New Advances in Human Thermophysiology
Funding
Conflicts of Interest
References
- Charkoudian, N. Human Thermoregulation from the Autonomic Perspective. Auton. Neurosci. Basic Clin. 2016, 196, 1–2. [Google Scholar] [CrossRef] [PubMed]
- Cramer, M.N.; Jay, O. Partitional Calorimetry. J. Appl. Physiol. 2019, 126, 267–277. [Google Scholar] [CrossRef] [PubMed]
- Kenny, G.P.; Journeay, W.S. Human Thermoregulation: Separating Thermal and Nonthermal Effects on Heat Loss. Front. Biosci 2010, 15, 259–290. [Google Scholar] [CrossRef] [PubMed]
- Hosokawa, Y.; Racinais, S.; Akama, T.; Zideman, D.; Budgett, R.; Casa, D.J.; Bermon, S.; Grundstein, A.J.; Pitsiladis, Y.P.; Schobersberger, W.; et al. Prehospital Management of Exertional Heat Stroke at Sports Competitions: International Olympic Committee Adverse Weather Impact Expert Working Group for the Olympic Games Tokyo 2020. Br. J. Sports Med. 2021, 55, 1405–1410. [Google Scholar] [CrossRef]
- Racinais, S.; Havenith, G.; Aylwin, P.; Ihsan, M.; Taylor, L.; Adami, P.E.; Adamuz, M.-C.; Alhammoud, M.; Alonso, J.M.; Bouscaren, N.; et al. Association between Thermal Responses, Medical Events, Performance, Heat Acclimation and Health Status in Male and Female Elite Athletes during the 2019 Doha World Athletics Championships. Br. J. Sports Med. 2022, 56, 439–445. [Google Scholar] [CrossRef]
- Chodor, W.; Chmura, P.; Chmura, J.; Andrzejewski, M.; Jówko, E.; Buraczewski, T.; Drożdżowski, A.; Rokita, A.; Konefał, M. Impact of Climatic Conditions Projected at the World Cup in Qatar 2022 on Repeated Maximal Efforts in Soccer Players. PeerJ 2021, 9, e12658. [Google Scholar] [CrossRef]
- Rojas-Valverde, D.; Gutiérrez-Vargas, R.; Sánchez-Ureña, B.; Gutiérrez-Vargas, J.C.; Priego-Quesada, J.I. Relationship between Skin Temperature Variation and Muscle Damage Markers after a Marathon Performed in a Hot Environmental Condition. Life 2021, 11, 725. [Google Scholar] [CrossRef]
- Baillot, M.; Hue, O.; Tran, T.T.; Antoine-Jonville, S. Neuromuscular Activity during Cycling Performance in Hot/Dry and Hot/Humid Conditions. Life 2021, 11, 1149. [Google Scholar] [CrossRef]
- Chabert, C.; Collado, A.; Hue, O. Temperate Air Breathing Increases Cycling Performance in Hot and Humid Climate Environment. Life 2021, 11, 911. [Google Scholar] [CrossRef]
- de Melo-Marins, D.; Farinha, J.B.; Boeno, F.P.; Vieira, A.F.; Munhoz, S.V.; dos Santos, G.C.; Krause, M.; Laitano, O.; Reischak-Oliveira, A. The Impact of Dehydration and Hyperthermia on Circulatory Glutathione Metabolism after Exercise in the Heat with Insights into the Role of Erythrocytes. Life 2021, 11, 1144. [Google Scholar] [CrossRef]
- Riera, F.; Bellenoue, S.; Fischer, S.; Méric, H. Impact of a Cold Environment on the Performance of Professional Cyclists: A Pilot Study. Life 2021, 11, 1326. [Google Scholar] [CrossRef] [PubMed]
- Houghton, J. Global Warming. Rep. Prog. Phys. 2005, 68, 1343–1403. [Google Scholar] [CrossRef]
- Baldwin, J.W.; Dessy, J.B.; Vecchi, G.A.; Oppenheimer, M. Temporally Compound Heat Wave Events and Global Warming: An Emerging Hazard. Earth’s Future 2019, 7, 411–427. [Google Scholar] [CrossRef]
- Sawka, M.N.; Cheuvront, S.N.; Kenefick, R.W. High Skin Temperature and Hypohydration Impair Aerobic Performance. Exp. Physiol. 2012, 97, 327–332. [Google Scholar] [CrossRef]
- Cuddy, J.S.; Hailes, W.S.; Ruby, B.C. A Reduced Core to Skin Temperature Gradient, Not a Critical Core Temperature, Affects Aerobic Capacity in the Heat. J. Therm. Biol. 2014, 43, 7–12. [Google Scholar] [CrossRef]
- Priego-Quesada, J.I.; Pérez-Guarner, A.; Gandia-Soriano, A.; Oficial-Casado, F.; Galindo, C.; Anda RMCO, D.E.; Piñeiro-Ramos, J.D.; Sánchez-Illana, Á.; Kuligowski, J.; Barbosa, M.A.G.; et al. Effect of a Marathon on Skin Temperature Response After a Cold-Stress Test and Its Relationship With Perceptive, Performance, and Oxidative-Stress Biomarkers. Int. J. Sports Physiol. Perform. 2020, 15, 1467–1475. [Google Scholar] [CrossRef]
- da Silva, W.; Machado, Á.S.; Lemos, A.L.; de Andrade, C.F.; Priego-Quesada, J.I.; Carpes, F.P. Relationship between Exercise-Induced Muscle Soreness, Pain Thresholds, and Skin Temperature in Men and Women. J. Therm. Biol. 2021, 100, 103051. [Google Scholar] [CrossRef]
- Pérez-Guarner, A.; Priego-Quesada, J.I.; Oficial-Casado, F.; Cibrián Ortiz de Anda, R.M.; Carpes, F.P.; Palmer, R.S. Association between Physiological Stress and Skin Temperature Response after a Half Marathon. Physiol. Meas. 2019, 40, 034009. [Google Scholar] [CrossRef]
- Montanari, T.; Pošćić, N.; Colitti, M. Factors Involved in White-to-Brown Adipose Tissue Conversion and in Thermogenesis: A Review. Obes. Rev. 2017, 18, 495–513. [Google Scholar] [CrossRef]
- Nintou, E.; Karligiotou, E.; Vliora, M.; Fatouros, I.G.; Jamurtas, A.Z.; Sakellaridis, N.; Dimas, K.; Flouris, A.D. Effects of In Vitro Muscle Contraction on Thermogenic Protein Levels in Co-Cultured Adipocytes. Life 2021, 11, 1227. [Google Scholar] [CrossRef]
- Mekjavic, I.B.; Yogev, D.; Ciuha, U. Perception of Thermal Comfort during Skin Cooling and Heating. Life 2021, 11, 681. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Priego-Quesada, J.I. New Advances in Human Thermophysiology. Life 2022, 12, 1261. https://doi.org/10.3390/life12081261
Priego-Quesada JI. New Advances in Human Thermophysiology. Life. 2022; 12(8):1261. https://doi.org/10.3390/life12081261
Chicago/Turabian StylePriego-Quesada, Jose Ignacio. 2022. "New Advances in Human Thermophysiology" Life 12, no. 8: 1261. https://doi.org/10.3390/life12081261