Growth Rates, Carcass Traits, Meat Yield, and Fatty Acid Composition in Growing Lambs under Different Feeding Regimes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animal Welfare and Ethics Clearance
2.2. Animals and Management Practices
2.3. Feed Analyses
2.4. Growth Rate and Feed Efficiency
2.5. Blood Sample Processing and Analysis
2.6. Carcass Characteristics and Meat Quality
2.7. Fatty Acid Analysis
2.8. Statistical Analyses
3. Results
3.1. Dry Matter Intake (DMI), Growth Rate, and Feed Efficiency
3.2. Serum Metabolic Profile
3.3. Carcass Traits and Meat Characteristics
3.4. Fatty Acid Classes and Indices
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- De Brito, G.F.; Ponnampalam, E.N.; Hopkins, D.L. The effect of extensive feeding systems on growth rate, carcass traits, and meat quality of finishing lambs. Compr. Rev. Food Sci. Food Saf. 2017, 16, 23–38. [Google Scholar] [CrossRef]
- Gómez-Cortés, P.; Galisteo, O.O.; Ramirez, C.A.; Blanco, F.P.; de la Fuente, M.A.; Sánchez, N.N.; Marín, A.L.M. Intramuscular fatty acid profile of feedlot lambs fed concentrates with alternative ingredients. Anim. Prod. Sci. 2019, 59, 914–920. [Google Scholar] [CrossRef]
- Ferrinho, A.M.; Peripolli, E.; Banchero, G.; Pereira, A.S.C.; Brito, G.; La Manna, A.; Baldi, F. Effect of growth path on carcass and meat-quality traits of Hereford steers finished on pasture or in feedlot. Anim. Prod. Sci. 2020, 60, 323. [Google Scholar] [CrossRef]
- Cabiddu, A.; Peratoner, G.; Valenti, B.; Monteils, V.; Martin, B.; Coppa, M. A quantitative review of on-farm feeding practices to enhance the quality of grassland-based ruminant dairy and meat products. Animal 2022, 16, 100375. [Google Scholar] [CrossRef]
- Sinclair, L.A. Nutritional manipulation of the fatty acid composition of sheep meat: A review. J. Agric. Sci. 2007, 145, 419–434. [Google Scholar] [CrossRef]
- Bodas, R.; Posado, R.; Bartolome, D.J.; de Paz, M.J.; Herraiz, P.; Rebollo, E.; Gomez, L.J.; Garcia, J.J. Ruminal pH and temperature, papilla characteristics, and animal performance of fattening calves fed concentrate or maize silage-based diets. Chill. J. Agric. 2014, 74, 280–285. [Google Scholar] [CrossRef]
- Alhidary, I.B.; Abdelrahman, M.M.; Alyemni, A.H.; Khan, R.U.; Al-Saiady, M.Y.; Amran, R.A.; Alshamiry, F.A. Effect of alfalfa hay on growth performance, carcass characteristics, and meat quality of growing lambs with ad libitum access to total mixed rations. Rev. Bras. Zootec. 2016, 45, 302–308. [Google Scholar] [CrossRef]
- Al-Rowaily, S.L.; El-Bana, M.I.; Al-Bakre, D.A.; Assaeed, A.M.; Hegazy, A.K.; Ali, M.B. Effects of open grazing and livestock exclusion on floristic composition and diversity in natural ecosystem of Western Saudi Arabia. Saudi J. Biol. Sci. 2015, 22, 430–437. [Google Scholar] [CrossRef]
- Ramirez, C.A.; Blanco, F.P.; Horcada, A.; Sánchez, N.N.; Domenech, F.R.; Medina, P.G.; Marín, A.L.M. Effects of concentrates rich in by-products on growth performance, carcass characteristics and meat quality traits of light lambs. Anim. Prod. Sci. 2019, 59, 593–599. [Google Scholar] [CrossRef]
- Wang, B.; Wang, Z.; Chen, Y.; Liu, X.; Liu, K.; Zhang, Y.; Luo, H. Carcass Traits, Meat Quality, and Volatile Compounds of Lamb Meat from Different Restricted Grazing Time and Indoor Supplementary Feeding Systems. Foods 2021, 10, 2822. [Google Scholar] [CrossRef]
- Baldassini, W.; Gagaoua, M.; Santiago, B.; Rocha, L.; Torrecilhas, J.; Torres, R.; Curi, R.; Neto, O.M.; Padilha, P.; Santos, F.; et al. Meat Quality and Muscle Tissue Proteome of Crossbred Bulls Finished under Feedlot Using Wet Distiller Grains By-Product. Foods 2022, 11, 3233. [Google Scholar] [CrossRef]
- NRC. Nutrient Requirements of Small Ruminants; National Academy Press: Washington, DC, USA, 2007.
- Van Soest, P.V.; Robertson, J.; Lewis, B. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- AOAC (Association of Analytical Communities). Official Method of Analysis of the Association of Official Analytical Chemists International, 17th ed.; AOAC: Gaithersburg, MD, USA, 2000. [Google Scholar]
- Barros, J.C.; Munekata, P.E.S.; de Carvalho, F.A.L.; Pateiro, M.; Barba, F.J.; Domínguez, R.; Lorenzo, J.M. Use of tiger nut (Cyperus esculentus L.) oil emulsion as animal fat replacement in beef burgers. Foods 2020, 9, 44. [Google Scholar] [CrossRef] [PubMed]
- Culler, R.; Smith, G.; Cross, H. Relationship of myofibril fragmentation index to certain chemical, physical and sensory characteristics of bovine longissimus muscle. J. Food Sci. 1978, 43, 1177–1180. [Google Scholar] [CrossRef]
- Wilhelm, A.E.; Maganhini, M.B.; Hernández-Blazquez, F.J.; Ida, E.I.; Shimokomaki, M. Protease activity and the ultrastructure of broiler chicken PSE (pale, soft, exudative) meat. Food Chem. 2010, 119, 1201–1204. [Google Scholar] [CrossRef]
- Al-Owaimer, A.; Suliman, G.; Sami, A.; Picard, B.; Hocquette, J.-F. Chemical composition and structural characteristics of Arabian camel (Camelus dromedarius) m. longissimus thoracis. Meat Sci. 2014, 96, 1233–1241. [Google Scholar] [CrossRef]
- Tufarelli, V.; Khan, R.U.; Mazzei, D.; Laudadio, V. Performance and carcass measurements of ewe lambs reared in a feedlot and fed wheat (Triticum durum Desf.) middling total mixed rations in the summer season. Trop. Anim. Health Prod. 2012, 44, 779–784. [Google Scholar] [CrossRef]
- van Ackeren, C.; Steingab, H.; Hartung, K.; Funk, R.; Drochner, W. Effect of roughage level in a total mixed ration on feed intake, ruminal fermentation patterns and chewing activity of early-weaned calves with ad libitum access to grass hay. Anim. Feed. Sci. Technol. 2009, 153, 48–59. [Google Scholar] [CrossRef]
- Alvarez-Rodríguez, J.; Monleón, E.; Sanz, A.; Badiola, J.J.; Joy, M. Rumen fermentation and histology in light lambs as affected by forage supply and lactation length. Res. Vet. Sci. 2012, 92, 247–253. [Google Scholar] [CrossRef]
- Papi, N.; Mostafa-Tehrani, A.; Amanlou, H.; Memarian, M. Effects of dietary forage-to-concentrate ratios on performance and carcass characteristics of growing fat-tailed lambs. Anim. Feed. Sci. Technol. 2011, 163, 93–98. [Google Scholar] [CrossRef]
- Andrés, S.; Jaramillo, E.; Mateo, J.; Caro, I.; Carballo, D.E.; López, S.; Giráldez, F.J. Grain grinding size of cereals in complete pelleted diets for growing lambs: Effects on animal performance, carcass and meat quality traits. Meat Sci. 2019, 157, 107874. [Google Scholar] [CrossRef] [PubMed]
- Jacques, J.; Berthiaume, R.; Cinq-Mars, D. Growth performance and carcass characteristics of Dorset lambs fed different concentrates: Forage ratios or fresh grass. Small Rumin. Res. 2011, 95, 113–119. [Google Scholar] [CrossRef]
- Ran, T.; Fang, Y.; Wang, Y.T.; Yang, W.Z.; Niu, Y.D.; Sun, X.Z.; Zhong, R.Z. Effects of grain type and conditioning temperature during pelleting on growth performance, ruminal fermentation, meat quality and blood metabolites of fattening lambs. Animal 2021, 15, 100146. [Google Scholar] [CrossRef]
- Majdoub-Mathlouthi, L.; Saïd, B.; Kraiem, K. Carcass traits and meat fatty acid composition of Barbarine lambs reared on rangelands or indoors on hay and concentrate. Animal 2015, 9, 2065–2071. [Google Scholar] [CrossRef]
- Abdelrahman, M.M.; Alhidary, I.; Alyemni, A.H.; Khan, R.U.; Bello, A.R.S.; Al-Saiady, M.Y.; Amran, R.A. Effect of alfalfa hay on rumen fermentation patterns and serum biochemical profile of growing Naemi lambs with ad libitum access to total mixed rations. Pak. J. Zool. 2017, 49, 1519–1522. [Google Scholar] [CrossRef]
- Varela, A.; Oliete, B.; Moreno, T.; Portela, C.; Monserrrat, L.; Carballo, J.A.; Sánchez, L. Effect of pasture finishing on the meat characteristics and intramuscular fatty acid profile of steers of the Rubia Gallega breed. Meat Sci. 2004, 67, 515–522. [Google Scholar] [CrossRef] [PubMed]
- Vlaeminck, B.; Fievez, V.; Demeyer, D.; Dewhurst, R.J. Effect of forage: Concentrate ratio on fatty acid composition of rumen bacteria isolated from ruminal and duodenal digesta. J. Dairy Sci. 2006, 89, 2668–2678. [Google Scholar] [CrossRef]
- Atti, N.; Mahouachi, M. Effects of feeding system and nitrogen source on lamb growth, meat characteristics and fatty acid composition. Meat Sci. 2009, 81, 344–348. [Google Scholar] [CrossRef]
- Aiello, S.E. The Merck Veterinary Manual, 8th ed.; Merck & Co., Inc.: Whitehouse Station, NJ, USA, 1998. [Google Scholar]
- Allen, M.S.; Mertens, D.R. Evaluating Constraints on Fiber Digestion by Rumen Microbes. J. Nutr. 1988, 118, 261–270. [Google Scholar] [CrossRef]
- Beauchemin, K.A. Invited review: Current perspectives on eating and rumination activity in dairy cows. J. Dairy Sci. 2018, 101, 4762–4784. [Google Scholar] [CrossRef] [Green Version]
- Ishaq, S.L.; Lachman, M.M.; Wenner, B.A.; Baeza, A.; Butler, M.; Gates, E.; Olivo, S.; Geddes, J.B.; Hatfield, P.; Yeoman, C.J. Pelleted-hay alfalfa feed increases sheep wether weight gain and rumen bacterial richness over loose-hay alfalfa feed. PLoS ONE 2019, 14, e0215797. [Google Scholar] [CrossRef] [PubMed]
- Fraser, M.D.; Davies, D.A.; Vale, J.E.; Nute, G.R.; Hallett, K.G.; Richardson, R.I.; Wright, I.A. Performance and meat quality of native and continental cross steers grazing improved upland pasture or semi-natural rough grazing. Livest. Sci. 2009, 123, 70–82. [Google Scholar] [CrossRef]
- Watkins, P.J.; Frank, D.; Singh, T.K.; Young, O.A.; Warner, R.D. Sheepmeat flavor and the effect of different feeding systems: A review. J. Agric. Food Chem. 2013, 61, 3561–3579. [Google Scholar] [CrossRef] [PubMed]
- Díaz, M.T.; Álvarez, I.; De la Fuente, J.; Sañudo, C.; Campo, M.M.; Oliver, M.A.; i Furnols, M.F.; Montossi, F.; San Julián, R.; Nute, G.R.; et al. Fatty acid composition of meat from typical lamb production systems of Spain, United Kingdom, Germany and Uruguay. Meat Sci. 2005, 71, 256–263. [Google Scholar] [CrossRef]
- Bas, A.; Morand-Fehr, A. Effects of nutritional factors on fatty acid composition of lamb fat deposits. Livest. Prod. Sci. 2000, 64, 61–79. [Google Scholar] [CrossRef]
- Aurousseau, B.; Bauchart, D.; Calichon, E.; Micol, D.; Priolo, A. Effect of grass or concentrate feeding systems and rate of growth on triglyceride and phospholipid and their fatty acids in the M. Longissimus thoracis of lambs. Meat Sci. 2004, 66, 531–541. [Google Scholar] [CrossRef]
- Costa, R.G.; Santos, N.M.D.; Queiroga, R.D.C.R.D.E.; Sousa, W.H.D.; Madruga, M.S.; Cartaxo, F.Q. Physicochemical characteristics and fatty acid profile of meat from lambs with different genotypes and diets. Rev. Bras. Zootec. 2015, 44, 248–254. [Google Scholar] [CrossRef]
- Calabrò, S.; Cutrignelli, M.I.; Gonzalez, O.J.; Chiofalo, B.; Grossi, M.; Tudisco, R.; Panetta, C.; Infascelli, F. Meat quality of buffalo young bulls fed faba bean as protein source. Meat Sci. 2014, 96, 591–596. [Google Scholar] [CrossRef] [Green Version]
- Simopoulos, A.P. The Healthiest Diet for You: Scientific Aspects; MDPI: Basel, Switzerland, 2022. [Google Scholar]
Item, Unit | Dietary Treatments 1 | ||
---|---|---|---|
GB-AH | CP-AH | CPD | |
Ingredients, % of dietary dry matter | |||
Barley grain | 60.00 | 0.00 | 0.00 |
Alfalfa hay, 5 cm | 40.00 | 40.00 | 0.00 |
Yellow corn | 0.00 | 27.00 | 35.14 |
Grand Alfalfa hay | 0.00 | 0.00 | 22.13 |
Wheat bran | 0.00 | 15.00 | 18.00 |
Soybean meal | 0.00 | 13.25 | 9.80 |
Wheat straw | 0.00 | 0.00 | 7.00 |
Molasses | 0.00 | 0.90 | 1.60 |
Limestone | 0.00 | 1.25 | 3.00 |
Dicalcium phosphate | 0.00 | 1.20 | 1.40 |
Acid buffer | 0.00 | 0.66 | 0.80 |
Salt | 0.00 | 0.50 | 0.83 |
Vit min premix 2 | 0.00 | 0.24 | 0.30 |
Nutrient composition, dry matter basis | |||
Dry matter, (%) | 90.48 | 89.11 | 89.91 |
Ash, % | 6.38 | 7.17 | 7.23 |
Crude protein, % | 14.03 | 14.66 | 14.34 |
Ether extract, % | 1.34 | 1.89 | 1.64 |
Neutral detergent fiber, % | 36.01 | 34.67 | 30.34 |
Acid detergent fiber, % | 17.26 | 15.81 | 11.78 |
Metabolizable energy, Mcal/kg | 2.89 | 2.93 | 2.85 |
Lipid profile, % | |||
Saturated fatty acids | 28.63 | 29.40 | 32.06 |
Monounsaturated fatty acids | 12.94 | 34.11 | 23.53 |
Polyunsaturated fatty acids | 58.42 | 36.50 | 44.41 |
Item, Unit | Dietary Treatments 1 | SE. | p Value | ||
---|---|---|---|---|---|
GB-AH | CP-AH | CPD | |||
Initial BW, kg | 23.8 | 23.6 | 23.6 | 0.22 | 0.94 |
Final BW, kg | 40.2 b | 44.6 a | 43.2 a | 2.78 | 0.03 |
BWG, kg | 16.3 b | 20.9 a | 19.6 a | 2.43 | 0.02 |
Relative growth, % | 51.25 b | 61.58 a | 58.68 a | 5.67 | 0.02 |
ADG, g/d | 195 b | 248 a | 233 a | 25.56 | 0.01 |
DMI, kg/d | 1.44 ab | 1.53 a | 1.34 b | 0.12 | 0.02 |
FCR, kg DM: kg BW | 7.44 a | 6.21 b | 5.73 b | 0.63 | 0.03 |
Analyte, Unit 2 | Dietary Treatments 1 | SE. | p Value | ||
---|---|---|---|---|---|
GB-AH | CP-AH | CPD | |||
Glucose, mM | 4.15 b | 4.45 a | 4.18 b | 0.16 | 0.01 |
NEFA, mM | 0.27 | 0.26 | 0.25 | 0.03 | 0.67 |
Total protein, g/L | 56.13 | 56.79 | 57.25 | 3.35 | 0.25 |
Albumin, g/L | 31.79 | 33.90 | 33.25 | 2.11 | 0.12 |
Urea, mM | 2.30 b | 2.52 a | 2.37 b | 0.12 | 0.04 |
Creatinine, µM | 99.2 | 94.9 | 95.93 | 6.67 | 0.18 |
Total cholesterol, mM | 2.42 | 2.39 | 2.34 | 0.09 | 0.21 |
HDL, mM | 1.10 a | 1.01 b | 1.13 a | 0.04 | 0.03 |
LDL, mM | 0.86 ab | 0.93 a | 0.77 b | 0.13 | 0.02 |
Triglyceride, mM | 1.01 | 0.99 | 0.97 | 0.08 | 0.34 |
AST, U/L | 87.8 | 93.7 | 87.9 | 7.04 | 0.09 |
ALT, U/L | 15.2 | 16.4 | 16.5 | 1.43 | 0.46 |
CK, U/L | 225 | 241 | 238 | 18.11 | 0.23 |
β-Hydroxybutyrate, mM | 9.09 | 9.13 | 8.93 | 0.67 | 0.56 |
Item, Unit 2 | Dietary Treatments 1 | SE. | p Value | ||
---|---|---|---|---|---|
GB-AH | CP-AH | CPD | |||
Carcass profile | |||||
Slaughter BW, kg | 40.21 b | 44.62 a | 43.33 a | 1.12 | 0.02 |
Empty BW, kg | 34.37 b | 39.50 a | 37.79 a | 1.87 | 0.02 |
Hot carcass, kg | 18.91 b | 21.43 a | 20.58 a | 1.34 | 0.04 |
Cold carcass, kg | 18.38 b | 20.83 a | 19.97 ab | 1.09 | 0.05 |
Dressing, % | 46.33 | 48.00 | 47.50 | 2.23 | 0.19 |
Chilling losses, % | 2.57 | 2.81 | 2.94 | 0.46 | 0.34 |
CCI, kg/cm | 0.29 | 0.27 | 0.25 | 0.07 | 0.25 |
Organs weight, % | |||||
Liver | 1.74 b | 1.86 a | 1.71 b | 0.06 | 0.03 |
Kidneys | 0.27 | 0.29 | 0.31 | 0.05 | 0.11 |
Heart | 0.34 | 0.35 | 0.32 | 0.03 | 0.23 |
Empty stomach | 2.95 b | 2.87 b | 3.55 a | 0.15 | 0.04 |
Empty intestine | 2.72 b | 2.92 ab | 3.11 a | 0.21 | 0.03 |
Tail | 5.60 a | 5.43 a | 4.92 b | 0.27 | 0.05 |
Wholesale cuts, % | |||||
Shoulder | 28.62 b | 32.02 a | 31.41 a | 1.56 | 0.04 |
Rack | 8.02 a | 7.37 b | 7.41 b | 0.34 | 0.01 |
Loin | 13.56 a | 13.19 b | 13.04 b | 0.28 | 0.03 |
Leg | 33.31 | 33.52 | 33.53 | 0.31 | 0.43 |
FSH + Breast | 16.49 a | 13.89 b | 14.61 ab | 1.78 | 0.02 |
Carcass linear measurement, cm | |||||
Internal carcass length | 66.88 b | 74.13 a | 73.27 a | 3.56 | 0.03 |
External carcass length | 67.00 b | 71.31 a | 70.77 a | 2.25 | 0.03 |
Carcass width | 31.75 | 33.31 | 32.83 | 2.12 | 0.09 |
Rump width | 41.06 | 40.13 | 40.15 | 1.43 | 0.37 |
Leg length | 42.00 | 43.63 | 42.94 | 1.23 | 0.78 |
Item, Unit 2 | Dietary Treatments 1 | SE. | p Value | ||
---|---|---|---|---|---|
GB-AH | CP-AH | CPD | |||
Meat quality | |||||
Back fat, mm | 3.35 b | 3.78 ab | 4.05 a | 0.42 | 0.04 |
Body wall fat, mm | 6.05 | 5.32 | 6.38 | 0.31 | 0.18 |
Area 12th rib, cm2 | 15.56 b | 18.63 a | 17.77 a | 1.12 | 0.03 |
pH value | 5.75 | 5.73 | 5.81 | 0.18 | 0.56 |
Color components | |||||
L * | 37.23 | 37.54 | 39.74 | 3.34 | 0.34 |
a * | 14.76 | 14.41 | 15.03 | 1.07 | 0.23 |
b * | 10.98 | 10.92 | 9.91 | 1.23 | 0.78 |
Visceral depot fat,% | |||||
Mesentery fat | 0.85 a | 0.76 b | 0.82 a | 0.04 | 0.03 |
Omental fat | 1.17 a | 0.67 b | 0.76 b | 0.23 | 0.02 |
Pericardial fat | 0.18 | 0.19 | 0.18 | 0.02 | 0.54 |
KKCF | 0.70 a | 0.47 b | 0.40 b | 0.13 | 0.04 |
Total | 2.89 a | 2.10 b | 2.16 b | 0.21 | 0.03 |
Meat composition, % | |||||
Meat | 25.28 | 22.75 | 24.6 | 3.21 | 0.06 |
Bone | 46.50 | 47.39 | 47.18 | 1.56 | 0.18 |
Fat | 23.85 | 24.52 | 24.04 | 0.78 | 0.21 |
Trimmings | 4.37 | 5.34 | 4.18 | 0.83 | 0.11 |
Texture profile analysis | |||||
WHC | 34.51 | 32.80 | 33.91 | 1.43 | 0.21 |
Cooking Loss, % | 34.61 | 33.80 | 35.76 | 1.67 | 0.09 |
MFI | 50.20 a | 46.05 b | 41.74 c | 3.22 | 0.04 |
Shear force, N | 12.78 | 11.70 | 13.06 | 1.78 | 0.07 |
Hardness, N | 10.14 a | 9.10 b | 10.96 a | 1.03 | 0.04 |
Springiness | 0.69 | 0.70 | 0.68 | 1.06 | 0.46 |
Cohesiveness | 0.55 | 0.57 | 0.53 | 0.06 | 0.78 |
Chewiness | 4.00 | 3.97 | 4.14 | 0.21 | 0.54 |
Item, Unit 2 | Dietary Treatments 1 | SE. | p Value | ||
---|---|---|---|---|---|
GB-AH | CP-AH | CPD | |||
C10:0 | 0.18 b | 0.20 b | 0.35 a | 0.03 | 0.01 |
C12:0 | 0.29 | 0.35 | 0.30 | 0.07 | 0.56 |
C13:0 | ND | 0.18 | 0.17 | ND | ND |
C14:0 | 3.44 a | 2.60 b | 3.30 a | 0.65 | 0.01 |
C15:0 | 1.07 a | 0.79 b | 0.78 b | 0.21 | 0.02 |
C16:0 | 22.86 | 22.11 | 22.99 | 1.43 | 0.23 |
C17:0 | 3.01 a | 2.58 b | 2.39 b | 0.26 | 0.04 |
C18:0 | 18.15 a | 17.96 a | 16.04 b | 1.07 | 0.02 |
C19: | 0.15 b | 0.19 a | 0.18 a | 0.02 | 0.03 |
SFA | 49.15 a | 46.97 b | 46.49 b | 2.11 | 0.04 |
C14:1 ω5 | 0.24 b | 0.34 a | 0.27 b | 0.07 | 0.05 |
C14:1 ω7 | 0.24 b | 0.40 a | 0.38 a | 0.08 | 0.02 |
C16:1 ω5 | 0.36 b | 0.31 b | 0.50 a | 0.11 | 0.02 |
C16:1 ω7 | 2.56 b | 2.26 b | 3.13 a | 0.34 | 0.03 |
C18:1 ω 5 | 1.12 a | 1.05 ab | 1.02 b | 0.09 | 0.05 |
C18:1 ω 7 | 3.60 b | 3.85 ab | 4.02 a | 0.32 | 0.05 |
C18:1 ω 9 | 36.48 ab | 37.13 a | 35.26 b | 1.56 | 0.02 |
C20:1 ω 9 | 0.19 | ND | 0.43 | ND | ND |
C22:1 ω 11 | ND | ND | 0.41 | ND | ND |
MUFA | 44.79 b | 45.35 a | 45.41 a | 0.48 | 0.03 |
C16:3 ω 4 | 1.13 b | 0.82 b | 2.05 a | 0.54 | 0.01 |
C18:2 ω 6 | 3.54 b | 5.32 a | 4.35 ab | 1.34 | 0.02 |
C18:3 ω 3 | 0.41 | 0.48 | 0.50 | 0.12 | 0.07 |
C18:4 ω 3 | 0.56 | 0.51 | 0.51 | 0.08 | 0.12 |
C18:3 ω 6 | ND | 0.15 | 0.15 | ND | ND |
C20:4 ω 6 | 0.43 b | 0.39 b | 0.54 a | 0.06 | 0.03 |
PUFA | 6.06 b | 7.68 ab | 8.10 a | 1.63 | 0.02 |
Lipid nutritional indices | |||||
PUFA/SFA | 0.12 b | 0.16 a | 0.17 a | 0.02 | 0.01 |
n-6 | 3.97 b | 5.87 a | 5.04 a | 0.89 | 0.02 |
n-3 | 0.97 | 0.99 | 1.00 | 0.05 | 0.56 |
n-6/n-3 | 4.09 c | 5.93 a | 5.02 b | 0.86 | 0.01 |
AI | 0.74 a | 0.63 b | 0.71 a | 0.08 | 0.02 |
TI | 1.61 a | 1.48 b | 1.49 b | 0.09 | 0.03 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alshamiry, F.A.; Alharthi, A.S.; Al-Baadani, H.H.; Aljumaah, R.S.; Alhidary, I.A. Growth Rates, Carcass Traits, Meat Yield, and Fatty Acid Composition in Growing Lambs under Different Feeding Regimes. Life 2023, 13, 409. https://doi.org/10.3390/life13020409
Alshamiry FA, Alharthi AS, Al-Baadani HH, Aljumaah RS, Alhidary IA. Growth Rates, Carcass Traits, Meat Yield, and Fatty Acid Composition in Growing Lambs under Different Feeding Regimes. Life. 2023; 13(2):409. https://doi.org/10.3390/life13020409
Chicago/Turabian StyleAlshamiry, Faisal A., Abdulrahman S. Alharthi, Hani H. Al-Baadani, Riyadh S. Aljumaah, and Ibrahim A. Alhidary. 2023. "Growth Rates, Carcass Traits, Meat Yield, and Fatty Acid Composition in Growing Lambs under Different Feeding Regimes" Life 13, no. 2: 409. https://doi.org/10.3390/life13020409
APA StyleAlshamiry, F. A., Alharthi, A. S., Al-Baadani, H. H., Aljumaah, R. S., & Alhidary, I. A. (2023). Growth Rates, Carcass Traits, Meat Yield, and Fatty Acid Composition in Growing Lambs under Different Feeding Regimes. Life, 13(2), 409. https://doi.org/10.3390/life13020409