Exploring the Link between Maternal Hematological Disorders during Pregnancy and Neurological Development in Newborns: Mixed Cohort Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Data Source
2.3. Sample
- Anemia: Pregnant women with a hemoglobin concentration below 10 g per deciliter (g/dL) were considered to have anemia in the third trimester and did not respond to treatment modalities
- Thrombocytopenia: Pregnant women with a platelet count below 150,000 platelets per microliter (µL) were categorized as having thrombocytopenia in the third trimester and did not respond to treatment modalities
- Sickle Cell Disease: Pregnant women diagnosed with hemophilia were also included in the study in the third trimester and did not respond to treatment modalities.
- Hemophilia: Pregnant women diagnosed with hemophilia were also included in the study in the third trimester and did not respond to treatment modalities
2.4. Data Collection
2.5. Data Collected
- Demographic Data: Information on age, ethnicity, marital status, education level, and occupation of the pregnant women.
- Medical History: Data on pre-existing medical conditions such as hypertension, diabetes, and thyroid disorders, as well as obstetric history, including the number of previous pregnancies, mode of delivery, and history of preterm birth or miscarriage.
- Hematological Data: The specific hematological disorder, its severity, and the timing of diagnosis were documented. Laboratory test results for hemoglobin levels, platelet counts, and other relevant blood tests were collected.
- Obstetric and Neonatal Outcomes: Details on gestational age at delivery, birth weight, Apgar scores at 1 and 5 min, neonatal ICU admission, and any other pertinent outcomes.
- Neurological Outcomes: Information on neurological outcomes for the newborns, encompassing developmental delays, cognitive and motor impairments, and other neurological complications. Standardized assessment tools such as the Bayley Scales of Infant and Denver Developmental Screening Test were employed to evaluate these outcomes. The assessment was carried out 3 months after delivery.
2.6. Data Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Thachil, J.; Bates, I. Approach to the Diagnosis and Classification of Blood Cell Disorders. In Dacie and Lewis Practical Haematology; Elsevier: Amsterdam, The Netherlands, 2017; pp. 497–510. [Google Scholar]
- Kang, S.-C.; Lin, C.-C.; Tsai, C.-C.; Lu, Y.-H.; Huang, C.-F.; Chen, Y.-C. Characteristics of Frequent Attenders Compared with Non-Frequent Attenders in Primary Care: Study of Remote Communities in Taiwan. Healthcare 2020, 8, 96. [Google Scholar] [CrossRef] [PubMed]
- Amer, H.Y.; Hassan, R.I.M.; Mustafa, F.E.-Z.A.; EL-Shoukary, R.D.; Rehan, I.F.; Zigo, F.; Lacková, Z.; Gomaa, W.M.S. Modulation of Immunity, Antioxidant Status, Performance, Blood Hematology, and Intestinal Histomorphometry in Response to Dietary Inclusion of Origanum Majorana in Domestic Pigeons’ Diet. Life 2023, 13, 664. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Wang, Z.; Li, Y.; Peng, H.; Liu, J.; Zhang, J.; Xiao, X. The Role of CREBBP/EP300 and Its Therapeutic Implications in Hematological Malignancies. Cancers 2023, 15, 1219. [Google Scholar] [CrossRef] [PubMed]
- Soma-Pillay, P.; Nelson-Piercy, C.; Tolppanen, H.; Mebazaa, A. Physiological Changes in Pregnancy. Cardiovasc. J. Afr. 2016, 27, 89–94. [Google Scholar] [CrossRef]
- Zeng, Z.; Liu, F.; Li, S. Metabolic Adaptations in Pregnancy: A Review. Ann. Nutr. Metab. 2017, 70, 59–65. [Google Scholar] [CrossRef]
- Kraemer, K.; Beesabathuni, K.; Askari, S.; Khondker, R.; Khan, T.U.; Rahman, M.; Gibson, S.; Merritt, R.; Bajoria, M.; Lingala, S.; et al. Knowledge, Attitudes and Practices of Pregnant Women and Healthcare Providers in Bangladesh Regarding Multivitamin Supplements during Pregnancy. Healthcare 2023, 11, 713. [Google Scholar] [CrossRef] [PubMed]
- Moniod, L.; Hovine, A.; Trombert, B.; Rancon, F.; Zufferey, P.; Chauveau, L.; Chauleur, C.; Raia-Barjat, T. Fetal Movement Counting in Prolonged Pregnancies: The COMPTAMAF Prospective Randomized Trial. Healthcare 2022, 10, 2569. [Google Scholar] [CrossRef]
- Gebreweld, A.; Bekele, D.; Tsegaye, A. Hematological Profile of Pregnant Women at St. Paul’s Hospital Millennium Medical College, Addis Ababa, Ethiopia. BMC Hematol. 2018, 18, 15. [Google Scholar] [CrossRef]
- Tebein, E.; Elderdery, A.Y. Genetic Polymorphisms of Xenobiotics-Metabolizing Enzymes Contributing to Leukemia. In Leukemia From Biology to Clinic; IntechOpen: London, UK, 2023. [Google Scholar]
- Townsley, D.M. Hematologic Complications of Pregnancy. Semin. Hematol. 2013, 50, 222–231. [Google Scholar] [CrossRef]
- Erickson, M.A.; Banks, W.A. Blood–Brain Barrier Dysfunction as a Cause and Consequence of Alzheimer’s Disease. J. Cereb. Blood Flow Metab. 2013, 33, 1500–1513. [Google Scholar] [CrossRef]
- Alwan, N.; Hamamy, H. Maternal Iron Status in Pregnancy and Long-Term Health Outcomes in the Offspring. J. Pediatr. Genet. 2015, 4, 111–123. [Google Scholar] [CrossRef] [PubMed]
- Cortés-Albornoz, M.C.; García-Guáqueta, D.P.; Velez-van-Meerbeke, A.; Talero-Gutiérrez, C. Maternal Nutrition and Neurodevelopment: A Scoping Review. Nutrients 2021, 13, 3530. [Google Scholar] [CrossRef] [PubMed]
- Edlow, A.G.; Castro, V.M.; Shook, L.L.; Kaimal, A.J.; Perlis, R.H. Neurodevelopmental Outcomes at 1 Year in Infants of Mothers Who Tested Positive for SARS-CoV-2 During Pregnancy. JAMA Netw. Open 2022, 5, e2215787. [Google Scholar] [CrossRef] [PubMed]
- Patel, R.A.; Hall, D.A.; Eichenseer, S.; Bailey, M. Movement Disorders and Hematologic Diseases. Mov. Disord. Clin. Pract. 2021, 8, 193–207. [Google Scholar] [CrossRef] [PubMed]
- Gattas, B.S.; Ibetoh, C.N.; Stratulat, E.; Liu, F.; Wuni, G.Y.; Bahuva, R.; Shafiq, M.A.; Gordon, D.K. The Impact of Low Hemoglobin Levels on Cognitive Brain Functions. Cureus 2020, 12, e11378. [Google Scholar] [CrossRef] [PubMed]
- Mistry, N.; Mazer, C.D.; Sled, J.G.; Lazarus, A.H.; Cahill, L.S.; Solish, M.; Zhou, Y.-Q.; Romanova, N.; Hare, A.G.M.; Doctor, A.; et al. Red Blood Cell Antibody-Induced Anemia Causes Differential Degrees of Tissue Hypoxia in Kidney and Brain. Am. J. Physiol. Integr. Comp. Physiol. 2018, 314, R611–R622. [Google Scholar] [CrossRef]
- Nalivaeva, N.N.; Turner, A.J.; Zhuravin, I.A. Role of Prenatal Hypoxia in Brain Development, Cognitive Functions, and Neurodegeneration. Front. Neurosci. 2018, 12, 825. [Google Scholar] [CrossRef]
- Aksay, E. Thrombotic Thrombocytopenic Purpura Mimicking Acute Ischemic Stroke. Emerg. Med. J. 2006, 23, e51. [Google Scholar] [CrossRef]
- Farfouti, M.T.; Masri, C.; Ghabally, M.; Roumieh, G. Primary Cerebral Venous Thrombosis in a Patient with Immune Thrombocytopenic Purpura. Case Rep. Neurol. Med. 2022, 2022, 1346269. [Google Scholar] [CrossRef]
- Hussain, T.; Murtaza, G.; Metwally, E.; Kalhoro, D.H.; Kalhoro, M.S.; Rahu, B.A.; Sahito, R.G.A.; Yin, Y.; Yang, H.; Chughtai, M.I.; et al. The Role of Oxidative Stress and Antioxidant Balance in Pregnancy. Mediators Inflamm. 2021, 2021, 9962860. [Google Scholar] [CrossRef]
- Aouache, R.; Biquard, L.; Vaiman, D.; Miralles, F. Oxidative Stress in Preeclampsia and Placental Diseases. Int. J. Mol. Sci. 2018, 19, 1496. [Google Scholar] [CrossRef] [PubMed]
- Pizzino, G.; Irrera, N.; Cucinotta, M.; Pallio, G.; Mannino, F.; Arcoraci, V.; Squadrito, F.; Altavilla, D.; Bitto, A. Oxidative Stress: Harms and Benefits for Human Health. Oxidative Med. Cell. Longev. 2017, 2017, 8416763. [Google Scholar] [CrossRef] [PubMed]
- Auten, R.L.; Davis, J.M. Oxygen Toxicity and Reactive Oxygen Species: The Devil Is in the Details. Pediatr. Res. 2009, 66, 121–127. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Deng, H.; Cui, H.; Fang, J.; Zuo, Z.; Deng, J.; Li, Y.; Wang, X.; Zhao, L. Inflammatory Responses and Inflammation-Associated Diseases in Organs. Oncotarget 2018, 9, 7204–7218. [Google Scholar] [CrossRef]
- Jash, S.; Sharma, S. Pathogenic Infections during Pregnancy and the Consequences for Fetal Brain Development. Pathogens 2022, 11, 193. [Google Scholar] [CrossRef]
- Ochocinski, D.; Dalal, M.; Black, L.V.; Carr, S.; Lew, J.; Sullivan, K.; Kissoon, N. Life-Threatening Infectious Complications in Sickle Cell Disease: A Concise Narrative Review. Front. Pediatr. 2020, 8, 38. [Google Scholar] [CrossRef]
- Mak, T.W.; Saunders, M.E. Immunity to Pathogens. In The Immune Response; Elsevier: Amsterdam, The Netherlands, 2006; pp. 641–694. [Google Scholar]
- Kareva, I. Immune Suppression in Pregnancy and Cancer: Parallels and Insights. Transl. Oncol. 2020, 13, 100759. [Google Scholar] [CrossRef]
- Alkhatib, A. The Role of Laboratory Medicine for Health During Pregnancy. Electron. J. Int. Fed. Clin. Chem. 2018, 29, 280–284. [Google Scholar]
- Fitzgerald, E.; Hor, K.; Drake, A.J. Maternal Influences on Fetal Brain Development: The Role of Nutrition, Infection and Stress, and the Potential for Intergenerational Consequences. Early Hum. Dev. 2020, 150, 105190. [Google Scholar] [CrossRef]
- Lee, K.H.; Cha, M.; Lee, B.H. Neuroprotective Effect of Antioxidants in the Brain. Int. J. Mol. Sci. 2020, 21, 7152. [Google Scholar] [CrossRef]
- Hosley, C.M.; McCullough, L.D. Acute Neurological Issues in Pregnancy and the Peripartum. Neurohospitalist 2011, 1, 104–116. [Google Scholar] [CrossRef]
- Li, Y.; Gonzalez, P.; Zhang, L. Fetal Stress and Programming of Hypoxic/Ischemic-Sensitive Phenotype in the Neonatal Brain: Mechanisms and Possible Interventions. Prog. Neurobiol. 2012, 98, 145–165. [Google Scholar] [CrossRef]
- Patel, P.; Balanchivadze, N. Hematologic Findings in Pregnancy: A Guide for the Internist. Cureus 2021, 13, e15149. [Google Scholar] [CrossRef] [PubMed]
- DiPietro, J.A.; Kivlighan, K.T.; Costigan, K.A.; Rubin, S.E.; Shiffler, D.E.; Henderson, J.L.; Pillion, J.P. Prenatal Antecedents of Newborn Neurological Maturation. Child Dev. 2010, 81, 115–130. [Google Scholar] [CrossRef] [PubMed]
- Badr, L.K.; Garg, M.; Kamath, M. Intervention for Infants with Brain Injury: Results of a Randomized Controlled Study. Infant Behav. Dev. 2006, 29, 80–90. [Google Scholar] [CrossRef]
- Webb, E.; Moon, J.; Dyrszka, L.; Rodriguez, B.; Cox, C.; Patisaul, H.; Bushkin, S.; London, E. Neurodevelopmental and Neurological Effects of Chemicals Associated with Unconventional Oil and Natural Gas Operations and Their Potential Effects on Infants and Children. Rev. Environ. Health 2018, 33, 3–29. [Google Scholar] [CrossRef]
- Rasile, M.; Lauranzano, E.; Mirabella, F.; Matteoli, M. Neurological Consequences of Neurovascular Unit and Brain Vasculature Damages: Potential Risks for Pregnancy Infections and COVID-19-babies. FEBS J. 2022, 289, 3374–3392. [Google Scholar] [CrossRef] [PubMed]
- Aldrete-Cortez, V.; Bobadilla, L.; Tafoya, S.A.; Gonzalez-Carpinteiro, A.; Nava, F.; Viñals, C.; Alvarado, E.; Mendizabal-Espinosa, R.; Gómez-López, M.E.; Ramirez-Garcia, L.A.; et al. Infants Prenatally Exposed to SARS-CoV-2 Show the Absence of Fidgety Movements and Are at Higher Risk for Neurological Disorders: A Comparative Study. PLoS ONE 2022, 17, e0267575. [Google Scholar] [CrossRef]
- Quezada-Pinedo, H.G.; Cassel, F.; Duijts, L.; Muckenthaler, M.U.; Gassmann, M.; Jaddoe, V.W.V.; Reiss, I.K.M.; Vermeulen, M.J. Maternal Iron Status in Pregnancy and Child Health Outcomes after Birth: A Systematic Review and Meta-Analysis. Nutrients 2021, 13, 2221. [Google Scholar] [CrossRef]
- Brucato, M.; Lance, E.; Lanzkron, S.; Wang, X.; Pecker, L.H. Developmental Disorders in Children Born to Women with Sickle Cell Disease: A Report from the Boston Birth Cohort. eJHaem 2022, 3, 894–898. [Google Scholar] [CrossRef] [PubMed]
- Macnab, A. Pathogenesis and Prevention of Fetal and Neonatal Brain Injury. In Advancement and New Understanding in Brain Injury; IntechOpen: Rijeka, Croatia, 2020; Volume 4. [Google Scholar] [CrossRef]
- Driever, E.G.; von Meijenfeldt, F.A.; Adelmeijer, J.; de Haas, R.J.; van den Heuvel, M.C.; Nagasami, C.; Weisel, J.W.; Fondevila, C.; Porte, R.J.; Blasi, A.; et al. Nonmalignant Portal Vein Thrombi in Patients with Cirrhosis Consist of Intimal Fibrosis with or without a Fibrin-rich Thrombus. Hepatology 2022, 75, 898–911. [Google Scholar] [CrossRef]
- Wang, B.; Zeng, H.; Liu, J.; Sun, M. Effects of Prenatal Hypoxia on Nervous System Development and Related Diseases. Front. Neurosci. 2021, 15, 755554. [Google Scholar] [CrossRef] [PubMed]
- Giussani, D.A. The Fetal Brain Sparing Response to Hypoxia: Physiological Mechanisms. J. Physiol. 2016, 594, 1215–1230. [Google Scholar] [CrossRef] [PubMed]
- Curcio, A.M.; Shekhawat, P.; Reynolds, A.S.; Thakur, K.T. Neurologic Infections during Pregnancy. Handb. Clin. Neurol. 2020, 172, 79–104. [Google Scholar]
- Nyaradi, A.; Li, J.; Hickling, S.; Foster, J.; Oddy, W.H. The Role of Nutrition in Children’s Neurocognitive Development, from Pregnancy through Childhood. Front. Hum. Neurosci. 2013, 7, 97. [Google Scholar] [CrossRef] [PubMed]
- Samhsa Evidence-Based, Whole-Person Care for Pregnant People Who Have Opioid Use Disorder. Advisory. 2023. Available online: https://store.samhsa.gov/sites/default/files/pep23-02-01-002.pdf (accessed on 15 September 2023).
- Benson, C.S.; Shah, A.; Frise, M.C.; Frise, C.J. Iron Deficiency Anaemia in Pregnancy: A Contemporary Review. Obstet. Med. 2021, 14, 67–76. [Google Scholar] [CrossRef]
- RS Creation The Impact of the Western Diet on Chronic Disease Prevalence|Journal. Available online: https://vocal.media/journal/the-impact-of-the-western-diet-on-chronic-disease-prevalence (accessed on 6 June 2023).
- Pongpitakdamrong, A.; Chirdkiatgumchai, V.; Ruangdaraganon, N.; Roongpraiwan, R.; Sirachainan, N.; Soongprasit, M.; Udomsubpayakul, U. Effect of Iron Supplementation in Children with Attention-Deficit/Hyperactivity Disorder and Iron Deficiency: A Randomized Controlled Trial. J. Dev. Behav. Pediatr. 2022, 43, 80–86. [Google Scholar] [CrossRef]
- Abioye, A.I.; McDonald, E.A.; Park, S.; Ripp, K.; Bennett, B.; Wu, H.W.; Pond-Tor, S.; Sagliba, M.J.; Amoylen, A.J.; Baltazar, P.I.; et al. Maternal Anemia Type during Pregnancy Is Associated with Anemia Risk among Offspring during Infancy. Pediatr. Res. 2019, 86, 396–402. [Google Scholar] [CrossRef]
- Li, Q.; Liang, F.; Liang, W.; Shi, W.; Han, Y. Prevalence of Anemia and Its Associated Risk Factors Among 6-Months-Old Infants in Beijing. Front. Pediatr. 2019, 7, 286. [Google Scholar] [CrossRef]
- Wiegersma, A.M.; Dalman, C.; Lee, B.K.; Karlsson, H.; Gardner, R.M. Association of Prenatal Maternal Anemia With Neurodevelopmental Disorders. JAMA Psychiatry 2019, 76, 1294. [Google Scholar] [CrossRef]
- Carlsson, T.; Molander, F.; Taylor, M.J.; Jonsson, U.; Bölte, S. Early Environmental Risk Factors for Neurodevelopmental Disorders—A Systematic Review of Twin and Sibling Studies. Dev. Psychopathol. 2021, 33, 1448–1495. [Google Scholar] [CrossRef] [PubMed]
- Bladen, M.; Thorpe, N.; Ridout, D.; Barrie, A.; McGibbon, E.; Mance, A.; Watson, L.; Main, E. Autism Spectrum Disorders in Boys at a Major UK Hemophilia Center: Prevalence and Risk Factors. Res. Pract. Thromb. Haemost. 2023, 7, 100013. [Google Scholar] [CrossRef] [PubMed]
- Nair, M.; Choudhury, M.K.; Choudhury, S.S.; Kakoty, S.D.; Sarma, U.C.; Webster, P.; Knight, M. Association between Maternal Anaemia and Pregnancy Outcomes: A Cohort Study in Assam, India. BMJ Glob. Health 2016, 1, e000026. [Google Scholar] [CrossRef] [PubMed]
- Hall, V.; Avulakunta, I.D. Hemolytic Diseases of the Newborn. Handb. Pediatr. Transfus. Med. 2022, 191–208. [Google Scholar] [CrossRef]
Characteristic | Mean (SD) or Frequency (%) |
---|---|
Age (years) | 28.5 ± 4.3 |
Education level | |
- Primary | 27 (13.5) |
- Secondary | 75 (37.5) |
- Tertiary | 98 (49) |
Occupation | |
- Unemployed | 52 (26) |
- Employed | 148 (74) |
Pre-existing medical conditions | |
- Hypertension | 30 (15) |
- Diabetes | 20 (10) |
- Thyroid disorders | 15 (7.5) |
Obstetric history | |
- Parity | 1.5 ± 0.8 |
- Previous preterm birth | 20 (10) |
- Previous miscarriage | 30 (15) |
Characteristic | Mean (SD) or n (%) |
---|---|
Type of Hematological Disorder | |
- Iron Deficiency Anemia | 80 (40%) |
- Thalassemia | 40 (20%) |
- Sickle Cell Disease | 40 (20%) |
- Hemophilia | 40 (20%) |
Severity of Hematological Disorder | |
- Mild | 80 (40%) |
- Moderate | 60 (30%) |
- Severe | 60 (30%) |
Timing of Diagnosis | |
- First Trimester | 40 (20%) |
- Second Trimester | 80 (40%) |
- Third Trimester | 80 (40%) |
Characteristic | Mean (SD) or n (%) |
---|---|
Gestational Age at Delivery (weeks) | 38.7 (1.5) |
Birth Weight (grams) | 3087 (521) |
Apgar Score at 1 min | |
- 0–3 | 20 (10%) |
- 4–6 | 40 (20%) |
- 7–10 | 140 (70%) |
Apgar Score at 5 min | |
- 0–3 | 10 (5%) |
- 4–6 | 20 (10%) |
- 7–10 | 170 (85%) |
Neonatal ICU Admission | |
- Yes | 20 (10%) |
- No | 180 (90%) |
Characteristic | Mean (SD) or n (%) |
---|---|
Developmental Delays | |
- Yes | 40 (20%) |
- No | 160 (80%) |
Cognitive Impairments | |
- Yes | 30 (15%) |
- No | 170 (85%) |
Motor Impairments | |
- Yes | 20 (10%) |
- No | 180 (90%) |
Other Neurological Complications | |
- Yes | 10 (5%) |
- No | 190 (95%) |
Hematological Disorder | Neurological Outcome | Adjusted Odds Ratio (95% CI) |
---|---|---|
Anemia | Developmental delay | 1.50 (0.90–2.50) |
Cognitive impairment | 1.80 (1.20–2.70) | |
Motor impairment | 1.60 (1.00–2.50) | |
Thrombocytopenia | Developmental delay | 1.20 (0.70–2.00) |
Cognitive impairment | 1.30 (0.80–2.10) | |
Motor impairment | 1.10 (0.60–1.90) | |
Hemophilia | Developmental delay | 2.80 (1.60–4.90) |
Cognitive impairment | 3.20 (2.00–5.10) | |
Motor impairment | 2.60 (1.50–4.60) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bakhsh, E.; Alkhaldi, M.; Shaban, M. Exploring the Link between Maternal Hematological Disorders during Pregnancy and Neurological Development in Newborns: Mixed Cohort Study. Life 2023, 13, 2014. https://doi.org/10.3390/life13102014
Bakhsh E, Alkhaldi M, Shaban M. Exploring the Link between Maternal Hematological Disorders during Pregnancy and Neurological Development in Newborns: Mixed Cohort Study. Life. 2023; 13(10):2014. https://doi.org/10.3390/life13102014
Chicago/Turabian StyleBakhsh, Ebtisam, Maan Alkhaldi, and Mostafa Shaban. 2023. "Exploring the Link between Maternal Hematological Disorders during Pregnancy and Neurological Development in Newborns: Mixed Cohort Study" Life 13, no. 10: 2014. https://doi.org/10.3390/life13102014
APA StyleBakhsh, E., Alkhaldi, M., & Shaban, M. (2023). Exploring the Link between Maternal Hematological Disorders during Pregnancy and Neurological Development in Newborns: Mixed Cohort Study. Life, 13(10), 2014. https://doi.org/10.3390/life13102014