The Involvement of Krüppel-like Factors in Cardiovascular Diseases
Abstract
:1. Introduction
2. Krüppel-like Factors Structure and Domains
Krüppel-like Factors Phylogenetic Classification
Group Members | Description | References |
---|---|---|
Group 1 KLF-3 KLF-8 KLF-12 | These mediate transcriptional repression by binding their C-terminal domain to the CtBP protein. CtBP can then mediate co-repression in an HDAC-dependent process, allowing histones to wrap DNA tightly. This mechanism was assessed by Turner and Crossley when they proved that mutations in the CtBP-binding motif in KLF-3 failed to repress gene expression in SL2 cells. A gene repression HDAC-independent process could be executed by CtBP recruitment of PcG-associated proteins complex. | [24,25,26,27] |
Group 2 KLF-1 KLF-2 KLF-4 KLF-5 KLF-6 KLF-7 | They mostly operate as transcriptional activators by recruiting acetyltransferase activity factors, such as CBP, p300, and P/CAF, promoting chromatin remodeling. Nevertheless, KLF-2 and KLF-4 also contain domains with repressor functions, which are continuous to the activation domains. | [28,29] |
Group 3 KLF-9 KLF-10 KLF-11 KLF-13 KLF-14 KLF-16 | They have mostly been described as transcriptional repressors through their binding to SinA3. This interaction is possible because of a hydrophobic consensus sequence in these KLFs N-terminal domains, a conserved α-helical motif AA/VXXL that mediates their linking to SinA3 paired amphipathic helix domain, which then works as a scaffold for other chromatin modifiers, such as HDAC1, HDAC2, Mad, Ume6, MeCP2, N-CoR, and Ikaros. | [28,30] |
No consensus group. KLF-15KLF-17 (-18) | These factors have not been incorporated into any of these phylogenetic groups since their interaction domains remain undetermined. Yet, tissue expression in bone, kidney, and testis has been reported. | [11,18,31] |
3. Cardiovascular Diseases (CVDs)
3.1. Krüppel-like Factors in Atherosclerosis
3.2. Krüppel-like Factors in Ischemic Disease, Remodeling, and Heart Failure
3.3. Krüppel-like Factors in Stroke
3.4. Krüppel-like Factors in Peripheral Artery Diseases
3.5. Krüppel-like Factors in Deep Vein Thrombosis
3.6. Krüppel-like Factors in Congenital Heart Diseases
Disease | KLF Involved | Effect | Mechanism | Reference |
---|---|---|---|---|
Atherosclerosis | KLF-5 | Promoter | VSMCs proliferative phenotype switch via Myod repression. | [108] |
KLF-2 | Protector | Reduces inflammation as it downregulates VCAM1 and E-selectin. | [14,61] | |
KLF-4 | Protector | Inhibition of neointima formation via SM-22 and α-SMA repression. | [109,110] | |
Myocardial infarction | KLF-4 | Promoter | Myofibroblasts differentiation and collagen secretion via TGF-β1/Smad3 pathway. | [77] |
Left ventricle hypertrophy | KLF-15 | Promoter | Rs9838915 associated with increased left ventricle mass index and septal wall thickness. | [31] |
Dilated cardiomyopathy | KLF-5 | Promoter | Upregulation of FOXO1. | [15,34] |
Diabetic cardiomyopathy | KLF-5 | Promoter | Upregulation of NOX4, O−2, and ceramide accumulation. | [15] |
Stroke | KLF-4 | Protector | Acts as a guard by upregulating adhesion molecules ICAM-1 and VCAM-1 in the brain. | [93] |
KLF-11 | Mutations | Leads to blood–brain barrier permeability, | [91] | |
KLF-2 | Reduction | Higher expression of proinflammatory NF-B/p65. | [91] | |
Peripheral artery disease | KLF-5 | Maintenance | Vasculature network by collaborating with KLF-4, as myocardin, converting enzymes, kinases, and myocardin-related factors. | [102] |
KLF-4 | Inhibit | Cholesterol levels reduced. Potential marker for diabetes. | [104] | |
Deep vein thrombosis | KLF-15 | Promoter | Antithrombotic effect by upregulating nitic oxide synthetase. | [105] |
KLF-11 | Reduction | Inhibits the expression of EGR1 in endothelial cells. | [107] | |
Congenital heart disease | KLF-13 | Protection | Modifier of TBX5, protects against cardiac malformation regulating Gata4, Mef2a, Erbb4, Vegfc, and Myh7. | [109] |
4. Krüppel-like Factors and miRNA in Cardiovascular Diseases
MiRNAs | Cardiovascular Diseases | Target | Response | Ref. |
---|---|---|---|---|
miR-143/145 miR-1 miR-137-3p | Promotes atherosclerosis | KLF-4/5 KLF-4 KLF-15 |
| [132,133,134] |
miR126 | Promotes atherosclerosis | KLF-2 |
| [135] |
miR29a | Promotes atherosclerosis | KLF-15 |
| [136] |
miR-410 mmu-miR-107, mmu-miR-142-5p, mmu-miR-143, mmu-miR-155 | Anti-atherosclerosis | KLF-5 KLF-2 |
| [137,138] |
miR-10a | Myocardial infarction | KLF-4 |
| [139] |
miR-27a | Myocardial infarction | KLF-5 |
| [140] |
mIR-363-3p | Myocardial infarction | KLF-2 |
| [128] |
miR32-5p | Myocardial infarction | KLF-2 |
| [127] |
miR-125b-5p | Myocardial infarction | KLF-13 |
| [129] |
miR-150 | Myocardial infarction | KLF-13 |
| [141] |
mIR-92a | Myocardial infarction | KLF-2 KLF-4 |
| [142] |
miR-124 | Atherosclerosis | KLF-6 and STAT3 |
| [143,144] |
miR-let-7g | Atherosclerosis | KLF-4, SRF, α-SMA, calponin, and PDGF-B |
| [130] |
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kwak, H.-B. Aging, Exercise, and Extracellular Matrix in the Heart. J. Exerc. Rehabil. 2013, 9, 338–347. [Google Scholar] [CrossRef] [PubMed]
- Bartunek, J.; Behfar, A.; Dolatabadi, D.; Vanderheyden, M.; Ostojic, M.; Dens, J.; El Nakadi, B.; Banovic, M.; Beleslin, B.; Vrolix, M.; et al. Cardiopoietic Stem Cell Therapy in Heart Failure: The C-CURE (Cardiopoietic Stem Cell Therapy in Heart FailURE) Multicenter Randomized Trial with Lineage-Specified Biologics. J. Am. Coll. Cardiol. 2013, 61, 2329–2338. [Google Scholar] [CrossRef] [PubMed]
- Shindo, T.; Manabe, I.; Fukushima, Y.; Tobe, K.; Aizawa, K.; Miyamoto, S.; Kawai-Kowase, K.; Moriyama, N.; Imai, Y.; Kawakami, H.; et al. Krüppel-like Zinc-Finger Transcription Factor KLF5/BTEB2 Is a Target for Angiotensin II Signaling and an Essential Regulator of Cardiovascular Remodeling. Nat. Med. 2002, 8, 856–863. [Google Scholar] [CrossRef]
- Majid, Q.A.; Fricker, A.T.R.; Gregory, D.A.; Davidenko, N.; Hernandez Cruz, O.; Jabbour, R.J.; Owen, T.J.; Basnett, P.; Lukasiewicz, B.; Stevens, M.; et al. Natural Biomaterials for Cardiac Tissue Engineering: A Highly Biocompatible Solution. Front. Cardiovasc. Med. 2020, 7, 554597. [Google Scholar] [CrossRef] [PubMed]
- Davidson, S.M.; Padró, T.; Bollini, S.; Vilahur, G.; Duncker, D.J.; Evans, P.C.; Guzik, T.; Hoefer, I.E.; Waltenberger, J.; Wojta, J.; et al. Progress in Cardiac Research: From Rebooting Cardiac Regeneration to a Complete Cell Atlas of the Heart. Cardiovasc. Res. 2021, 117, 2161–2174. [Google Scholar] [CrossRef]
- Ritchie, H.; Spooner, F.; Roser, M. Causes of Death; Our World in Data: Oxford, UK, 2018. [Google Scholar]
- Xu, J.; Murphy, S.L.; Kochanek, K.D.; Arias, E. Mortality in the United States, 2021 Key Findings Data from the National Vital Statistics System; CDC: Atlanta, GA, USA, 2021. [Google Scholar]
- Miller, I.J.; Bieker, J.J. A Novel, Erythroid Cell-Specific Murine Transcription Factor That Binds to the CACCC Element and Is Related to the Kriippel Family of Nuclear Proteinst. Mol. Cell. Biol. 1993, 13, 2776–2786. [Google Scholar]
- Zakeri, S.; Aminian, H.; Sadeghi, S.; Esmaeilzadeh-Gharehdaghi, E.; Razmara, E. Krüppel-like Factors in Bone Biology. Cell. Signal. 2022, 93, 110308. [Google Scholar] [CrossRef]
- Schuh, R.; Aicher, W.; Gaul, U.; Côte, S.; Preiss, A.; Maier, D.; Seifert, E.; Nauber, U.; Schröder, C.; Kemler, R.; et al. A Conserved Family of Nuclear Proteins Containing Structural Elements of the Finger Protein Encoded by Krüppel, a Drosophila Segmentation Gene. Cell 1986, 47, 1025–1032. [Google Scholar] [CrossRef]
- Rane, M.J.; Zhao, Y.; Cai, L. Krϋppel-like Factors (KLFs) in Renal Physiology and Disease. EBioMedicine 2019, 40, 743–750. [Google Scholar] [CrossRef]
- Tetreault, M.-P.; Yang, Y.; Katz, J.P. Krüppel-like Factors in Cancer. Nat. Rev. Cancer 2013, 13, 701–713. [Google Scholar] [CrossRef]
- SenBanerjee, S.; Lin, Z.; Atkins, G.B.; Greif, D.M.; Rao, R.M.; Kumar, A.; Feinberg, M.W.; Chen, Z.; Simon, D.I.; Luscinskas, F.W.; et al. KLF2 Is a Novel Transcriptional Regulator of Endothelial Proinflammatory Activation. J. Exp. Med. 2004, 199, 1305–1315. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nayak, L.; Lin, Z.; Jain, M.K. “Go with the Flow”: How Krüppel-like Factor 2 Regulates the Vasoprotective Effects of Shear Stress. Antioxid. Redox Signal. 2011, 15, 1449–1461. [Google Scholar] [CrossRef] [PubMed]
- Kyriazis, I.D.; Hoffman, M.; Gaignebet, L.; Lucchese, A.M.; Markopoulou, E.; Palioura, D.; Wang, C.; Bannister, T.D.; Christofidou-Solomidou, M.; Oka, S. KLF5 Is Induced by FOXO1 and Causes Oxidative Stress and Diabetic Cardiomyopathy. Circ. Res. 2021, 128, 335–357. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, T.; Yamashita, M.; Horimai, C.; Hayashi, M. Deletion of Krüppel-like Factor 4 in Endothelial and Hematopoietic Cells Enhances Neointimal Formation Following Vascular Injury. J. Am. Heart Assoc. 2014, 3, e000622. [Google Scholar] [CrossRef]
- Palioura, D.; Lazou, A.; Drosatos, K. Krüppel-like Factor (KLF) 5: An Emerging Foe of Cardiovascular Health. J. Mol. Cell. Cardiol. 2022, 163, 56–66. [Google Scholar] [CrossRef]
- Pei, J.; Grishin, N.V.; Xu, E.Y. A New Family of Predicted Krüppel-Like Factor Genes and Pseudogenes in Placental Mammals. PLoS ONE 2013, 8, 81109. [Google Scholar] [CrossRef]
- Brayer, K.J.; Segal, D.J. Keep Your Fingers off My DNA: Protein-Protein Interactions Mediated by C2H2 Zinc Finger Domains. Cell Biochem. Biophys. 2008, 50, 111–131. [Google Scholar] [CrossRef]
- Wolfe, S.A.; Nekludova, L.; Pabo, C.O. DNA Recognition by Cys2HiS2 Zinc Finger Proteins. Annu. Rev. Biophys. Biomol. Struct. 1999, 3, 183–212. [Google Scholar] [CrossRef]
- Dang, D.T.; Pevsner, J.; Yang, V.W. The Biology of the Mammalian Krüppel-like Family of Transcription Factors. Int. J. Biochem. Cell Biol. 2000, 32, 1103–1121. [Google Scholar] [CrossRef]
- Oishi, Y.; Manabe, I. Krüppel-Like Factors in Metabolic Homeostasis and Cardiometabolic Disease. Front. Cardiovasc. Med. 2018, 5, 69. [Google Scholar] [CrossRef]
- Kaczynski, J.; Cook, T.; Urrutia, R. Protein Family Review Sp1- and Krüppel-like Transcription Factors. Genome Biol. 2003, 4, 206. [Google Scholar] [CrossRef] [Green Version]
- Chinnadurai, G. CtBP, an Unconventional Transcriptional Torepressor in Development and Oncogenesis. Mol. Cell 2002, 9, 213–224. [Google Scholar] [CrossRef] [PubMed]
- Chinnadurai, G. Transcriptional Regulation by C-Terminal Binding Proteins. Int. J. Biochem. Cell Biol. 2007, 39, 1593–1607. [Google Scholar] [CrossRef] [PubMed]
- Turner, J.; Crossley, M. Cloning and Characterization of MCtBP2, a Co-Repressor That Associates with Basic Kruppel-like Factor and Other Mammalian Transcriptional Regulators. EMBO J. 1998, 17, 5129–5140. [Google Scholar] [CrossRef] [PubMed]
- Shao, M.; Ge, G.Z.; Liu, W.J.; Xiao, J.; Xia, H.J.; Fan, Y.; Zhao, F.; He, B.L.; Chen, C. Characterization and Phylogenetic Analysis of Krüppel-like Transcription Factor (KLF) Gene Family in Tree Shrews (Tupaia Belangeri Chinensis). Oncotarget 2017, 8, 16325–16339. [Google Scholar] [CrossRef] [PubMed]
- McConnell, B.B.; Yang, V.W. Mammalian Krüppel-Like Factors in Health and Diseases. Physiol. Rev. 2010, 90, 1337–1381. [Google Scholar] [CrossRef]
- Kawata, M.; Teramura, T.; Ordoukhanian, P.; Head, S.R.; Natarajan, P.; Sundaresan, A.; Olmer, M.; Asahara, H.; Lotz, M.K. Krüppel-like Factor-4 and Krüppel-like Factor-2 Are Important Regulators of Joint Tissue Cells and Protect against Tissue Destruction and Inflammation in Osteoarthritis. Ann. Rheum. Dis. 2022, 81, 1179–1188. [Google Scholar] [CrossRef]
- Memon, A.; Lee, W.K. KLF10 as a Tumor Suppressor Gene and Its TGF-β Signaling. Cancers 2018, 10, 161. [Google Scholar] [CrossRef]
- Patel, S.K.; Wai, B.; Lang, C.C.; Levin, D.; Palmer, C.N.A.; Parry, H.M.; Velkoska, E.; Harrap, S.B.; Srivastava, P.M.; Burrell, L.M. Genetic Variation in Kruppel like Factor 15 Is Associated with Left Ventricular Hypertrophy in Patients with Type 2 Diabetes: Discovery and Replication Cohorts. EBioMedicine 2017, 18, 171–178. [Google Scholar] [CrossRef]
- Chang, E.; Nayak, L.; Jain, M.K. Krüppel-like Factors in Endothelial Cell Biology. Curr. Opin. Hematol. 2017, 24, 224–229. [Google Scholar] [CrossRef]
- Vinjamur, D.S.; Wade, K.J.; Mohamad, S.F.; Haar, J.L.; Sawyer, S.T.; Lloyd, J.A. Krüppel-like Transcription Factors KLF1 and KLF2 Have Unique and Coordinate Roles in Regulating Embryonic Erythroid Precursor Maturation. Haematologica 2014, 99, 1565–1573. [Google Scholar] [CrossRef] [Green Version]
- Fisch, S.; Gray, S.; Heymans, S.; Haldar, S.M.; Wang, B.; Pfister, O.; Cui, L.; Kumar, A.; Lin, Z.; Sen-Banerjee, S.; et al. Kruppel-like Factor 15 Is a Regulator of Cardiomyocyte Hypertrophy. Proc. Natl. Acad. Sci. USA 2007, 104, 7074–7079. [Google Scholar] [CrossRef]
- Leenders, J.J.; Wijnen, W.J.; Hiller, M.; Van Der Made, I.; Lentink, V.; Van Leeuwen, R.E.W.; Herias, V.; Pokharel, S.; Heymans, S.; De Windt, L.J.; et al. Regulation of Cardiac Gene Expression by KLF15, a Repressor of Myocardin Activity. J. Biol. Chem. 2010, 285, 27449–27456. [Google Scholar] [CrossRef]
- Lavallée, G.; Andelfinger, G.; Nadeau, M.; Lefebvre, C.; Nemer, G.; Horb, M.E.; Nemer, M. The Kruppel-like Transcription Factor KLF13 Is a Novel Regulator of Heart Development. EMBO J. 2006, 25, 5201–5213. [Google Scholar] [CrossRef]
- Chiong, M.; Wang, Z.V.; Pedrozo, Z.; Cao, D.J.; Troncoso, R.; Ibacache, M.; Criollo, A.; Nemchenko, A.; Hill, J.a.; Lavandero, S. Cardiomyocyte Death: Mechanisms and Translational Implications. Cell Death Dis. 2011, 2, e244. [Google Scholar] [CrossRef]
- Roacho-Pérez, J.A.; Garza-Treviño, E.N.; Moncada-Saucedo, N.K.; Carriquiry-Chequer, P.A.; Valencia-Gómez, L.E.; Matthews, E.R.; Gómez-Flores, V.; Simental-Mendía, M.; Delgado-Gonzalez, P.; Delgado-Gallegos, J.L.; et al. Artificial Scaffolds in Cardiac Tissue Engineering. Life 2022, 12, 1117. [Google Scholar] [CrossRef]
- Saucerman, J.J.; Tan, P.M.; Buchholz, K.S.; McCulloch, A.D.; Omens, J.H. Mechanical Regulation of Gene Expression in Cardiac Myocytes and Fibroblasts. Nat. Rev. Cardiol. 2019, 16, 361–378. [Google Scholar] [CrossRef]
- Chaitra, K.L.; Ulaganathan, K.; James, A.; Ananthapur, V.; Nallari, P. MiRNA Regulation during Cardiac Development and Remodeling in Cardiomyopathy. EXCLI J. 2013, 12, 980–992. [Google Scholar]
- Islas, J.; Moreno-Cuevas, J. A MicroRNA Perspective on Cardiovascular Development and Diseases: An Update. Int. J. Mol. Sci. 2018, 19, 2075. [Google Scholar] [CrossRef]
- Iyer, D.; Belaguli, N.; Flu, M.; Rowan, B.G.; Wei, L.; Weigel, N.L.; Booth, F.W.; Epstein, H.F.; Schwartz, R.J.; Balasubramanyam, A. Novel Phosphorylation Target in the Serum Response Factor MADS Box Regulates. Biochemistry 2003, 42, 7477–7486. [Google Scholar] [CrossRef]
- Zheng, G.; Tao, Y.; Yu, W.; Schwartz, R.J. Brief Report: Srf-Dependent MiR-210 Silences the Sonic Hedgehog Signaling during Cardiopoesis. Stem Cells 2013, 31, 2279–2285. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Schwartz, R.J. Transient Mesp1 Expression: A Driver of Cardiac Cell Fate Determination. Transcription 2013, 4, 92–96. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grandi, S.M.; Filion, K.B.; Yoon, S.; Ayele, H.T.; Doyle, C.M.; Hutcheon, J.A.; Smith, G.N.; Gore, G.C.; Ray, J.G.; Nerenberg, K.; et al. Cardiovascular Disease-Related Morbidity and Mortality in Women with a History of Pregnancy Complications: Systematic Review and Meta-Analysis. Circulation 2019, 139, 1069–1079. [Google Scholar] [CrossRef] [PubMed]
- Mozaffarian, D.; Benjamin, E.J.; Go, A.S.; Arnett, D.K.; Blaha, M.J.; Cushman, M.; Das, S.R.; De Ferranti, S.; Després, J.P.; Fullerton, H.J.; et al. Heart Disease and Stroke Statistics-2016 Update a Report from the American Heart Association. Circulation 2016, 133, e38–e48. [Google Scholar] [CrossRef] [PubMed]
- Drosatos, K.; Pollak, N.M.; Pol, C.J.; Ntziachristos, P.; Willecke, F.; Valenti, M.C.; Trent, C.M.; Hu, Y.; Guo, S.; Aifantis, I.; et al. Cardiac Myocyte KLF5 Regulates Ppara Expression and Cardiac Function. Circ. Res. 2016, 118, 241–253. [Google Scholar] [CrossRef] [PubMed]
- Borghetti, G.; Von Lewinski, D.; Eaton, D.M.; Sourij, H.; Houser, S.R.; Wallner, M. Diabetic Cardiomyopathy: Current and Future Therapies. Beyond Glycemic Control. Front. Physiol. 2018, 9, 1514. [Google Scholar] [CrossRef]
- Francula-Zaninovic, S.; Nola, I.A. Management of Measurable Variable Cardiovascular Disease’ Risk Factors. Curr. Cardiol. Rev. 2018, 14, 153–163. [Google Scholar] [CrossRef]
- Sarre-Álvarez, D.; Cabrera-Jardines, R.; Rodríguez-Weber, F. Enfermedad Cardiovascular Aterosclerótica. Revisión de Las Escalas de Riesgo y Edad Cardiovascular. Med. Interna México 2018, 6, 910–923. [Google Scholar]
- Honigberg, M.C.; Zekavat, S.M.; Aragam, K.; Klarin, D.; Bhatt, D.L.; Scott, N.S.; Peloso, G.M.; Natarajan, P. Long-Term Cardiovascular Risk in Women with Hypertension during Pregnancy. J. Am. Coll. Cardiol. 2019, 74, 2743–2754. [Google Scholar] [CrossRef]
- Bastien, M.; Poirier, P.; Lemieux, I.; Després, J.P. Overview of Epidemiology and Contribution of Obesity to Cardiovascular Disease. Prog. Cardiovasc. Dis. 2014, 56, 369–381. [Google Scholar] [CrossRef]
- Angelova, P.R.; Abramov, A.Y. Role of Mitochondrial ROS in the Brain: From Physiology to Neurodegeneration. FEBS Lett. 2018, 592, 692–702. [Google Scholar] [CrossRef]
- Tan, B.L.; Norhaizan, M.E. Effect of High-Fat Diets on Oxidative Stress, Cellular Inflammatory Response and Cognitive Function. Nutrients 2019, 11, 2579. [Google Scholar] [CrossRef]
- Starke, R.M.; Thompson, J.W.; Ali, M.S.; Pascale, C.L.; Martinez Lege, A.; Ding, D.; Chalouhi, N.; Hasan, D.M.; Jabbour, P.; Owens, G.K.; et al. Cigarette Smoke Initiates Oxidative Stress-Induced Cellular Phenotypic Modulation Leading to Cerebral Aneurysm Pathogenesis. Arter. Thromb. Vasc. Biol. 2018, 38, 610–621. [Google Scholar] [CrossRef] [Green Version]
- Banks, E.; Welsh, J.; Joshy, G.; Martin, M.; Paige, E.; Korda, R.J. Comparison of Cardiovascular Disease Risk Factors, Assessment and Management in Men and Women, Including Consideration of Absolute Risk: A Nationally Representative Cross-Sectional Study. BMJ Open 2020, 10, e038761. [Google Scholar] [CrossRef]
- Fan, Y.; Lu, H.; Liang, W.; Hu, W.; Zhang, J.; Chen, Y.E. Krüppel-like Factors and Vascular Wall Homeostasis. J. Mol. Cell Biol. 2017, 9, 352–363. [Google Scholar] [CrossRef]
- Dabravolski, S.A.; Sukhorukov, V.N.; Kalmykov, V.A.; Grechko, A.V.; Shakhpazyan, N.K.; Orekhov, A.N. The Role of KLF2 in the Regulation of Atherosclerosis Development and Potential Use of KLF2-Targeted Therapy. Biomedicines 2022, 10, 254. [Google Scholar] [CrossRef]
- Zhou, J.; Herring, B.P. Mechanisms Responsible for the Promoter-Specific Effects of Myocardin. J. Biol. Chem. 2005, 280, 10861–10869. [Google Scholar] [CrossRef]
- Patel, R.; Varghese, J.F.; Singh, R.P.; Yadav, U.C.S. Induction of Endothelial Dysfunction by Oxidized Low-Density Lipoproteins via Downregulation of Erk-5/Mef2c/KLF2 Signaling: Amelioration by Fisetin. Biochimie 2019, 163, 152–162. [Google Scholar] [CrossRef]
- Xu, Y.; Xu, S.; Liu, P.; Koroleva, M.; Zhang, S.; Si, S.; Jin, Z.G. Suberanilohydroxamic Acid as a Pharmacological Kruppel-Like Factor 2 Activator That Represses Vascular Inflammation and Atherosclerosis. J. Am. Heart Assoc. 2017, 6, e007134. [Google Scholar] [CrossRef]
- Xie, Z.; Chen, J.; Wang, C.; Zhang, J.; Wu, Y.; Yan, X. Current Knowledge of Krüppel-like Factor 5 and Vascular Remodeling: Providing Insights for Therapeutic Strategies. J. Mol. Cell Biol. 2021, 13, 79–90. [Google Scholar] [CrossRef]
- Ghaleb, A.M.; Yang, V.W. Krüppel-like Factor 4 (KLF4): What We Currently Know. Gene 2017, 611, 27–37. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, S.; Miyagawa, S.; Fukushima, S.; Kawamura, T.; Kashiyama, N.; Ohashi, F.; Toyofuku, T.; Toda, K.; Sawa, Y. Maturation of Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes by Soluble Factors from Human Mesenchymal Stem Cells. Mol. Ther. 2018, 26, 2681–2695. [Google Scholar] [CrossRef] [PubMed]
- Adam, P.J.; Regan, C.P.; Hautmann, M.B.; Owens, G.K. Positive- and Negative-Acting Kruppel-like Transcription Factors Bind a Transforming Growth Factor β Control Element Required for Expression of the Smooth Muscle Cell Differentiation Marker SM22α in vivo. J. Biol. Chem. 2000, 275, 37798–37806. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shankman, L.S.; Gomez, D.; Cherepanova, O.A.; Salmon, M.; Alencar, G.F.; Haskins, R.M.; Swiatlowska, P.; Newman, A.A.C.; Greene, E.S.; Straub, A.C.; et al. KLF4-Dependent Phenotypic Modulation of Smooth Muscle Cells Has a Key Role in Atherosclerotic Plaque Pathogenesis. Nat. Med. 2015, 21, 628–637. [Google Scholar] [CrossRef]
- Yoshida, T.; Kaestner, K.H.; Owens, G.K. Conditional Deletion of Krüppel-like Factor 4 Delays Downregulation of Smooth Muscle Cell Differentiation Markers but Accelerates Neointimal Formation Following Vascular Injury. Circ. Res. 2008, 102, 1548–1557. [Google Scholar] [CrossRef]
- Pedro-Botet, J.; Climent, E.; Benaiges, D. Atherosclerosis and Inflammation. New Therapeutic Approaches. Med. Clin. 2020, 155, 256–262. [Google Scholar] [CrossRef]
- Talman, V.; Ruskoaho, H. Cardiac Fibrosis in Myocardial Infarction—From Repair and Remodeling to Regeneration. Cell Tissue Res. 2016, 365, 563–581. [Google Scholar] [CrossRef]
- Dirkx, E.; da Costa Martins, P.A.; De Windt, L.J. Regulation of Fetal Gene Expression in Heart Failure. Biochim. Biophys. Acta BBA Mol. Basis Dis. 2013, 1832, 2414–2424. [Google Scholar] [CrossRef]
- Belian, E.; Noseda, M.; Abreu Paiva, M.S.; Leja, T.; Sampson, R.; Schneider, M.D. Forward Programming of Cardiac Stem Cells by Homogeneous Transduction with MYOCD plus TBX5. PLoS ONE 2015, 10, e0125384. [Google Scholar] [CrossRef]
- Pietronave, S.; Zamperone, A.; Oltolina, F.; Colangelo, D.; Follenzi, A.; Novelli, E.; Diena, M.; Pavesi, A.; Consolo, F.; Fiore, G.B.; et al. Monophasic and Biphasic Electrical Stimulation Induces a Precardiac Differentiation in Progenitor Cells Isolated from Human Heart. Stem Cells Dev. 2014, 23, 888–898. [Google Scholar] [CrossRef]
- Garry, G.A.; Bassel-Duby, R.; Olson, E.N. Direct Reprogramming as a Route to Cardiac Repair. Semin. Cell Dev. Biol. 2022, 122, 3–13. [Google Scholar] [CrossRef] [PubMed]
- Yamanaka, S. Strategies and New Developments in the Generation of Patient-Specific Pluripotent Stem Cells. Cell Stem Cell 2007, 1, 39–49. [Google Scholar] [CrossRef] [PubMed]
- Feng, B.; Jiang, J.; Kraus, P.; Ng, J.H.; Heng, J.C.D.; Chan, Y.S.; Yaw, L.P.; Zhang, W.; Loh, Y.H.; Han, J.; et al. Reprogramming of Fibroblasts into Induced Pluripotent Stem Cells with Orphan Nuclear Receptor Esrrb. Nat. Cell Biol. 2009, 11, 197–203. [Google Scholar] [CrossRef]
- Carey, B.W.; Markoulaki, S.; Hanna, J.; Saha, K.; Gao, Q.; Mitalipova, M.; Jaenisch, R. Reprogramming of Murine and Human Somatic Cells Using a Single Polycistronic Vector. Proc. Natl. Acad. Sci. USA 2008, 106, 157–162. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, Y.; Liu, Y.; Wang, N.; Qi, Y.; Du, J. Krüppel-Like Factor 4 Transcriptionally Regulates TGF-Β1 and Contributes to Cardiac Myofibroblast Differentiation. PLoS ONE 2013, 8, e63424. [Google Scholar] [CrossRef]
- Hoffman, M.; Palioura, D.; Kyriazis, I.D.; Cimini, M.; Badolia, R.; Rajan, S.; Gao, E.; Nikolaidis, N.; Schulze, P.C.; Goldberg, I.J.; et al. Cardiomyocyte Krüppel-Like Factor 5 Promotes De Novo Ceramide Biosynthesis and Contributes to Eccentric Remodeling in Ischemic Cardiomyopathy. Circulation 2021, 143, 1139–1156. [Google Scholar] [CrossRef]
- Stanley, W.C.; Recchia, F.A.; Lopaschuk, G.D. Myocardial Substrate Metabolism in the Normal and Failing Heart. Physiol. Rev. 2005, 85, 1093–1129. [Google Scholar] [CrossRef]
- Tabish, A.M.; Azzimato, V.; Alexiadis, A.; Buyandelger, B.; Knöll, R. Genetic Epidemiology of Titin-Truncating Variants in the Etiology of Dilated Cardiomyopathy. Biophys. Rev. 2017, 9, 207–223. [Google Scholar] [CrossRef] [PubMed]
- Di, R.M.; Yang, C.X.; Zhao, C.M.; Yuan, F.; Qiao, Q.; Gu, J.N.; Li, X.M.; Xu, Y.J.; Yang, Y.Q. Identification and Functional Characterization of KLF5 as a Novel Disease Gene Responsible for Familial Dilated Cardiomyopathy. Eur. J. Med. Genet. 2020, 63, 103827. [Google Scholar] [CrossRef] [PubMed]
- Thomas, M.C. Type 2 Diabetes and Heart Failure: Challenges and Solutions. Curr. Cardiol. Rev. 2016, 12, 249–255. [Google Scholar] [CrossRef]
- Tang, X.; Liu, K.; Hamblin, M.H.; Xu, Y.; Yin, K.J. Genetic Deletion of Krüppel-Like Factor 11 Aggravates Ischemic Brain Injury. Mol. Neurobiol. 2018, 55, 2911–2921. [Google Scholar] [CrossRef]
- Yang, H.; Xi, X.; Zhao, B.; Su, Z.; Wang, Z. KLF4 Protects Brain Microvascular Endothelial Cells from Ischemic Stroke Induced Apoptosis by Transcriptionally Activating MALAT1. Biochem. Biophys. Res. Commun. 2018, 495, 2376–2382. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Wang, L.; Han, Z.; Dong, J.; Pang, D.; Fu, Y.; Li, L. KLF4 Alleviates Cerebral Vascular Injury by Ameliorating Vascular Endothelial Inflammation and Regulating Tight Junction Protein Expression Following Ischemic Stroke. J. Neuroinflamm. 2020, 17, 107. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zawistowski, J.S.; Stalheim, L.; Uhlik, M.T.; Abell, A.N.; Ancrile, B.B.; Johnson, G.L.; Marchuk, D.A. CCM1 and CCM2 Protein Interactions in Cell Signaling: Implications for Cerebral Cavernous Malformations Pathogenesis. Hum. Mol. Genet. 2005, 14, 2521–2531. [Google Scholar] [CrossRef]
- Zheng, X.; Xu, C.; Di Lorenzo, A.; Kleaveland, B.; Zou, Z.; Seiler, C.; Chen, M.; Cheng, L.; Xiao, J.; He, J.; et al. CCM3 Signaling through Sterile 20–like Kinases Plays an Essential Role during Zebrafish Cardiovascular Development and Cerebral Cavernous Malformations. J. Clin. Investig. 2010, 120, 2795–2804. [Google Scholar] [CrossRef]
- Choi, J.P.; Yang, X.; He, S.; Song, R.; Xu, Z.R.; Foley, M.; Wong, J.J.L.; Xu, C.R.; Zheng, X. CCM2L (Cerebral Cavernous Malformation 2 Like) Deletion Aggravates Cerebral Cavernous Malformation through Map3k3-KLF Signaling Pathway. Stroke 2021, 52, 1428–1436. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.P.; Wang, R.; Yang, X.; Wang, X.; Wang, L.; Ting, K.K.; Foley, M.; Cogger, V.; Yang, Z.; Liu, F.; et al. Ponatinib (AP24534) Inhibits MEKK3-KLF Signaling and Prevents Formation and Progression of Cerebral Cavernous Malformations. Sci. Adv. 2018, 4, eaau0731. [Google Scholar] [CrossRef]
- Hamburg, M.N.; Leeper, J.N. Therapeutic Potential of Modulating MicroRNA in Peripheral Artery Disease. Curr. Vasc. Pharmacol. 2015, 13, 316–323. [Google Scholar] [CrossRef]
- Sun, S.; Zheng, B.; Han, M.; Fang, X.; Li, H.; Miao, S.; Su, M.; Han, Y.; Shi, H.; Wen, J. MiR-146a and Krüppel-like Factor 4 Form a Feedback Loop to Participate in Vascular Smooth Muscle Cell Proliferation. EMBO Rep. 2011, 12, 56–62. [Google Scholar] [CrossRef]
- Wang, M.; Zhang, W.; Zhang, L.; Wang, L.; Li, J.; Shu, C.; Li, X. Roles of MicroRNAs in Peripheral Artery In-Stent Restenosis after Endovascular Treatment. BioMed Res. Int. 2021, 2021, 9935671. [Google Scholar] [CrossRef]
- McCoy, M.G.; Jamaiyar, A.; Sausen, G.; Cheng, H.S.; Pérez-Cremades, D.; Zhuang, R.; Chen, J.; Goodney, P.P.; Creager, M.A.; Sabatine, M.S.; et al. MicroRNA-375 Repression of Kruppel-like Factor 5 Improves Angiogenesis in Diabetic Critical Limb Ischemia. Angiogenesis 2022. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Wang, T. Kruppel-like Factor 4 Promotes Autophagy in Human Monocytes Leukemia Cells under High Glucose Conditions by Inhibiting AKT/MTOR Signaling Pathway. Res. Sq. 2022. [Google Scholar] [CrossRef]
- Yang, X.; Xiang, Y.; Wang, F.; Cai, G.; Li, Y.; Zhong, L.; Pu, L.; Yang, Y.; Song, E. Expressions and Relationship of Krüppel-like Factor 15 and Endothelial Nitric Oxide Synthase in Experimental Deep Venous Thrombosis. Ann. Transl. Med. 2020, 8, 1090. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Zhao, X.; Xie, S.; Zhou, R. Transcriptome Analysis of Klf15 mediated Inhibitory Functions in a Mouse Deep Venous Thrombosis Model. Int. J. Mol. Med. 2020, 45, 1735–1752. [Google Scholar] [CrossRef]
- Li, X.; Sim, M.M.S.; Wood, J.P. Recent Insights into the Regulation of Coagulation and Thrombosis. Arter. Thromb. Vasc. Biol. 2020, 40, E119–E125. [Google Scholar] [CrossRef]
- Wenying, L.; Lu, H.; Sun, J.; Zhao, G.; Wang, H.; Guo, Y.; Eitzman, D.; Chen, E.; Fan, Y.; Zhang, J. KLF11 Protects against Venous Thrombosis via Suppressing Tissue Factor Expression. Thromb. Haemost. 2021, 122, 777–788. [Google Scholar] [CrossRef]
- McDermott, D.A.; Fong, J.C.; Basson, C.T. Holt-Oram Syndrome. 1993. Available online: https://www.ncbi.nlm.nih.gov/books/NBK1111/ (accessed on 8 December 2022).
- Darwich, R.; Li, W.; Yamak, A.; Komati, H.; Andelfinger, G.; Sun, K.; Nemer, M. KLF13 Is a Genetic Modifier of the Holt-Oram Syndrome Gene TBX5. Hum. Mol. Genet. 2017, 26, 942–954. [Google Scholar] [CrossRef]
- Li, W.; Li, B.; Li, T.; Zhang, E.; Wang, Q.; Chen, S.; Sun, K. Identification and Analysis of KLF13 Variants in Patients with Congenital Heart Disease. BMC Med. Genet. 2020, 21, 78. [Google Scholar] [CrossRef]
- Nemer, G.; Fadlalah, F.; Usta, J.; Nemer, M.; Dbaibo, G.; Obeid, M.; Bitar, F. A Novel Mutation in TheGATA4 Gene in Patients with Tetralogy of Fallot. Hum. Mutat. 2006, 27, 293–294. [Google Scholar] [CrossRef]
- Wang, S.-S.; Wang, T.-M.; Qiao, X.-H.; Huang, R.-T.; Xue, S.; Dong, B.-B.; Xu, Y.-J.; Liu, X.-Y.; Yang, Y.-Q. KLF13 Loss-of-Function Variation Contributes to Familial Congenital Heart Defects. Eur. Rev. Med. Pharmacol. Sci. 2020, 24, 11273–11285. [Google Scholar] [CrossRef]
- Abhinav, P.; Zhang, G.-F.; Zhao, C.-M.; Xu, Y.-J.; Wang, J.; Yang, Y.-Q. A Novel KLF13 Mutation Underlying Congenital Patent Ductus Arteriosus and Ventricular Septal Defect, as well as Bicuspid Aortic Valve. Exp. Ther. Med. 2022, 23, 311. [Google Scholar] [CrossRef]
- Sponseller, P.D.; Hobbs, W.; Riley, L.H.; Pyeritz, R.E. The Thoracolumbar Spine in Marfan Syndrome. J. Bone Jt. Surg. 1995, 77, 867–876. [Google Scholar] [CrossRef] [PubMed]
- Brown, O.R.; DeMots, H.; Kloster, F.E.; Roberts, A.; Menashe, V.D.; Beals, R.K. Aortic Root Dilatation and Mitral Valve Prolapse in Marfan’s Syndrome: An ECHOCARDIOgraphic Study. Circulation 1975, 52, 651–657. [Google Scholar] [CrossRef] [Green Version]
- Pedroza, A.J.; Tashima, Y.; Shad, R.; Cheng, P.; Wirka, R.; Churovich, S.; Nakamura, K.; Yokoyama, N.; Cui, J.Z.; Iosef, C.; et al. Single-Cell Transcriptomic Profiling of Vascular Smooth Muscle Cell Phenotype Modulation in Marfan Syndrome Aortic Aneurysm. Arter. Thromb. Vasc. Biol. 2020, 40, 2195–2211. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.N.; Xie, B.D.; Sun, L.; Chen, W.; Jiang, S.L.; Liu, W.; Bian, F.; Tian, H.; Li, R.K. Phenotypic Switching of Vascular Smooth Muscle Cells in the “normal Region” of Aorta from Atherosclerosis Patients Is Regulated by MiR-145. J. Cell. Mol. Med. 2016, 20, 1049–1061. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Sinha, S.; McDonald, O.G.; Shang, Y.; Hoofnagle, M.H.; Owens, G.K. Kruppel-like Factor 4 Abrogates Myocardin-Induced Activation of Smooth Muscle Gene Expression. J. Biol. Chem. 2005, 280, 9719–9727. [Google Scholar] [CrossRef]
- Zheng, H.; Pritchard, D.M.; Yang, X.; Bennett, E.; Liu, G.; Liu, C.; Ai, W. KLF4 Gene Expression Is Inhibited by the Notch Signaling Pathway That Controls Goblet Cell Differentiation in Mouse Gastrointestinal Tract. AJP Gastrointest. Liver Physiol. 2009, 296, G490–G498. [Google Scholar] [CrossRef]
- Chin, D.D.; Poon, C.; Wang, J.; Joo, J.; Ong, V.; Jiang, Z.; Cheng, K.; Plotkin, A.; Magee, G.A.; Chung, E.J. MiR-145 Micelles Mitigate Atherosclerosis by Modulating Vascular Smooth Muscle Cell Phenotype. Biomaterials 2021, 273, 120810. [Google Scholar] [CrossRef]
- Petsophonsakul, P.; Furmanik, M.; Forsythe, R.; Dweck, M.; Schurink, G.W.; Natour, E.; Reutelingsperger, C.; Jacobs, M.; Mees, B.; Schurgers, L. Role of Vascular Smooth Muscle Cell Phenotypic Switching and Calcification in Aortic Aneurysm Formation. Arter. Thromb. Vasc. Biol. 2019, 39, 1351–1368. [Google Scholar] [CrossRef]
- Wang, T.-M.; Chen, K.-C.; Hsu, P.-Y.; Lin, H.-F.; Wang, Y.-S.; Chen, C.-Y.; Liao, Y.-C.; Juo, S.-H.H. MicroRNA Let-7g Suppresses PDGF-Induced Conversion of Vascular Smooth Muscle Cell into the Synthetic Phenotype. J. Cell. Mol. Med. 2017, 21, 3592–3601. [Google Scholar] [CrossRef]
- Shyu, K.G.; Cheng, W.P.; Wang, B.W. Angiotensin II Downregulates MicroRNA-145 to Regulate Kruppel-like Factor 4 and Myocardin Expression in Human Coronary Arterial Smooth Muscle Cells under High Glucose Conditions. Mol. Med. 2015, 21, 616–628. [Google Scholar] [CrossRef] [PubMed]
- Zheng, B.; Han, M.; Wen, J.-K. Role of Krüppel-like Factor 4 in Phenotypic Switching and Proliferation of Vascular Smooth Muscle Cells. IUBMB Life 2010, 62, 132–139. [Google Scholar] [CrossRef] [PubMed]
- Cordes, K.R.; Sheehy, N.T.; White, M.P.; Berry, E.C.; Morton, S.U.; Muth, A.N.; Lee, T.H.; Miano, J.M.; Ivey, K.N.; Srivastava, D. MiR-145 and MiR-143 Regulate Smooth Muscle Cell Fate and Plasticity. Nature 2009, 460, 705–710. [Google Scholar] [CrossRef] [Green Version]
- Yin, J.; Bai, Z.; Song, J.; Yang, Y.; Wang, J.; Han, W.; Zhang, J.; Meng, H.; Ma, X.; Yang, Y.; et al. Differential Expression of Serum MiR-126, MiR-141 and MiR-21 as Novel Biomarkers for Early Detection of Liver Metastasis in Colorectal Cancer. Chin. J. Cancer Res. 2014, 26, 95–103. [Google Scholar] [CrossRef] [PubMed]
- Boon, R.A.; Dimmeler, S. MicroRNA-126 in Atherosclerosis. Arter. Thromb. Vasc. Biol. 2014, 34, e15–e16. [Google Scholar] [CrossRef] [PubMed]
- Miano, J.M. Role of Serum Response Factor in the Pathogenesis of Disease. Lab. Investig. 2010, 90, 1274–1284. [Google Scholar] [CrossRef]
- Wang, D.Z.; Chang, P.S.; Wang, Z.; Sutherland, L.; Richardson, J.A.; Small, E.; Krieg, P.A.; Olson, E.N. Activation of Cardiac Gene Expression by Myocardin, a Transcriptional Cofactor for Serum Response Factor. Cell 2001, 105, 851–862. [Google Scholar] [CrossRef]
- Navickas, R.; Gal, D.; Laucevičius, A.; Taparauskaitė, A.; Zdanytė, M.; Holvoet, P. Identifying Circulating MicroRNAs as Biomarkers of Cardiovascular Disease: A Systematic Review. Cardiovasc. Res. 2016, 111, 322–337. [Google Scholar] [CrossRef]
- Torella, D.; Iaconetti, C.; Catalucci, D.; Ellison, G.M.; Leone, A.; Waring, C.D.; Bochicchio, A.; Vicinanza, C.; Aquila, I.; Curcio, A.; et al. MicroRNA-133 Controls Vascular Smooth Muscle Cell Phenotypic Switch in vitro and Vascular Remodeling in vivo. Circ. Res. 2011, 109, 880–893. [Google Scholar] [CrossRef]
- Horie, T.; Ono, K.; Nishi, H.; Iwanaga, Y.; Nagao, K.; Kinoshita, M.; Kuwabara, Y.; Takanabe, R.; Hasegawa, K.; Kita, T.; et al. MicroRNA-133 Regulates the Expression of GLUT4 by Targeting KLF15 and Is Involved in Metabolic Control in Cardiac Myocytes. Biochem. Biophys. Res. Commun. 2009, 389, 315–320. [Google Scholar] [CrossRef]
- Mitchelson, K.R. Roles of the Canonical MyomiRs MiR-1, -133 and -206 in Cell Development and Disease. World J. Biol. Chem. 2015, 6, 162. [Google Scholar] [CrossRef] [PubMed]
- Fang, Y.; Davies, P.F. Site-Specific MicroRNA-92a Regulation of Krüppel-Like Factors 4 and 2 in Atherosusceptible Endothelium. Arterioscler. Thromb. Vasc. Biol. 2012, 32, 979–987. [Google Scholar] [CrossRef] [PubMed]
- Loyer, X.; Potteaux, S.; Vion, A.-C.; Guérin, C.L.; Boulkroun, S.; Rautou, P.-E.; Ramkhelawon, B.; Esposito, B.; Dalloz, M.; Paul, J.-L.; et al. Inhibition of MicroRNA-92a Prevents Endothelial Dysfunction and Atherosclerosis in Mice. Circ. Res. 2014, 114, 434–443. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dai, Y.; Yan, T.; Gao, Y. Silence of MiR-32-5p Promotes Endothelial Cell Viability by Targeting KLF2 and Serves as a Diagnostic Biomarker of Acute Myocardial Infarction. Diagn. Pathol. 2020, 15, 19. [Google Scholar] [CrossRef] [PubMed]
- Gao, C.; Qian, H.; Shi, Q.; Zhang, H. MicroRNA-363-3p Serves as a Diagnostic Biomarker of Acute Myocardial Infarction and Regulates Vascular Endothelial Injury by Targeting KLF2. Cardiovasc. Diagn. Ther. 2020, 10, 421–430. [Google Scholar] [CrossRef]
- Bayoumi, A.S.; Park, K.; Wang, Y.; Teoh, J.; Aonuma, T.; Tang, Y.; Su, H.; Weintraub, N.L.; Kim, I. A Carvedilol-Responsive MicroRNA, MiR-125b-5p Protects the Heart from Acute Myocardial Infarction by Repressing pro-Apoptotic Bak1 and Klf13 in Cardiomyocytes. J. Mol. Cell. Cardiol. 2018, 114, 72–82. [Google Scholar] [CrossRef]
- Uray, K.; Major, E.; Lontay, B. MicroRNA Regulatory Pathways in the Control of the Actin–Myosin Cytoskeleton. Cells 2020, 9, 1649. [Google Scholar] [CrossRef]
- Wang, K.; Liu, F.; Liu, C.; An, T.; Zhang, J.; Zhou, L.; Wang, M.; Dong, Y.; Li, N.; Gao, J.; et al. The Long Noncoding RNA NRF Regulates Programmed Necrosis and Myocardial Injury during Ischemia and Reperfusion by Targeting MiR-873. Cell Death Differ. 2016, 23, 1394–1405. [Google Scholar] [CrossRef]
- Long, X.; Miano, J.M. Transforming Growth Factor-Β1 (TGF-Β1) Utilizes Distinct Pathways for the Transcriptional Activation of MicroRNA 143/145 in Human Coronary Artery Smooth Muscle Cells. J. Biol. Chem. 2011, 286, 30119–30129. [Google Scholar] [CrossRef]
- Xie, C.; Huang, H.; Sun, X.; Guo, Y.; Hamblin, M.; Ritchie, R.P.; Garcia-Barrio, M.T.; Zhang, J.; Chen, Y.E. MicroRNA-1 Regulates Smooth Muscle Cell Differentiation by Repressing Kruppel-Like Factor 4. Stem Cells Dev. 2011, 20, 205–210. [Google Scholar] [CrossRef]
- Zhao, T.; Qiu, Z.; Gao, Y. MiR-137-3p Exacerbates the Ischemia-Reperfusion Injured Cardiomyocyte Apoptosis by Targeting KLF15. Naunyn-Schmiedeberg’s Arch. Pharmacol. 2020, 393, 1013–1024. [Google Scholar] [CrossRef] [PubMed]
- Nicoli, S.; Standley, C.; Walker, P.; Hurlstone, A.; Fogarty, K.E.; Lawson, N.D. MicroRNA-Mediated Integration of Haemodynamics and Vegf Signalling during Angiogenesis. Nature 2010, 464, 1196–1200. [Google Scholar] [CrossRef]
- Zheng, B.; Zheng, C.; Zhang, Y.; Yin, W.; Li, Y.; Liu, C.; Zhang, X.; Nie, C.; Zhang, H.; Jiang, W.; et al. Regulatory Crosstalk between KLF5, MiR-29a and Fbw7/CDC4 Cooperatively Promotes Atherosclerotic Development. Biochim. Biophys. Acta (BBA)-Mol. Basis Dis. 2018, 1864, 374–386. [Google Scholar] [CrossRef]
- Nan, S.; Wang, Y.; Xu, C.; Wang, H. Interfering MicroRNA-410 Attenuates Atherosclerosis via the HDAC1/KLF5/IKBα/NF-ΚB Axis. Mol. Ther.-Nucleic Acids 2021, 24, 646–657. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Gao, S.; Dai, L.; Wang, Z.; Wu, H. Identification of Key MicroRNAs in the Carotid Arteries of ApoE−/− Mice Exposed to Disturbed Flow. Hereditas 2019, 156, 35. [Google Scholar] [CrossRef] [PubMed]
- Dong, J.; Zhang, Z.; Huang, H.; Mo, P.; Cheng, C.; Liu, J.; Huang, W.; Tian, C.; Zhang, C.; Li, J. MiR-10a Rejuvenates Aged Human Mesenchymal Stem Cells and Improves Heart Function after Myocardial Infarction through KLF4. Stem Cell Res. Ther. 2018, 9, 151. [Google Scholar] [CrossRef] [PubMed]
- Tian, Z.; Zhang, Y.; Lyu, X. Promoting Roles of KLF5 in Myocardial Infarction in Mice Involving MicroRNA-27a Suppression and the Following GFPT2/TGF-β/Smad2/3 Axis Activation. Cell Cycle 2021, 20, 874–893. [Google Scholar] [CrossRef]
- Zhang, Y.; Fan, X.; Yang, H. Long Noncoding RNA FTX Ameliorates Hydrogen Peroxide-Induced Cardiomyocyte Injury by Regulating the MiR-150/KLF13 Axis. Open Life Sci. 2020, 15, 1000–1012. [Google Scholar] [CrossRef]
- Liu, H.; Li, G.; Zhao, W.; Hu, Y.; Zhao BCDE, W.; Hu, Y. Inhibition of MiR-92a May Protect Endothelial Cells after Acute Myocardial Infarction in Rats: Role of KLF2/4. Med. Sci. Monit. 2016, 22, 2451–2462. [Google Scholar] [CrossRef]
- Nagata, K.; Hama, I.; Kiryu-Seo, S.; Kiyama, H. MicroRNA-124 Is down Regulated in Nerve-Injured Motor Neurons and It Potentially Targets MRNAs for KLF6 and STAT3. Neuroscience 2014, 256, 426–432. [Google Scholar] [CrossRef]
- Tang, Y.; Yu, S.; Liu, Y.; Zhang, J.; Han, L.; Xu, Z. MicroRNA-124 Controls Human Vascular Smooth Muscle Cell Phenotypic Switch via Sp1. Am. J. Physiol.-Heart Circ. Physiol. 2017, 313, H641–H649. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Santoyo-Suarez, M.G.; Mares-Montemayor, J.D.; Padilla-Rivas, G.R.; Delgado-Gallegos, J.L.; Quiroz-Reyes, A.G.; Roacho-Perez, J.A.; Benitez-Chao, D.F.; Garza-Ocañas, L.; Arevalo-Martinez, G.; Garza-Treviño, E.N.; et al. The Involvement of Krüppel-like Factors in Cardiovascular Diseases. Life 2023, 13, 420. https://doi.org/10.3390/life13020420
Santoyo-Suarez MG, Mares-Montemayor JD, Padilla-Rivas GR, Delgado-Gallegos JL, Quiroz-Reyes AG, Roacho-Perez JA, Benitez-Chao DF, Garza-Ocañas L, Arevalo-Martinez G, Garza-Treviño EN, et al. The Involvement of Krüppel-like Factors in Cardiovascular Diseases. Life. 2023; 13(2):420. https://doi.org/10.3390/life13020420
Chicago/Turabian StyleSantoyo-Suarez, Michelle G., Jimena D. Mares-Montemayor, Gerardo R. Padilla-Rivas, Juan Luis Delgado-Gallegos, Adriana G. Quiroz-Reyes, Jorge A. Roacho-Perez, Diego F. Benitez-Chao, Lourdes Garza-Ocañas, Gilberto Arevalo-Martinez, Elsa N. Garza-Treviño, and et al. 2023. "The Involvement of Krüppel-like Factors in Cardiovascular Diseases" Life 13, no. 2: 420. https://doi.org/10.3390/life13020420