruiz. 2023. "Enzymatic Hydrolysis of Rutin: Evaluation of Kinetic Parameters and Anti-Proliferative, Mutagenic and Anti-Mutagenic Effects" Life 13, no. 2: 549. https://doi.org/10.3390/life13020549
APA StyleSobreiro, M. A., Della Torre, A., de Araújo, M. E. M. B., Canella, P. R. B. C., de Carvalho, J. E., Carvalho, P. d. O., & Ruiz, A. L. T. G. (2023). Enzymatic Hydrolysis of Rutin: Evaluation of Kinetic Parameters and Anti-Proliferative, Mutagenic and Anti-Mutagenic Effects. Life, 13(2), 549. https://doi.org/10.3390/life13020549