Relationship Between Retinal Microcirculation and Renal Function in Patients with Diabetes and Chronic Kidney Disease by Laser Speckle Flowgraphy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Ethics
2.2. Participants
2.3. Laser Speckle Flowgraphy
2.4. Adaptive Optics Imaging
2.5. Statistical Analyses
3. Results
3.1. Demographics of Subjects
3.2. Comparison of Ocular Blood Flow among the Groups
3.3. Comparison of Retinal Vascular Measurements
3.4. Correlation of Ocular Blood Flow with Other Parameters
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nelson, R.G.; Tuttle, K.R. KDOQI Clinical Practice Guidelines and Clinical Practice Recommendations for Diabetes and Chronic Kidney Disease. Am. J. Kidney Dis. 2007, 49, S12–S154. [Google Scholar]
- Carlson, E.C. Scanning and transmission electron microscopic studies of normal and diabetic acellular glomerular and retinal microvessel basement membranes. Microsc. Res. Tech. 1994, 28, 165–177. [Google Scholar] [CrossRef]
- He, F.; Xia, X.; Wu, X.F.; Yu, X.Q.; Huang, F.X. Diabetic retinopathy in predicting diabetic nephropathy in patients with type 2 diabetes and renal disease: A meta-analysis. Diabetologia 2013, 56, 457–466. [Google Scholar] [CrossRef]
- Kramer, H.J.; Nguyen, Q.D.; Curhan, G.; Hsu, C.Y. Renal insufficiency in the absence of albuminuria and retinopathy among adults with type 2 diabetes mellitus. JAMA 2003, 289, 3273–3277. [Google Scholar] [CrossRef] [PubMed]
- Sabanayagam, C.; Shankar, A.; Koh, D.; Chia, K.S.; Saw, S.M.; Lim, S.C.; Tai, E.S.; Wong, T.Y. Retinal microvascular caliber and chronic kidney disease in an Asian population. Am. J. Epidemiol. 2009, 169, 625–632. [Google Scholar] [CrossRef] [PubMed]
- Sabanayagam, C.; Tai, E.S.; Shankar, A.; Lee, J.; Sun, C.; Wong, T.Y. Retinal arteriolar narrowing increases the likelihood of chronic kidney disease in hypertension. J. Hypertens. 2009, 27, 2209–2217. [Google Scholar] [CrossRef]
- Roorda, A.; Williams, D.R. The arrangement of the three cone classes in the living human eye. Nature 1999, 397, 520–522. [Google Scholar] [CrossRef]
- Arichika, S.; Uji, A.; Ooto, S.; Muraoka, Y.; Yoshimura, N. Effects of age and blood pressure on the retinal arterial wall, analyzed using adaptive optics scanning laser ophthalmoscopy. Sci. Rep. 2015, 5, 12283. [Google Scholar] [CrossRef]
- Sugiyama, T.; Araie, M.; Riva, C.E.; Schmetterer, L.; Orgul, S. Use of laser speckle flowgraphy in ocular blood flow research. Acta Ophthalmol. 2010, 88, 723–729. [Google Scholar] [CrossRef] [PubMed]
- Tamaki, Y.; Araie, M.; Kawamoto, E.; Eguchi, S.; Fujii, H. Noncontact, two-dimensional measurement of retinal microcirculation using laser speckle phenomenon. Investig. Ophthalmol. Vis. Sci. 1994, 35, 3825–3834. [Google Scholar]
- Nagahara, M.; Tamaki, Y.; Tomidokoro, A.; Araie, M. In vivo measurement of blood velocity in human major retinal vessels using the laser speckle method. Investig. Ophthalmol. Vis. Sci. 2011, 52, 87–92. [Google Scholar] [CrossRef]
- Takahashi, H.; Sugiyama, T.; Tokushige, H.; Maeno, T.; Nakazawa, T.; Ikeda, T.; Araie, M. Comparison of CCD-equipped laser speckle flowgraphy with hydrogen gas clearance method in the measurement of optic nerve head microcirculation in rabbits. Exp. Eye Res. 2013, 108, 10–15. [Google Scholar] [CrossRef]
- Wang, L.; Cull, G.A.; Piper, C.; Burgoyne, C.F.; Fortune, B. Anterior and posterior optic nerve head blood flow in nonhuman primate experimental glaucoma model measured by laser speckle imaging technique and microsphere method. Investig. Ophthalmol. Vis. Sci. 2012, 53, 8303–8309. [Google Scholar] [CrossRef]
- Wong, C.W.; Lamoureux, E.L.; Cheng, C.Y.; Cheung, G.C.; Tai, E.S.; Wong, T.Y.; Sabanayagam, C. Increased Burden of Vision Impairment and Eye Diseases in Persons with Chronic Kidney Disease—A Population-Based Study. EBioMedicine 2016, 5, 193–197. [Google Scholar] [CrossRef]
- Gavin, J.R., III; Alberti KG, M.M.; Davidson, M.B.; DeFronzo, R.A. Report of the expert committee on the diagnosis and classification of diabetes mellitus. Diabetes Care 2003, 26 (Suppl. 1), S5–S20. [Google Scholar]
- Chobanian, A.V.; Bakris, G.L.; Black, H.R.; Cushman, W.C.; Green, L.A.; Izzo, J.L., Jr.; Jones, D.W.; Materson, B.J.; Oparil, S.; Wright, J.T., Jr.; et al. Seventh report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure. Hypertension 2003, 42, 1206–1252. [Google Scholar] [CrossRef] [PubMed]
- Teramoto, T.; Sasaki, J.; Ueshima, H.; Egusa, G.; Kinoshita, M.; Shimamoto, K.; Daida, H.; Biro, S.; Hirobe, K.; Funahashi, T.; et al. Executive summary of Japan Atherosclerosis Society (JAS) guideline for diagnosis and prevention of atherosclerotic cardiovascular diseases for Japanese. J. Atheroscler. Thromb. 2007, 14, 45–50. [Google Scholar] [CrossRef]
- American Diabetes Association. Standards of medical care in diabetes—2007. Diabetes Care 2007, 30 (Suppl. 1), S4–S41. [Google Scholar] [CrossRef] [PubMed]
- Matsushita, K.; van der Velde, M.; Astor, B.C.; Woodward, M.; Levey, A.S.; de Jong, P.E.; Coresh, J.; Gansevoort, R.T. Association of estimated glomerular filtration rate and albuminuria with all-cause and cardiovascular mortality in general population cohorts: A collaborative meta-analysis. Lancet 2010, 375, 2073–2081. [Google Scholar] [PubMed]
- Matsuo, S.; Imai, E.; Horio, M.; Yasuda, Y.; Tomita, K.; Nitta, K.; Yamagata, K.; Tomino, Y.; Yokoyama, H.; Hishida, A. Revised equations for estimated GFR from serum creatinine in Japan. Am. J. Kidney Dis. 2009, 53, 982–992. [Google Scholar] [CrossRef] [PubMed]
- Levey, A.S.; Eckardt, K.U.; Tsukamoto, Y.; Levin, A.; Coresh, J.; Rossert, J.; De Zeeuw, D.; Hostetter, T.H.; Lameire, N.; Eknoyan, G. Definition and classification of chronic kidney disease: A position statement from Kidney Disease: Improving Global Outcomes (KDIGO). Kidney Int. 2005, 67, 2089–2100. [Google Scholar] [CrossRef]
- Shimada, N.; Ohno-Matsui, K.; Harino, S.; Yoshida, T.; Yasuzumi, K.; Kojima, A.; Kobayashi, K.; Futagami, S.; Tokoro, T.; Mochizuki, M. Reduction of retinal blood flow in high myopia. Graefe’s Arch. Clin. Exp. Ophthalmol. 2004, 242, 284–288. [Google Scholar] [CrossRef] [PubMed]
- Fujii, H. Visualisation of retinal blood flow by laser speckle flow-graphy. Med. Biol. Eng. Comput. 1994, 32, 302–304. [Google Scholar] [CrossRef]
- Sugiyama, T.; Utsumi, T.; Azuma, I.; Fujii, H. Measurement of optic nerve head circulation: Comparison of laser speckle and hydrogen clearance methods. Jpn. J. Ophthalmol. 1996, 40, 339–343. [Google Scholar] [PubMed]
- Tamaki, Y.; Araie, M.; Tomita, K.; Nagahara, M.; Tomidokoro, A.; Fujii, H. Real-time measurement of human optic nerve head and choroid circulation, using the laser speckle phenomenon. Jpn. J. Ophthalmol. 1997, 41, 49–54. [Google Scholar] [CrossRef]
- Sahin, B.; Lamory, B.; Levecq, X.; Harms, F.; Dainty, C. Adaptive optics with pupil tracking for high resolution retinal imaging. Biomed. Opt. Express 2012, 3, 225–239. [Google Scholar] [CrossRef]
- Godara, P.; Dubis, A.M.; Roorda, A.; Duncan, J.L.; Carroll, J. Adaptive optics retinal imaging: Emerging clinical applications. Optom. Vis. Sci. 2010, 87, 930–941. [Google Scholar] [CrossRef]
- Ueno, Y.; Iwase, T.; Goto, K.; Tomita, R.; Ra, E.; Yamamoto, K.; Terasaki, H. Association of changes of retinal vessels diameter with ocular blood flow in eyes with diabetic retinopathy. Sci. Rep. 2021, 11, 4653. [Google Scholar] [CrossRef]
- Edwards, M.S.; Wilson, D.B.; Craven, T.E.; Stafford, J.; Fried, L.F.; Wong, T.Y.; Klein, R.; Burke, G.L.; Hansen, K.J. Associations between retinal microvascular abnormalities and declining renal function in the elderly population: The Cardiovascular Health Study. Am. J. Kidney Dis. 2005, 46, 214–224. [Google Scholar] [CrossRef] [PubMed]
- Sabanayagam, C.; Shankar, A.; Klein, B.E.; Lee, K.E.; Muntner, P.; Nieto, F.J.; Tsai, M.Y.; Cruickshanks, K.J.; Schubert, C.R.; Brazy, P.C.; et al. Bidirectional association of retinal vessel diameters and estimated GFR decline: The Beaver Dam CKD Study. Am. J. Kidney Dis. 2011, 57, 682–691. [Google Scholar] [CrossRef] [PubMed]
- McGowan, A.; Silvestri, G.; Moore, E.; Silvestri, V.; Patterson, C.C.; Maxwell, A.P.; McKay, G.J. Evaluation of the Retinal Vasculature in Hypertension and Chronic Kidney Disease in an Elderly Population of Irish Nuns. PLoS ONE 2015, 10, e0136434. [Google Scholar] [CrossRef] [PubMed]
- Wong, T.Y.; Coresh, J.; Klein, R.; Muntner, P.; Couper, D.J.; Sharrett, A.R.; Klein, B.E.; Heiss, G.; Hubbard, L.D.; Duncan, B.B. Retinal microvascular abnormalities and renal dysfunction: The atherosclerosis risk in communities study. J. Am. Soc. Nephrol. 2004, 15, 2469–2476. [Google Scholar] [CrossRef]
- Nagaoka, T.; Yoshida, A. Relationship between retinal blood flow and renal function in patients with type 2 diabetes and chronic kidney disease. Diabetes Care 2013, 36, 957–961. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baleanu, D.; Ritt, M.; Harazny, J.; Heckmann, J.; Schmieder, R.E.; Michelson, G. Wall-to-lumen ratio of retinal arterioles and arteriole-to-venule ratio of retinal vessels in patients with cerebrovascular damage. Investig. Ophthalmol. Vis. Sci. 2009, 50, 4351–4359. [Google Scholar] [CrossRef] [PubMed]
- Michelson, G.; Warntges, S.; Baleanu, D.; Welzenbach, J.; Ohno-Jinno, A.; Pogorelov, P.; Harazny, J. Morphometric age-related evaluation of small retinal vessels by scanning laser Doppler flowmetry: Determination of a vessel wall index. Retina 2007, 27, 490–498. [Google Scholar] [CrossRef]
- Shiba, C.; Shiba, T.; Takahashi, M.; Matsumoto, T.; Hori, Y. Relationship between glycosylated hemoglobin A1c and ocular circulation by laser speckle flowgraphy in patients with/without diabetes mellitus. Graefe’s Arch. Clin. Exp. Ophthalmol. 2016, 254, 1801–1809. [Google Scholar] [CrossRef]
- Nagaoka, T.; Sato, E.; Takahashi, A.; Yokota, H.; Sogawa, K.; Yoshida, A. Impaired retinal circulation in patients with type 2 diabetes mellitus: Retinal laser Doppler velocimetry study. Investig. Ophthalmol. Vis. Sci. 2010, 51, 6729–6734. [Google Scholar] [CrossRef]
- Klein, R.; Zinman, B.; Gardiner, R.; Suissa, S.; Donnelly, S.M.; Sinaiko, A.R.; Kramer, M.S.; Goodyer, P.; Moss, S.E.; Strand, T.; et al. The relationship of diabetic retinopathy to preclinical diabetic glomerulopathy lesions in type 1 diabetic patients: The Renin-Angiotensin System Study. Diabetes 2005, 54, 527–533. [Google Scholar] [CrossRef]
- Landray, M.J.; Wheeler, D.C.; Lip, G.Y.; Newman, D.J.; Blann, A.D.; McGlynn, F.J.; Ball, S.; Townend, J.N.; Baigent, C. Inflammation, endothelial dysfunction, and platelet activation in patients with chronic kidney disease: The chronic renal impairment in Birmingham (CRIB) study. Am. J. Kidney Dis. 2004, 43, 244–253. [Google Scholar] [CrossRef]
- Coller, B.S.; Frank, R.N.; Milton, R.C.; Gralnick, H.R. Plasma cofactors of platelet function: Correlation with diabetic retinopathy and hemoglobins Ala-c. Ann. Intern. Med. 1978, 88, 311–316. [Google Scholar] [CrossRef]
- Feng, D.; Bursell, S.E.; Clermont, A.C.; Lipinska, I.; Aiello, L.P.; Laffel, L.; King, G.L.; Tofler, G.H. von Willebrand factor and retinal circulation in early-stage retinopathy of type 1 diabetes. Diabetes Care 2000, 23, 1694–1698. [Google Scholar] [CrossRef] [PubMed]
- Lowe, G.D. Blood rheology in arterial disease. Clin. Sci. 1986, 71, 137–146. [Google Scholar] [CrossRef]
- Sugimori, H.; Tomoda, F.; Koike, T.; Kurosaki, H.; Masutani, T.; Ohara, M.; Kagitani, S.; Inoue, H. Increased blood viscosity is associated with reduced renal function and elevated urinary albumin excretion in essential hypertensives without chronic kidney disease. Hypertens. Res. 2013, 36, 247–251. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Causin, P.; Guidoboni, G.; Malgaroli, F.; Sacco, R.; Harris, A. Blood flow mechanics and oxygen transport and delivery in the retinal microcirculation: Multiscale mathematical modeling and numerical simulation. Biomech. Model. Mechanobiol. 2016, 15, 525–542. [Google Scholar] [CrossRef] [PubMed]
- Pepple, D.J.; Reid, H.L. Alterations in hemorheological determinants and glycated hemoglobin in black diabetic patients with retinopathy. J. Natl. Med. Assoc. 2009, 101, 258–260. [Google Scholar] [CrossRef]
- Kolar, P. Risk factors for central and branch retinal vein occlusion: A meta-analysis of published clinical data. J. Ophthalmol. 2014, 2014, 724780. [Google Scholar] [CrossRef]
- Michalska-Malecka, K.; Slowinska-Lozynska, L.; Romaniuk, W. Influence of rheological factors on the development of primary open angle glaucoma. Klin. Ocz. 2012, 114, 135–137. [Google Scholar]
- Rodriguez-Poncelas, A.; Mundet-Tuduri, X.; Miravet-Jimenez, S.; Casellas, A.; Barrot-De la Puente, J.F.; Franch-Nadal, J.; Coll-de Tuero, G. Chronic Kidney Disease and Diabetic Retinopathy in Patients with Type 2 Diabetes. PLoS ONE 2016, 11, e0149448. [Google Scholar] [CrossRef]
- Wong, T.Y.; Cheung, N.; Tay, W.T.; Wang, J.J.; Aung, T.; Saw, S.M.; Lim, S.C.; Tai, E.S.; Mitchell, P. Prevalence and risk factors for diabetic retinopathy: The Singapore Malay Eye Study. Ophthalmology 2008, 115, 1869–1875. [Google Scholar] [CrossRef]
- Yanagida, K.; Iwase, T.; Yamamoto, K.; Ra, E.; Kaneko, H.; Murotani, K.; Matsui, S.; Terasaki, H. Sex-Related Differences in Ocular Blood Flow of Healthy Subjects Using Laser Speckle Flowgraphy. Investig. Ophthalmol. Vis. Sci. 2015, 56, 4880–4890. [Google Scholar] [CrossRef]
- Imai, E.; Horio, M.; Watanabe, T.; Iseki, K.; Yamagata, K.; Hara, S.; Ura, N.; Kiyohara, Y.; Moriyama, T.; Ando, Y.; et al. Prevalence of chronic kidney disease in the Japanese general population. Clin. Exp. Nephrol. 2009, 13, 621–630. [Google Scholar] [CrossRef] [PubMed]
Characteristics | Stage of CKD | |||
---|---|---|---|---|
No CKD | Stage 1 + 2 | Stage 3 | p-Value | |
n | 54 | 20 | 41 | - |
Age (years) | 60.9 ± 12.4 | 58.05 ± 13.0 | 69.3 ± 8.4 | 0.001 |
Gender (male:female) | 25:29 | 15:5 | 28:13 | 0.099 |
HbA1c (%) | 7.7 ± 1.3 | 7.5 ± 0.9 | 7.1 ± 1.0 | 0.065 |
Duration of diabetes (years) | 14.0 ± 11.3 | 13.2 ± 11.1 | 17.0 ± 8.9 | 0.278 |
Insulin: oral hypoglycemic agents | 28:26:00 | 10:10 | 12:29 | 0.072 |
Serum creatinine, mg/dL | 0.67 ± 0.14 | 0.80 ± 0.16 | 1.02 ± 0.20 | <0.001 |
eGFR, mL/min/1.73 m2 | 81.4 ± 14.8 | 75.5 ± 14.8 | 51.9 ± 7.2 | <0.001 |
Systolic blood pressure (mmHg) | 133.4 ± 25.5 | 137.0 ± 20.2 | 130.9 ± 19.7 | 0.614 |
Diastolic blood pressure (mmHg) | 78.6 ± 25.6 | 81.4 ± 12.9 | 76.0 ± 10.6 | 0.249 |
Intraocular pressure (mmHg) | 14.5 ± 3.4 | 14.9 ± 3.5 | 14.4 ± 2.6 | 0.898 |
Ocular perfusion pressure (mmHg) | 50.1 ± 10.1 | 52.0 ± 9.2 | 48.4 ± 8.3 | 0.371 |
Heart rate, bpm | 80.6 ± 12.6 | 85.2 ± 13.1 | 76.6 ± 10.1 | 0.028 |
Hemoglobin, % | 13.5 ± 1.7 | 14.3 ± 1.8 | 13.1 ± 1.7 | 0.044 |
Total cholesterol, mg/dL | 187 ± 46.6 | 166.7 ± 24.9 | 174.5 ± 36.7 | 0.213 |
Triglycerides, mg/dL | 142.2 ± 123.3 | 151.1 ± 83.7 | 128.6 ± 73.4 | 0.695 |
LDL, mg/dL | 105.9 ± 36.9 | 95.2 ± 19.2 | 96.0 ± 27.0 | 0.255 |
Hypertension, n (%) | 19 (35) | 9 (45) | 28 (68) | 0.078 |
Dyslipidemia, n (%) | 24 (44) | 8 (40) | 27 (65) | 0.063 |
Parameter | Stage of CKD | |||
---|---|---|---|---|
No CKD | Stage 1 + 2 | Stage 3 | p-Value | |
n | 36 | 15 | 28 | - |
External diameter | 119.26 ± 19.72 | 124.82 ± 11.88 | 122.44 ± 16.13 | 0.476 |
Lumen diameter | 90.87 ± 15.84 | 94.51 ± 9.83 | 92.60 ±13.57 | 0.618 |
Wall | 14.43 ± 2.66 | 14.49 ± 1.64 | 14.66 ± 2.61 | 0.938 |
Wall to lumen ratio | 0.31 ± 0.04 | 0.32 ± 0.04 | 0.32 ± 0.05 | 0.733 |
Parameter | Age | Duration of DM | HbA1c | T-chol | LDL | TG | eGFR | CKD Stage | SBP | DBP | OPP | HT | DL | WLR |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
MBR-vessel | −0.450 ** | −0.238 * | 0.074 | −0.064 | 0.060 | 0.081 | 0.266 ** | −0.250 ** | 0.160 | 0.223 * | 0.123 | −0.071 | −0.025 | −0.051 |
TRFI | −0.556 ** | −0.299 ** | −0.012 | 0.032 | 0.116 | 0.131 | 0.331 ** | −0.313 * | 0.046 | 0.061 | −0.040 | −0.136 | −0.030 | 0.665 |
Dependent | Independent | β | p-Value |
---|---|---|---|
ONH MBR-vessel | CKD stage | −0.257 | 0.031 |
Duration of DM | −0.185 | 0.115 | |
Total cholesterol | −0.165 | 0.163 | |
Ocular perfusion pressure | 0.035 | 0.442 | |
Wall to lumen ratio | −0.070 | 0.586 | |
Triglyceride | 0.060 | 0.609 | |
HbA1c | −0.038 | 0.752 | |
LDL | 0.031 | 0.795 | |
Hb | 0.016 | 0.892 |
Dependent | Independent | β | p-Value |
---|---|---|---|
TRFI | CKD stage | −0.316 | 0.015 |
Duration of DM | −0.191 | 0.133 | |
Triglyceride | 0.132 | 0.297 | |
HbA1c | −0.101 | 0.436 | |
Total cholesterol | −0.087 | 0.498 | |
Wall to lumen ratio | −0.070 | 0.586 | |
Ocular perfusion pressure | −0.041 | 0.747 | |
LDL | 0.032 | 0.805 | |
Hb | −0.028 | 0.829 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Iwase, T.; Ueno, Y.; Tomita, R.; Terasaki, H. Relationship Between Retinal Microcirculation and Renal Function in Patients with Diabetes and Chronic Kidney Disease by Laser Speckle Flowgraphy. Life 2023, 13, 424. https://doi.org/10.3390/life13020424
Iwase T, Ueno Y, Tomita R, Terasaki H. Relationship Between Retinal Microcirculation and Renal Function in Patients with Diabetes and Chronic Kidney Disease by Laser Speckle Flowgraphy. Life. 2023; 13(2):424. https://doi.org/10.3390/life13020424
Chicago/Turabian StyleIwase, Takeshi, Yoshitaka Ueno, Ryo Tomita, and Hiroko Terasaki. 2023. "Relationship Between Retinal Microcirculation and Renal Function in Patients with Diabetes and Chronic Kidney Disease by Laser Speckle Flowgraphy" Life 13, no. 2: 424. https://doi.org/10.3390/life13020424
APA StyleIwase, T., Ueno, Y., Tomita, R., & Terasaki, H. (2023). Relationship Between Retinal Microcirculation and Renal Function in Patients with Diabetes and Chronic Kidney Disease by Laser Speckle Flowgraphy. Life, 13(2), 424. https://doi.org/10.3390/life13020424