Lipoprotein Subfractions Associated with Endothelial Function in Previously Healthy Subjects with Newly Diagnosed Sleep Apnea—A Pilot Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Methods
- Sleep monitoring
- BMI (body mass index)—defined as body weight divided by the square of height; a measure of the degree of obesity.
- Apnea—defined as the reduction in airflow ≥90% (or the airflow cessation) lasting >10 s.
- Hypopnea—defined as a reduction in airflow ≥30% lasting >10 s with oxygen desaturation ≥3% or arousal.
- Respiratory disturbance index (RDI)—defined as an average number of apneas, and hypopneas per 1 h of sleep.
- ODI (oxygen desaturation index)—defined as a number of desaturations ≥3% with a duration of >10 s per hour of sleep.
- Arousal index—defined as the total number of arousals per hour of sleep.
- Average nocturnal O2 saturation—defined as the mean O2 saturation during sleep.
- Minimal nocturnal O2 saturation—defined as the lowest single O2 saturation seen in the recording.
- Time with O2 saturation <90% (T90)—defined by the percentage of sleep time below 90% O2 saturation.
- Lipoprotein parameters
- Assessment of endothelial function
- Statistical analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
BMI | body mass index |
CPAP | continuous positive airway pressure |
EDTA | ethylenediaminetetraacetic acid |
HDL | high-density lipoprotein cholesterol |
IDL | intermediate-density lipoprotein |
LDL | low-density lipoprotein cholesterol |
ODI | oxygen desaturation index |
OSA | obstructive sleep apnea |
PAT | peripheral arterial tonometry |
PG | polygraphy |
PSG | polysomnography |
RDI | respiratory disturbance index |
RERAs | respiratory effort-related arousal |
RHI | reactive hyperemia index |
VLDL | very low-density lipoprotein |
References
- Hankey, G.J.; Wardlaw, J.M.; Gorelick, P.B.; Testai, F.D. Hankey’s Clinical Neurology preface. In Hankey’s Clinical Neurology, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2014; p. 9. [Google Scholar]
- Gottlieb, D.J.; Punjabi, N.M. Diagnosis and Management of Obstructive Sleep Apnea: A Review. JAMA 2020, 323, 1389–1400. [Google Scholar] [CrossRef]
- Dempsey, J.A.; Veasey, S.C.; Morgan, B.J.; O’Donnell, C.P. Pathophysiology of sleep apnea. Physiol. Rev. 2010, 90, 47–112. [Google Scholar] [CrossRef] [PubMed]
- Drager, L.F.; Polotsky, V.Y.; O’Donnell, C.P.; Cravo, S.L.; Lorenzi-Filho, G.; Machado, B.H. Translational approaches to understanding metabolic dysfunction and cardiovascular consequences of obstructive sleep apnea. Am. J. Physiol. Heart Circ. Physiol. 2015, 309, H1101–H1111. [Google Scholar] [CrossRef] [PubMed]
- Liu, A.; Cardell, J.; Ariel, D.; Lamendola, C.; Abbasi, F.; Kim, S.H.; Holmes, T.H.; Tomasso, V.; Mojaddidi, H.; Grove, K.; et al. Abnormalities of lipoprotein concentrations in obstructive sleep apnea are related to insulin resistance. Sleep 2015, 38, 793–799. [Google Scholar] [CrossRef] [PubMed]
- Hill, J.M.; Zalos, G.; Halcox, J.P.; Schenke, W.H.; Waclawiw, M.A.; Quyyumi, A.A.; Finkel, T. Circulating endothelial progenitor cells, vascular function, and cardiovascular risk. N. Engl. J. Med. 2003, 348, 593–600. [Google Scholar] [CrossRef]
- Perticone, F.; Ceravolo, R.; Pujia, A.; Ventura, G.; Iacopino, S.; Scozzafava, A.; Ferraro, A.; Chello, M.; Mastroroberto, P.; Verdecchia, P.; et al. Prognostic significance of endothelial dysfunction in hypertensive patients. Circulation 2001, 104, 191–196. [Google Scholar] [CrossRef]
- Victor, V.M.; Rocha, M.; Sola, E.; Banuls, C.; Garcia-Malpartida, K.; Hernandez-Mijares, A. Oxidative stress, endothelial dysfunction and atherosclerosis. Curr. Pharm. Des. 2009, 15, 2988–3002. [Google Scholar] [CrossRef]
- Flammer, A.J.; Anderson, T.; Celermajer, D.S.; Creager, M.A.; Deanfield, J.; Ganz, P.; Hamburg, N.M.; Lüscher, T.F.; Shechter, M.; Taddei, S.; et al. The assessment of endothelial function: From research into clinical practice. Circulation 2012, 126, 753–767. [Google Scholar] [CrossRef]
- Rubinshtein, R.; Kuvin, J.T.; Soffler, M.; Lennon, R.J.; Lavi, S.; Nelson, R.E.; Pumper, G.M.; Lerman, L.O.; Lerman, A. Assessment of endothelial function by non-invasive peripheral arterial tonometry predicts late cardiovascular adverse events. Eur. Heart J. 2010, 31, 1142–1148. [Google Scholar] [CrossRef]
- Matsuzawa, Y.; Sugiyama, S.; Sugamura, K.; Nozaki, T.; Ohba, K.; Konishi, M.; Matsubara, J.; Sumida, H.; Kaikita, K.; Kojima, S.; et al. Digital assessment of endothelial function and ischemic heart disease in women. J. Am. Coll. Cardiol. 2010, 55, 1688–1696. [Google Scholar] [CrossRef] [Green Version]
- Azuma, M.; Chihara, Y.; Yoshimura, C.; Murase, K.; Hamada, S.; Tachikawa, R.; Matsumoto, T.; Inouchi, M.; Tanizawa, K.; Handa, T.; et al. Association between endothelial function (assessed on reactive hyperemia peripheral arterial tonometry) and obstructive sleep apnea, visceral fat accumulation, and serum adiponectin. Circ. J. Off. J. Jpn. Circ. Soc. 2015, 79, 1381–1389. [Google Scholar] [CrossRef] [PubMed]
- Kheirandish-Gozal, L.; Etzioni, T.; Bhattacharjee, R.; Tan, H.L.; Samiei, A.; Molero Ramirez, H.; Abu Eta, B.; Pillar, G. Obstructive sleep apnea in children is associated with severity-dependent deterioration in overnight endothelial function. Sleep Med. 2013, 14, 526–531. [Google Scholar] [CrossRef]
- Siarnik, P.; Carnicka, Z.; Krizova, L.; Wagnerova, H.; Sutovsky, S.; Klobucnikova, K.; Kollar, B.; Turcani, P.; Sykora, M. Predictors of impaired endothelial function in obstructive sleep apnea syndrome. Neuro Endocrinol. Lett. 2014, 35, 142–148. [Google Scholar] [PubMed]
- Third Report of the National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III) final report. Circulation 2002, 106, 3143–3421. [CrossRef]
- Gottlieb, D.J. Sleep Apnea and Cardiovascular Disease. Curr. Diabetes Rep. 2021, 21, 64. [Google Scholar] [CrossRef]
- Juhász, J. Dyslipidemia: Another brick in the wall. A feasible link in the OSA-cardiovascular disease axis. Sleep Breath. Schlaf. Atm. 2014, 18, 5–6. [Google Scholar] [CrossRef]
- Šiarnik, P.; Klobučníková, K.; Mucska, I.; Černá, K.; Kollár, B.; Turčáni, P. Obstructive sleep apnea and dyslipidemia. Vnitr. Lek. 2018, 64, 934–938. [Google Scholar] [CrossRef]
- Drager, L.F.; Jun, J.; Polotsky, V.Y. Obstructive sleep apnea and dyslipidemia: Implications for atherosclerosis. Curr. Opin. Endocrinol. Diabetes Obes. 2010, 17, 161–165. [Google Scholar] [CrossRef] [PubMed]
- Oravec, S.; Dostal, E.; Dukát, A.; Gavorník, P.; Kucera, M.; Gruber, K. HDL subfractions analysis: A new laboratory diagnostic assay for patients with cardiovascular diseases and dyslipoproteinemia. Neuro Endocrinol. Lett. 2011, 32, 502–509. [Google Scholar] [PubMed]
- Kollar, B.; Siarnik, P.; Hluchanova, A.; Klobucnikova, K.; Mucska, I.; Turcani, P.; Paduchova, Z.; Katrencikova, B.; Janubova, M.; Konarikova, K.; et al. The impact of sleep apnea syndrome on the altered lipid metabolism and the redox balance. Lipids Health Dis. 2021, 20, 175. [Google Scholar] [CrossRef]
- Berry, R.B.; Brooks, R.; Gamaldo, C.E.; Harding, S.M.; Marcus, C.; Vaughn, B.V. The AASM manual for the scoring of sleep and associated events. Rules Terminol. Tech. Specif. Darien Ill. Am. Acad. Sleep Med. 2012, 176, 2012. [Google Scholar]
- Hoefner, D.M.; Hodel, S.D.; O’Brien, J.F.; Branum, E.L.; Sun, D.; Meissner, I.; McConnell, J.P. Development of a rapid, quantitative method for LDL subfractionation with use of the Quantimetrix Lipoprint LDL System. Clin. Chem. 2001, 47, 266–274. [Google Scholar] [CrossRef]
- Moerland, M.; Kales, A.J.; Schrier, L.; van Dongen, M.G.; Bradnock, D.; Burggraaf, J. Evaluation of the EndoPAT as a Tool to Assess Endothelial Function. Int. J. Vasc. Med. 2012, 2012, 904141. [Google Scholar] [CrossRef] [PubMed]
- Ott, S.R.; Korostovtseva, L.; Schmidt, M.; Horvath, T.; Brill, A.K.; Bassetti, C.L. Sleep-disordered breathing: Clinical features, pathophysiology and diagnosis. Swiss. Med. Wkly. 2020, 147, w14436 . [Google Scholar] [CrossRef]
- Slouka, D.; Windrichova, J.; Rezackova, H.; Houfkova, K.; Kucera, R.; Cerna, V.; Kostlivy, T.; Topolcan, O.; Pesta, M. The potential of miR-499 plasmatic level as a biomarker of obstructive sleep apnea syndrome. Biomark. Med. 2021, 15, 1011–1019. [Google Scholar] [CrossRef] [PubMed]
- Javaheri, S.; Barbe, F.; Campos-Rodriguez, F.; Dempsey, J.A.; Khayat, R.; Malhotra, A.; Martinez-Garcia, M.A.; Mehra, R.; Pack, A.I.; Polotsky, V.Y.; et al. Sleep Apnea: Types, Mechanisms, and Clinical Cardiovascular Consequences. J. Am. Coll. Cardiol. 2017, 69, 841–858. [Google Scholar] [CrossRef]
- Tuleta, I.; França, C.N.; Wenzel, D.; Fleischmann, B.; Nickenig, G.; Werner, N.; Skowasch, D. Intermittent Hypoxia Impairs Endothelial Function in Early Preatherosclerosis. Adv. Exp. Med. Biol. 2015, 858, 1–7 . [Google Scholar] [CrossRef] [PubMed]
- Shamsuzzaman, A.S.; Gersh, B.J.; Somers, V.K. Obstructive sleep apnea: Implications for cardiac and vascular disease. JAMA 2003, 290, 1906–1914. [Google Scholar] [CrossRef]
- Orrù, G.; Storari, M.; Scano, A.; Piras, V.; Taibi, R.; Viscuso, D. Obstructive Sleep Apnea, oxidative stress, inflammation and endothelial dysfunction-An overview of predictive laboratory biomarkers. Eur. Rev. Med. Pharm. Sci. 2020, 24, 6939–6948. [Google Scholar]
- Stanek, A.; Brożyna-Tkaczyk, K.; Myśliński, W. Oxidative Stress Markers among Obstructive Sleep Apnea Patients. Oxid. Med. Cell Longev. 2021, 2021, 9681595 . [Google Scholar] [CrossRef]
- Trakada, G.; Lombardi, C.; Knechtle, B. Editorial: The Complex Interaction Between Biological, Metabolic and Neurologic Dysregulation in Obstructive Sleep Apnea. Front. Psychiatry. 2021, 12, 770930 . [Google Scholar] [CrossRef]
- Bhatt, S.P.; Guleria, R.; Kabra, S.K. Metabolic alterations and systemic inflammation in overweight/obese children with obstructive sleep apnea. PLoS ONE 2021, 16, e0252353. [Google Scholar] [CrossRef] [PubMed]
- Lévy, P.; Pépin, J.-L.; Arnaud, C.; Baguet, J.-P.; Dematteis, M.; Mach, F. Obstructive sleep apnea and atherosclerosis. Prog. Cardiovasc. Dis. 2009, 51, 400–410. [Google Scholar] [CrossRef] [PubMed]
- Seiler, A.; Camilo, M.; Korostovtseva, L.; Haynes, A.G.; Brill, A.K.; Horvath, T.; Egger, M.; Bassetti, C.L. Prevalence of sleep-disordered breathing after stroke and TIA: A meta-analysis. Neurology 2019, 92, e648–e654. [Google Scholar] [CrossRef]
- Bonetti, P.O.; Lerman, L.O.; Lerman, A. Endothelial dysfunction: A marker of atherosclerotic risk. Arterioscler. Thromb. Vasc. Biol. 2003, 23, 168–175. [Google Scholar] [CrossRef]
- Gimbrone, M.A., Jr.; García-Cardeña, G. Endothelial Cell Dysfunction and the Pathobiology of Atherosclerosis. Circ. Res. 2016, 118, 620–636. [Google Scholar] [CrossRef]
- Ip, M.S.; Tse, H.-F.; Lam, B.; Tsang, K.W.; Lam, W.-K. Endothelial function in obstructive sleep apnea and response to treatment. Am. J. Respir. Crit. Care Med. 2004, 169, 348–353. [Google Scholar] [CrossRef] [PubMed]
- Helkin, A.; Stein, J.J.; Lin, S.; Siddiqui, S.; Maier, K.G.; Gahtan, V. Dyslipidemia Part 1--Review of Lipid Metabolism and Vascular Cell Physiology. Vasc Endovasc. Surg. 2016, 50, 107–118. [Google Scholar] [CrossRef]
- Oravec, S.; Dukat, A.; Gavornik, P.; Caprnda, M.; Kucera, M.; Ocadlik, I. Contribution of the atherogenic lipoprotein profile to the development of arterial hypertension. Bratisl. Lek. Listy 2011, 112, 4–7. [Google Scholar]
- Oravec, S.; Krivosikova, Z.; Krivosik, M.; Gruber, K.; Gruber, M.; Dukát, A.; Gavorník, P. Lipoprotein profile in patients who survive a stroke. Neuro Endocrinol. Lett. 2011, 32, 496–501. [Google Scholar]
- Oravec, S.; Gruber, K.; Dostal, E.; Mikl, J. Hyper-betalipoproteinemia LDL 1,2: A newly identified nonatherogenic hypercholesterolemia in a group of hypercholesterolemic subjects. Neuro Endocrinol. Lett. 2011, 32, 322–327. [Google Scholar] [PubMed]
- Šiarnik, P.; Čarnická, Z.; Krivošíková, Z.; Klobučníková, K.; Žitňanová, I.; Kollár, B.; Sýkora, M.; Turčáni, P. Association of lipoprotein subfractions with endothelial function and arterial stiffness in acute ischemic stroke. Scand. J. Clin. Lab. Invest. 2017, 77, 36–39. [Google Scholar] [CrossRef]
- Sopkova, Z.; Berneis, K.; Rizzo, M.; Spinas, G.A.; Dorkova, Z.; Tisko, R.; Tkacova, R. Size and subclasses of low-density lipoproteins in patients with obstructive sleep apnea. Angiology 2012, 63, 617–621. [Google Scholar] [CrossRef] [PubMed]
- Meszaros, M.; Bikov, A. Obstructive Sleep Apnoea and Lipid Metabolism: The Summary of Evidence and Future Perspectives in the Pathophysiology of OSA-Associated Dyslipidaemia. Biomedicines 2022, 10, 2754. [Google Scholar] [CrossRef] [PubMed]
- Rizk, S.M.; Sabri, N.A. Evaluation of clinical activity and safety of Daflon 500 mg in type 2 diabetic female patients. Saudi Pharm. J. SPJ Off. Publ. Saudi Pharm. Soc. 2009, 17, 199–207. [Google Scholar] [CrossRef]
- Ateya, A.M.; Sabri, N.A.; El Hakim, I.; Shaheen, S.M. Effect of Omega-3 Fatty Acids on Serum Lipid Profile and Oxidative Stress in Pediatric Patients on Regular Hemodialysis: A Randomized Placebo-Controlled Study. J. Ren. Nutr. Off. J. Counc. Ren. Nutr. Natl. Kidney Found. 2017, 27, 169–174. [Google Scholar] [CrossRef]
- Ateya, A.M.; El Hakim, I.; Shahin, S.M.; El Borolossy, R.; Kreutz, R.; Sabri, N.A. Effects of Ramipril on Biomarkers of Endothelial Dysfunction and Inflammation in Hypertensive Children on Maintenance Hemodialysis: The SEARCH Randomized Placebo-Controlled Trial. Hypertension 2022, 79, 1856–1865. [Google Scholar] [CrossRef]
- Alshahawey, M.; Shaheen, S.M.; Elsaid, T.; Sabri, N.A. Effect of febuxostat on oxidative stress in hemodialysis patients with endothelial dysfunction: A randomized, placebo-controlled, double-blinded study. Int. Urol. Nephrol. 2019, 51, 1649–1657. [Google Scholar] [CrossRef]
- Alshahawey, M.; Shahin, S.M.; Elsaid, T.W.; Sabri, N.A. Effect of Febuxostat on the Endothelial Dysfunction in Hemodialysis Patients: A Randomized, Placebo-Controlled, Double-Blinded Study. Am. J. Nephrol. 2017, 45, 452–459. [Google Scholar] [CrossRef]
- Alshahawey, M.; El Borolossy, R.; El Wakeel, L.; Elsaid, T.; Sabri, N.A. The impact of cholecalciferol on markers of vascular calcification in hemodialysis patients: A randomized placebo controlled study. Nutr. Metab. Cardiovasc. Dis. NMCD 2021, 31, 626–633. [Google Scholar] [CrossRef]
- Dutheil, F.; Walther, G.; Chapier, R.; Mnatzaganian, G.; Lesourd, B.; Naughton, G.; Verney, J.; Fogli, A.; Sapin, V.; Duclos, M.; et al. Atherogenic subfractions of lipoproteins in the treatment of metabolic syndrome by physical activity and diet-the RESOLVE trial. Lipids Health Dis. 2014, 13, 112. [Google Scholar] [CrossRef] [PubMed]
- Bajer, B.; Rádiková, Ž.; Havranová, A.; Žitňanová, I.; Vlček, M.; Imrich, R.; Sabaka, P.; Bendžala, M.; Penesová, A. Effect of 8-weeks intensive lifestyle intervention on LDL and HDL subfractions. Obes. Res. Clin. Pract. 2019, 13, 586–593. [Google Scholar] [CrossRef] [PubMed]
- Habanova, M.; Holovicova, M.; Scepankova, H.; Lorkova, M.; Gazo, J.; Gazarova, M.; Pinto, C.A.; Saraiva, J.A.; Estevinho, L.M. Modulation of Lipid Profile and Lipoprotein Subfractions in Overweight/Obese Women at Risk of Cardiovascular Diseases through the Consumption of Apple/Berry Juice. Antioxidants 2022, 11, 2239. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Yi, H.; Guan, J.; Yin, S. Effect of continuous positive airway pressure on lipid profile in patients with obstructive sleep apnea syndrome: A meta-analysis of randomized controlled trials. Atherosclerosis 2014, 234, 446–453. [Google Scholar] [CrossRef] [PubMed] [Green Version]
N = 18 | Mean | Median | Standard Deviation | Interquartile Range | Minimal Value | Maximal Value | Correlation | Regression | ||
---|---|---|---|---|---|---|---|---|---|---|
r | p | Beta | p | |||||||
Age (years) | 47.9 | 49.0 | 11.5 | 18 | 26 | 66 | 0.087 | 0.732 | 0.139 | 0.539 |
BMI (kg/m2) | 32.3 | 31.9 | 3.8 | 6.5 | 26.6 | 39.6 | −0.278 | 0.264 | −0.048 | 0.842 |
RDI (n/h) | 45.7 | 43.6 | 20.5 | 35.6 | 15.8 | 84.6 | −0.088 | 0.729 | −0.092 | 0.685 |
ODI (n/h) | 39.9 | 36.8 | 19.4 | 29.7 | 12.8 | 85.7 | −0.061 | 0.810 | −0.069 | 0.760 |
Arousal index (n/h) | 25.9 | 24.8 | 14.0 | 21.8 | 7.9 | 53.7 | 0.034 | 0.893 | −0.071 | 0.752 |
Average nocturnal O2 sat. (%) | 87.8 | 88.0 | 3.3 | 6 | 81 | 92 | 0.283 | 0.256 | 0.298 | 0.176 |
Minimal nocturnal O2 sat. (%) | 76.2 | 77.5 | 8.7 | 10 | 55 | 87 | 0.284 | 0.254 | 0.336 | 0.124 |
T90 (%) | 11.3 | 7.0 | 14.1 | 11.0 | 0.2 | 47.4 | −0.425 | 0.079 | −0.192 | 0.393 |
N = 18 | Mean | Median | Standard Deviation | Interquartile Range | Minimal Value | Maximal Value | Correlation | Regression | ||
---|---|---|---|---|---|---|---|---|---|---|
r | p | Beta | p | |||||||
TC (mmol/L) | 5.3 | 5.5 | 0.8 | 1.3 | 3.7 | 6.4 | −0.116 | 0.646 | −0.016 | 0.947 |
LDL (mmol/L) | 4.0 | 4.1 | 0.7 | 1.0 | 2.6 | 5.2 | −0.126 | 0.618 | −0.080 | 0.724 |
HDL (mmol/L) | 1.2 | 1.1 | 0.3 | 0.4 | 0.7 | 1.8 | −0.086 | 0.735 | −0.031 | 0.893 |
TAG (mmol/L) | 2.1 | 1.8 | 0.9 | 0.9 | 1.0 | 4.4 | 0.218 | 0.385 | 0.279 | 0.276 |
VLDL (mg/dL) | 56.6 | 60.5 | 14.0 | 23.0 | 32.0 | 85.0 | 0.146 | 0.564 | 0.152 | 0.502 |
IDL (mg/dL) | 45.9 | 45.0 | 14.3 | 27.0 | 26.0 | 72.0 | −0.281 | 0.259 | −0.106 | 0.643 |
Large LDL (mg/dL) | 48.3 | 48.5 | 12.5 | 13.8 | 21.0 | 70.0 | −0.090 | 0.722 | −0.141 | 0.535 |
Small LDL (mg/dL) | 10.2 | 6.0 | 10.1 | 17.3 | 0 | 29.0 | 0.278 | 0.264 | 0.237 | 0.286 |
Large HDL (mg/dL) | 27.8 | 22.5 | 23.8 | 35.25 | 1.0 | 81.0 | −0.415 | 0.087 | −0.249 | 0.309 |
Intermediate HDL (mg/dL) | 73.0 | 90.5 | 50.1 | 93.75 | 13.0 | 141.0 | −0.548 | 0.019 | −0.224 | 0.602 |
Small HDL (mg/dL) | 30.2 | 24.0 | 21.7 | 31.5 | 5.0 | 74.0 | −0.561 | 0.015 | −0.507 | 0.032 |
RHI | 1.9 | 1.8 | 0.4 | 0.6 | 1.2 | 2.7 | - | - | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hluchanova, A.; Kollar, B.; Klobucnikova, K.; Hardonova, M.; Poddany, M.; Zitnanova, I.; Dvorakova, M.; Konarikova, K.; Tedla, M.; Urik, M.; et al. Lipoprotein Subfractions Associated with Endothelial Function in Previously Healthy Subjects with Newly Diagnosed Sleep Apnea—A Pilot Study. Life 2023, 13, 441. https://doi.org/10.3390/life13020441
Hluchanova A, Kollar B, Klobucnikova K, Hardonova M, Poddany M, Zitnanova I, Dvorakova M, Konarikova K, Tedla M, Urik M, et al. Lipoprotein Subfractions Associated with Endothelial Function in Previously Healthy Subjects with Newly Diagnosed Sleep Apnea—A Pilot Study. Life. 2023; 13(2):441. https://doi.org/10.3390/life13020441
Chicago/Turabian StyleHluchanova, Alzbeta, Branislav Kollar, Katarina Klobucnikova, Miroslava Hardonova, Michal Poddany, Ingrid Zitnanova, Monika Dvorakova, Katarina Konarikova, Miroslav Tedla, Milan Urik, and et al. 2023. "Lipoprotein Subfractions Associated with Endothelial Function in Previously Healthy Subjects with Newly Diagnosed Sleep Apnea—A Pilot Study" Life 13, no. 2: 441. https://doi.org/10.3390/life13020441
APA StyleHluchanova, A., Kollar, B., Klobucnikova, K., Hardonova, M., Poddany, M., Zitnanova, I., Dvorakova, M., Konarikova, K., Tedla, M., Urik, M., Klail, P., Skopek, P., Turcani, P., & Siarnik, P. (2023). Lipoprotein Subfractions Associated with Endothelial Function in Previously Healthy Subjects with Newly Diagnosed Sleep Apnea—A Pilot Study. Life, 13(2), 441. https://doi.org/10.3390/life13020441