Preliminary Assessment of the Acute Effects of Far Infrared-Emitting Garments: What Are the Possible Implications for Recovery and Performance?
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Inclusion and Exclusion Criteria
2.3. Evaluated Products
2.4. Evaluation Scheme
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Byrnes, J.S. Unexploded Ordnance Detection and Mitigation; North Atlantic Treaty Organization, Ed.; NATO Science for Peace and Security Series B: Physics and Biophysics; Springer in Cooperation with NATO Public Diplomacy Division: Dordrecht, The Netherland; London, UK, 2009; ISBN 978-1-4020-9251-0. [Google Scholar]
- Zati, A.; Valent, A. Terapia Fisica: Nuove Tecnologie in Medicina Riabilitativa, 2nd ed.; Edizioni Minerva Medica: Torino, Italy, 2017; ISBN 978-88-7711-907-0. [Google Scholar]
- Vatansever, F.; Hamblin, M.R. Far Infrared Radiation (FIR): Its Biological Effects and Medical Applications. Photonics Lasers Med. 2012, 4, 255–266. [Google Scholar] [CrossRef]
- Leung, T.-K.; Chen, C.-H.; Tsai, S.-Y.; Hsiao, G.; Lee, C.-M. Effects of Far Infrared Rays Irradiated from Ceramic Material (BIOCERAMIC) on Psychological Stress-Conditioned Elevated Heart Rate, Blood Pressure, and Oxidative Stress-Suppressed Cardiac Contractility. Chin. J. Physiol. 2012, 55, 323–330. [Google Scholar] [CrossRef] [PubMed]
- Leung, T.-K. Protective Effect of Non-Ionizing Radiation from Ceramic Far Infrared (CFIR)-Emitting Material against Oxidative Stress on Human Breast Epithelial Cells. J. Med. Biol. Eng. 2014, 34, 69. [Google Scholar] [CrossRef]
- Toyokawa, H.; Matsui, Y.; Uhara, J.; Tsuchiya, H.; Teshima, S.; Nakanishi, H.; Kwon, A.-H.; Azuma, Y.; Nagaoka, T.; Ogawa, T.; et al. Promotive Effects of Far-Infrared Ray on Full-Thickness Skin Wound Healing in Rats. Exp. Biol. Med. 2003, 228, 724–729. [Google Scholar] [CrossRef] [PubMed]
- Chung, J.; Lee, S. Development of Nanofibrous Membranes with Far-Infrared Radiation and Their Antimicrobial Properties. Fibers Polym. 2014, 15, 1153–1159. [Google Scholar] [CrossRef]
- Leung, T.-K.; Lee, C.-M.; Tsai, S.-Y.; Chen, Y.-C.; Chao, J.-S. A Pilot Study of Ceramic Powder Far-Infrared Ray Irradiation (CFIR) on Physiology: Observation of Cell Cultures and Amphibian Skeletal Muscle. Chin. J. Physiol. 2011, 54, 247–254. [Google Scholar] [CrossRef] [PubMed]
- Tsai, S.-R.; Hamblin, M.R. Biological Effects and Medical Applications of Infrared Radiation. J. Photochem. Photobiol. B 2017, 170, 197–207. [Google Scholar] [CrossRef] [PubMed]
- Yu, S.-Y.; Chiu, J.-H.; Yang, S.-D.; Hsu, Y.-C.; Lui, W.-Y.; Wu, C.-W. Biological Effect of Far-Infrared Therapy on Increasing Skin Microcirculation in Rats. Photodermatol. Photoimmunol. Photomed. 2006, 22, 78–86. [Google Scholar] [CrossRef]
- Uozumi, Y.; Nawashiro, H.; Sato, S.; Kawauchi, S.; Shima, K.; Kikuchi, M. Targeted Increase in Cerebral Blood Flow by Transcranial Near-Infrared Laser Irradiation. Lasers Surg. Med. 2010, 42, 566–576. [Google Scholar] [CrossRef]
- Cristiano, L. Applications and benefits of the infrared rays and infrared-based devices in sports and rehabilitation. Int. J. Dev. Res. 2019, 9, 32728–32731. [Google Scholar]
- Dyer, J. Functional Textiles for Improved Performance, Protection and Health; Pan, N., Sun, G., Eds.; Woodhead Publishing Series in Textiles; Woodhead Publishing: Oxford, UK, 2011; ISBN 978-1-84569-723-5. [Google Scholar]
- Leung, T.-K. In Vitro and In Vivo Studies of the Biological Effects of Bioceramic (a Material Emitting High-Performance Far-Infrared Ray) Irradiation. Chin. J. Physiol. 2015, 58, 147–155. [Google Scholar] [CrossRef] [PubMed]
- Ise, N.; Katsuura, T.; Kikuchi, Y.; Miwa, E. Effect of Far-Infrared Radiation on Forearm Skin Blood Flow. Ann. Physiol. Anthropol. 1987, 6, 31–32. [Google Scholar] [CrossRef] [PubMed]
- Gordon, I.L.; Casden, S.; Vangel, M.; Hamblin, M.R. Effect of Shirts with 42% CelliantTM Fiber on TcPO2 Levels and Grip Strength in Healthy Subjects: A Placebo-Controlled Clinical Trial. J. Text. Sci. Eng. 2019, 9, 403. [Google Scholar]
- Leung, T.-K.; Kuo, C.-H.; Lee, C.-M.; Kan, N.-W.; Hou, C.-W. Physiological Effects of Bioceramic Material: Harvard Step, Resting Metabolic Rate and Treadmill Running Assessments. Chin. J. Physiol. 2013, 56, 334–340. [Google Scholar] [CrossRef] [PubMed]
- Inoué, S.; Kabaya, M. Biological Activities Caused by Far-Infrared Radiation. Int. J. Biometeorol. 1989, 33, 145–150. [Google Scholar] [CrossRef]
- Bontemps, B.; Gruet, M.; Vercruyssen, F.; Louis, J. Utilisation of Far Infrared-Emitting Garments for Optimising Performance and Recovery in Sport: Real Potential or New Fad? A Systematic Review. PLoS ONE 2021, 16, e0251282. [Google Scholar] [CrossRef] [PubMed]
- Bertuccioli, A.; Ninfali, P. The Mediterranean Diet in the Era of Globalization: The Need to Support Knowledge of Healthy Dietary Factors in the New Socio-Economical Framework. Mediterr. J. Nutr. Metab. 2014, 7, 75–86. [Google Scholar] [CrossRef]
- de Waal, S.J.; Gomez-Ezeiza, J.; Venter, R.E.; Lamberts, R.P. Physiological Indicators of Trail Running Performance: A Systematic Review. Int. J. Sports Physiol. Perform. 2021, 16, 325–332. [Google Scholar] [CrossRef]
- Amighetti, W. Effetti dei dispositivi medici ad elevata tecnologia NEXUS-ES sui segni dell’infiammazione. Minerva Orthop. Traumatol. 2010, 62 (Suppl. S1), 1–7. (In Italian) [Google Scholar]
- Norton, K.; Eston, R.G. (Eds.) Kinanthropometry and Exercise Physiology, 4th ed.; Routledge Taylor and Francis Group: London, UK; New York, NY, USA, 2019; pp. 68–137. ISBN 978-1-315-38566-2. [Google Scholar] [CrossRef]
- Kyle, U.G.; Bosaeus, I.; De Lorenzo, A.D.; Deurenberg, P.; Elia, M.; Gomez, J.M.; Heitmann, B.L.; Kent-Smith, L.; Melchior, J.C.; Pirlich, M.; et al. Bioelectrical impedance analysis—Part I: Review of principles and methods. Clin. Nutr. 2004, 23, 1226–1243. [Google Scholar] [CrossRef]
- Kyle, U.G.; Bosaeus, I.; De Lorenzo, A.D.; Deurenberg, P.; Elia, M.; Manuel Gómez, J.; Lilienthal Heitmann, B.; Kent-Smith, L.; Melchior, J.-C.; Pirlich, M.; et al. Bioelectrical Impedance Analysis—Part II: Utilization in Clinical Practice. Clin. Nutr. 2004, 23, 1430–1453. [Google Scholar] [CrossRef] [PubMed]
- Moon, J.R. Body Composition in Athletes and Sports Nutrition: An Examination of the Bioimpedance Analysis Technique. Eur. J. Clin. Nutr. 2013, 67, S54–S59. [Google Scholar] [CrossRef] [PubMed]
- Bertuccioli, A.; Donati Zeppa, S.; Amatori, S.; Moricoli, S.; Fortunato, R.; Di Pierro, F.; Perroni, F.; Rocchi, M.B.; Ferri Marini, C.; Lucertini, F.; et al. A New Strategy for Somatotype Assessment Using Bioimpedance Analysis in Adults. J. Sports Med. Phys. Fit. 2022, 62, 296–297. [Google Scholar] [CrossRef] [PubMed]
- Bertuccioli, A.; Sisti, D.; Amatori, S.; Perroni, F.; Rocchi, M.B.L.; Benelli, P.; Trecroci, A.; Di Pierro, F.; Bongiovanni, T.; Cannataro, R. A New Strategy for Somatotype Assessment Using Bioimpedance Analysis: Stratification According to Sex. J. Funct. Morphol. Kinesiol. 2022, 7, 86. [Google Scholar] [CrossRef] [PubMed]
- Bertuccioli, A.; Cardinali, M.; Benelli, P. Segmental Bioimpedance Analysis as a Predictor of Injury and Performance Status in Professional Basketball Players: A New Application Potential? Life 2022, 12, 1062. [Google Scholar] [CrossRef]
- Martín Expósito, D.; Avero Hernández, D.; González Martín, E.D. Relación Entre Sarcopenia y el Resultado del Cribado Nutricional CIPA; Facultad de Ciencias de la Salud, Universidad de La Laguna: Santa Cruz de Tenerife, Spain, 2022. [Google Scholar]
- Guimarães, M.P.; Campos, Y.A.C.; Souza, H.L.R.; Da Silva, S.F. Is There a Concordance between the Lactate Threshold and the Heart Rate Deflection Point during a Progressive Field Test in Moderately Trained Distance Runners? J. Exerc. Physiol. Online 2017, 20, 60–68. [Google Scholar]
- Campos, Y.A.C.; Guimarães, M.P.; Souza, H.L.R.; Silva, G.P.; Domingos, P.R.; Resende, N.M.; Silva, S.F.; Vianna, J.M. Relationship between the Anaerobic Threshold Identified Through Blood Lactate between the Discontinuous and Resisted Dynamic Exercises in Long Distance Runners. J. Exerc. Physiol. Online 2017, 20, 83–91. [Google Scholar]
- Dasgupta, R.; Ekka, N.M.P.; Das, A.; Kumar, V. Evaluation of Clinical and Venous Blood Parameters as Surrogate Indicators in Assessing the Need for Fasciotomy in Lower Limb Compartment Syndrome. Int. J. Low. Extrem. Wounds, 2021; Online ahead of print. [Google Scholar] [CrossRef]
- Radvansky, M.; Radvansky, M.; Kudelka, M. Identification of the Occurrence of Poor Blood Circulation in Toes by Processing Thermal Images from Flir Lepton Module. In Advances in Intelligent Networking and Collaborative Systems; Barolli, L., Chen, H.C., Miwa, H., Eds.; INCoS 2021; Lecture Notes in Networks and Systems; Springer: Cham, Switzerland, 2022; Volume 312. [Google Scholar] [CrossRef]
- IZAWA, S.; SUZUKI, K. The Comparison of Salivary Cortisol Immunoassay Kits: Correlations between Salivary and Plasma Cortisol Concentrations and Comparison of Immunoassay Methods. Jpn. J. Complement. Altern. Med. 2007, 4, 113–118. [Google Scholar] [CrossRef]
- Makiel, K.; Suder, A.; Targosz, A.; Maciejczyk, M.; Haim, A. Effect of Exercise Interventions on Irisin and Interleukin-6 Concentrations and Indicators of Carbohydrate Metabolism in Males with Metabolic Syndrome. J. Clin. Med. 2023, 12, 369. [Google Scholar] [CrossRef]
- Maggiore, Q.; Nigrelli, S.; Ciccarelli, C.; Grimaldi, C.; Rossi, G.A.; Michelassi, C. Nutritional and Prognostic Correlates of Bioimpedance Indexes in Hemodialysis Patients. Kidney Int. 1996, 50, 2103–2108. [Google Scholar] [CrossRef]
- Coull, N.A.; West, A.M.; Hodder, S.G.; Wheeler, P.; Havenith, G. Body Mapping of Regional Sweat Distribution in Young and Older Males. Eur. J. Appl. Physiol. 2021, 121, 109–125. [Google Scholar] [CrossRef] [PubMed]
- Institute of Medicine (US) Committee on Military Nutrition Research. Nutritional Needs in Hot Environments: Applications for Military Personnel in Field Operations; Marriott, B.M., Ed.; National Academies Press (US): Washington, DC, USA, 1993; ISBN 978-0-309-04840-8. [Google Scholar]
- Cian, C.; Gianocca, V.; Barraud, P.A.; Guerraz, M.; Bresciani, J.P. Bioceramic Fabrics Improve Quiet Standing Posture and Handstand Stability in Expert Gymnasts. Gait Posture 2015, 42, 419–423. [Google Scholar] [CrossRef] [PubMed]
Characteristics of the Participants | |
---|---|
Age | 40.9 (±5.9) years |
Weight | 78.3 (±8.9) kg |
Height | 1.76 (±0.05) m |
BMI | 25.3 (±2.9) kg/m2 |
Chest circumference | 99.75 (±6.4) cm |
Waist circumference | 87.75 (±8.2) cm |
Hip circumference | 100.25 (±3.9) cm |
Parameter | Value |
---|---|
FIR fabric composition | 73% polyester—22% polyamide—5% elastane |
Metallic and bioceramic component of the FIR fabric | <1 g/m2 |
Control fabric composition | 73% polyester—22% polyamide—5% elastane |
Metallic and bioceramic component of the control fabric | 0 g/m2 |
Characteristics common to the two fabrics | |
Compression | the fabric does not exert compression |
Fabric thickness | 0.692 mm |
Density | 133.7 gr/mq |
Fabric extensibility | 90% |
Porosity | 0.022 mmq |
Resistance to conductive heat transfer of fabrics (RCT) | 0.95 KW/mq |
Air permeability (RET) | 9 |
Creation of fabric structure | Seamless Technology |
Bodysuit weight size L | 223 g |
Bodysuit weight size XXL | 265 g |
Treated | Control | |||||||
---|---|---|---|---|---|---|---|---|
T0 | T1 | Var (%) | T0 | T1 | Var (%) | p (Time) | p (Time per Group) | |
Weight | 78.3 ± 8.9 | 77.9 ± 9.1 | −0.5% | 78.2 ± 9.3 | 78 ± 9.3 | −0.3% | <0.001 | 0.138 |
Rz | 393.4 ± 61.9 | 366.9 ± 46.0 | −6.7% | 403.0 ± 36.3 | 419.0 ± 43.9 | 4.0% | 0.335 | <0.001 |
Xc | 54.2 ± 10 | 51.3 ± 7.8 | −5.4% | 55.1 ± 6.5 | 56.5 ± 7.7 | 2.5% | 0.205 | 0.001 |
Lactate | 5.1 ± 3.9 | 5.7 ± 1.2 | 11.5% | 4.7 ± 2 | 7.1 ± 1.1 | 50.3% | 0.034 | 0.186 |
cortisol | 2.1 ± 1.9 | 3.1 ± 2.4 | 46.3% | 2.3 ± 2.2 | 3.1 ± 2.3 | 35.1% | <0.001 | 0.639 |
T shoulder | 33.1 ± 3 | 32.5 ± 2.8 | −1.8% | 35.3 ± 1.1 | 33.1 ± 1.3 | −6.0% | 0.044 | 0.24 |
T hip | 31.7 ± 2 | 31.9 ± 1.7 | 0.5% | 33.2 ± 1.6 | 31.5 ± 1.2 | −5.1% | 0.158 | 0.093 |
T knee | 31.6 ± 1.9 | 31 ± 2.6 | −2.0% | 32.7 ± 1.7 | 31.1 ± 1.3 | −4.9% | 0.102 | 0.463 |
T ankle | 30.2 ± 1.4 | 30.5 ± 1.9 | 1.1% | 30.9 ± 1.5 | 29.1 ± 0.9 | −5.8% | 0.062 | 0.009 |
T quadriceps | 30.1 ± 1.2 | 30.1 ± 1.3 | −0.3% | 31.5 ± 1.5 | 30 ± 1.2 | −4.8% | 0.009 | 0.018 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bertuccioli, A.; Cannataro, R.; Gervasi, M.; Benelli, P.; Gregoretti, A.; Ragazzini, M.; Neri, M.; Palazzi, C.M.; Cardinali, M.; Zonzini, G. Preliminary Assessment of the Acute Effects of Far Infrared-Emitting Garments: What Are the Possible Implications for Recovery and Performance? Life 2023, 13, 1998. https://doi.org/10.3390/life13101998
Bertuccioli A, Cannataro R, Gervasi M, Benelli P, Gregoretti A, Ragazzini M, Neri M, Palazzi CM, Cardinali M, Zonzini G. Preliminary Assessment of the Acute Effects of Far Infrared-Emitting Garments: What Are the Possible Implications for Recovery and Performance? Life. 2023; 13(10):1998. https://doi.org/10.3390/life13101998
Chicago/Turabian StyleBertuccioli, Alexander, Roberto Cannataro, Marco Gervasi, Piero Benelli, Aurora Gregoretti, Mirko Ragazzini, Marco Neri, Chiara Maria Palazzi, Marco Cardinali, and Giordano Zonzini. 2023. "Preliminary Assessment of the Acute Effects of Far Infrared-Emitting Garments: What Are the Possible Implications for Recovery and Performance?" Life 13, no. 10: 1998. https://doi.org/10.3390/life13101998
APA StyleBertuccioli, A., Cannataro, R., Gervasi, M., Benelli, P., Gregoretti, A., Ragazzini, M., Neri, M., Palazzi, C. M., Cardinali, M., & Zonzini, G. (2023). Preliminary Assessment of the Acute Effects of Far Infrared-Emitting Garments: What Are the Possible Implications for Recovery and Performance? Life, 13(10), 1998. https://doi.org/10.3390/life13101998