Rescue IVM of Denuded GV- and MI-Stage Oocytes of Premenopausal Rats with Oncostatin M, Insulin-like Growth Factor I, and Growth Hormone
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals and Oocyte Recovery
2.2. In Vitro Maturation of Oocytes
2.3. Assessment of Oocyte Maturation
2.4. Measurement of FSH and Anti-Müllerian Hormone (AMH)
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Arroyo, A.; Kim, B.; Yeh, J. Luteinizing hormone action in human oocyte maturation and quality: Signaling pathways, regulation, and clinical impact. Reprod. Sci. 2020, 27, 1223–1252. [Google Scholar] [CrossRef] [PubMed]
- Braga, D.; Zanetti, B.F.; Setti, A.S.; Iaconelli, A., Jr.; Borges, E., Jr. Immature oocyte incidence: Contributing factors and effects on mature sibling oocytes in intracytoplasmic sperm injection cycles. JBRA Assist. Reprod. 2020, 24, 70–76. [Google Scholar] [CrossRef] [PubMed]
- Halvaei, I.; Ali Khalili, M.; Razi, M.H.; Nottola, S.A. The effect of immature oocytes quantity on the rates of oocytes maturity and morphology, fertilization, and embryo development in ICSI cycles. J. Assist. Reprod. Genet. 2012, 29, 803–810. [Google Scholar] [CrossRef] [PubMed]
- Parrella, A.; Irani, M.; Keating, D.; Chow, S.; Rosenwaks, Z.; Palermo, G.D. High proportion of immature oocytes in a cohort reduces fertilization, embryo development, pregnancy and live birth rates following ICSI. Reprod. Biomed. Online 2019, 39, 580–587. [Google Scholar] [CrossRef] [PubMed]
- Borges, E., Jr.; Zanetti, B.F.; Setti, A.S.; Braga, D.P.; Figueira, R.d.C.S.; Iaconelli, A., Jr. FSH dose to stimulate different patient’ ages: When less is more. JBRA Assist. Reprod. 2017, 21, 336–342. [Google Scholar] [CrossRef] [PubMed]
- Ashourzadeh, S.; Khalili, M.A.; Omidi, M.; Mahani, S.N.N.; Kalantar, S.M.; Aflatoonian, A.; Habibzadeh, V. Noninvasive assays of in vitro matured human oocytes showed insignificant correlation with fertilization and embryo development. Arch. Gynecol. Obstet. 2015, 292, 459–463. [Google Scholar] [CrossRef]
- Jie, H.; Zhao, M.; Alqawasmeh, O.A.M.; Chan, C.P.S.; Lee, T.L.; Li, T.; Chan, D.Y.L. In vitro rescue immature oocytes—A literature review. Hum. Fertil. 2021, 1–20. [Google Scholar] [CrossRef]
- Palmerini, M.G.; Antonouli, S.; Macchiarelli, G.; Cecconi, S.; Bianchi, S.; Khalili, M.A.; Nottola, S.A. Ultrastructural evaluation of the human oocyte at the germinal vesicle stage during the application of assisted reproductive technologies. Cells 2022, 11, 1636. [Google Scholar] [CrossRef]
- Rienzi, L.F.; Ubaldi, F.M. Oocyte retrieval and selection. In Textbook of Assisted Reproductive Techniques; CRC Press: Florida, FL, USA, 2012; pp. 136–153. [Google Scholar]
- Edwards, R.G. Maturation in vitro of mouse, sheep, cow, pig, rhesus monkey and human ovarian oocytes. Nature 1965, 208, 349–351. [Google Scholar] [CrossRef]
- De Vos, M.; Grynberg, M.; Ho, T.M.; Yuan, Y.; Albertini, D.F.; Gilchrist, R.B. Perspectives on the development and future of oocyte IVM in clinical practice. J. Assist. Reprod. Genet. 2021, 38, 1265–1280. [Google Scholar] [CrossRef]
- Hatırnaz, Ş.; Ata, B.; Hatırnaz, E.S.; Dahan, M.H.; Tannus, S.; Tan, J.; Tan, S.L. Oocyte in vitro maturation: A sytematic review. Turk. J. Obstet. Gynecol. 2018, 15, 112–125. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.J.; Barad, D.H.; Kushnir, V.A.; Shohat-Tal, A.; Lazzaroni-Tealdi, E.; Wu, Y.G.; Gleicher, N. Rescue in vitro maturation (IVM) of immature oocytes in stimulated cycles in women with low functional ovarian reserve (LFOR). Endocrine 2016, 52, 165–171. [Google Scholar] [CrossRef] [PubMed]
- Son, W.-Y.; Henderson, S.; Cohen, Y.; Dahan, M.; Buckett, W. Immature Oocyte for Fertility Preservation. Front. Endocrinol. 2019, 10, 464. [Google Scholar] [CrossRef]
- Hatırnaz, Ş.; Akarsu, S.; Hatırnaz, E.S.; Işık, A.Z.; Dahan, M.H. The use of in vitro maturation in stimulated antagonist in vitro fertilization cycles of normo-hyperresponder women due to arrested follicular development: A rescue procedure. Turk. J. Obstet. Gynecol. 2018, 15, 141–146. [Google Scholar] [CrossRef]
- Madkour, A.; Bouamoud, N.; Kaarouch, I.; Louanjli, N.; Saadani, B.; Assou, S.; Aboulmaouahib, S.; Sefrioui, O.; Amzazi, S.; Copin, H.; et al. Follicular fluid and supernatant from cultured cumulus-granulosa cells improve in vitro maturation in patients with polycystic ovarian syndrome. Fertil. Steril. 2018, 110, 710–719. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Liu, H.; Yu, Q.; Liu, H.; Huang, T.; Zhao, S.; Ma, J.; Zhao, H. Growth Hormone Promotes in vitro Maturation of Human Oocytes. Front. Endocrinol. 2019, 10, 485. [Google Scholar] [CrossRef]
- Menezo, Y.J.R.; Nicollet, B.; Rollet, J.; Hazout, A. Pregnancy and delivery after in vitro maturation of naked ICSI-GV oocytes with GH and transfer of a frozen thawed blastocyst: Case report. J. Assist. Reprod. Genet. 2006, 23, 47–49. [Google Scholar] [CrossRef]
- Apa, R.; Lanzone, A.; Miceli, F.; Mastrandrea, M.; Caruso, A.; Mancuso, S.; Canipari, R. Growth hormone induces in vitro maturation of follicle- and cumulus-enclosed rat oocytes. Mol. Cell. Endocrinol. 1994, 106, 207–212. [Google Scholar] [CrossRef]
- Toori, M.A.; Mosavi, E.; Nikseresht, M.; Barmak, M.J.; Mahmoudi, R. Influence of Insulin-Like Growth Factor-I on Maturation and Fertilization Rate of Immature Oocyte and Embryo Development in NMRI Mouse with TCM199 and α-MEM Medium. J. Clin. Diagn. Res. 2014, 8, AC05–AC08. [Google Scholar] [CrossRef]
- Lorenzo, P.L.; Illera, M.J.; Illera, J.C.; Illera, M. Enhancement of cumulus expansion and nuclear maturation during bovine oocyte maturation in vitro by the addition of epidermal growth factor and insulin-like growth factor I. J. Reprod. Fertil. 1994, 101, 697–701. [Google Scholar] [CrossRef]
- Sato, A.; Sarentonglaga, B.; Ogata, K.; Yamaguchi, M.; Hara, A.; Atchalalt, K.; Sugane, N.; Fukumori, R.; Nagao, Y. Effects of insulin-like growth factor-1 on the in vitro maturation of canine oocytes. J. Reprod. Dev. 2018, 64, 83–88. [Google Scholar] [CrossRef] [PubMed]
- Oberlender, G.; Murgas, L.D.; Zangeronimo, M.G.; da Silva, A.C.; Menezes Tde, A.; Pontelo, T.P.; Vieira, L.A. Role of insulin-like growth factor-I and follicular fluid from ovarian follicles with different diameters on porcine oocyte maturation and fertilization in vitro. Theriogenology 2013, 80, 319–327. [Google Scholar] [CrossRef] [PubMed]
- Clark, A.M.; De, M.D.G.; Jackson, J.A.; Palmer, S.S.; Tran, C.A.T. Use of IL-6 Type Cytokines to Mature. Oocytes. Patent DK2325201T3, 26 November 2004. [Google Scholar]
- Nikanfar, S.; Hamdi, K.; Haiaty, S.; Samadi, N.; Shahnazi, V.; Fattahi, A.; Nouri, M. Oncostatin M and its receptor in women with polycystic ovary syndrome and association with assisted reproductive technology outcomes. Reprod. Biol. 2022, 22, 100633. [Google Scholar] [CrossRef] [PubMed]
- Abir, R.; Ao, A.; Jin, S.; Barnett, M.; Van den Hurk, R.; Freimann, S.; Fisch, B. Immunocytochemical detection and reverse transcription polymerase chain reaction expression of oncostatin M (OSM) and its receptor (OSM-Rbeta) in human fetal and adult ovaries. Fertil. Steril. 2005, 83 (Suppl. 1), 1188–1196. [Google Scholar] [CrossRef]
- Lacoste, C.R.; Clemenson, A.; Lima, S.; Lecointre, R.; Peoc’h, M.; Chene, G. Tubo-ovarian dysplasia in relationship with ovulation induction in rats. Fertil. Steril. 2013, 99, 1768–1773. [Google Scholar] [CrossRef]
- Ozcan, Z.; Celik, H.; Gurates, B.; Ozercan, H.I.; Hanay, F.; Nalbant, M.; Dogan, Z. Effects of ovulation induction agents on ovarian surface epithelium in rats. Reprod. Biomed. Online 2009, 19, 314–318. [Google Scholar] [CrossRef]
- Taketsuru, H.; Kaneko, T. In vitro maturation of immature rat oocytes under simple culture conditions and subsequent developmental ability. J. Reprod. Dev. 2016, 62, 521–526. [Google Scholar] [CrossRef]
- Picut, C.A.; Dixon, D.; Simons, M.L.; Stump, D.G.; Parker, G.A.; Remick, A.K. Postnatal ovary development in the rat: Morphologic study and correlation of morphology to neuroendocrine parameters. Toxicol. Pathol. 2015, 43, 343–353. [Google Scholar] [CrossRef]
- Pastuschek, J.; Poetzsch, J.; Morales-Prieto, D.M.; Schleußner, E.; Markert, U.R.; Georgiev, G. Stimulation of the JAK/STAT pathway by LIF and OSM in the human granulosa cell line COV434. J. Reprod. Immunol. 2015, 108, 48–55. [Google Scholar] [CrossRef]
- Jimenez, C.R.; de Azevedo, J.L.; Silveira, R.G.; Penitente-Filho, J.; Carrascal-Triana, E.L.; Zolini, A.M.; Araujo, V.R.; Torres, C.; Gonçalves, W.G. Effects of IGF-1 on In Vitro Culture of Bovine Preantral Follicles are Dose-Dependent. Reprod. Domest. Anim. Zuchthyg. 2016, 51, 435–444. [Google Scholar] [CrossRef]
- Kiapekou, E.; Loutradis, D.; Drakakis, P.; Zapanti, E.; Mastorakos, G.; Antsaklis, A. Effects of GH and IGF-I on the in vitro maturation of mouse oocytes. Hormones 2005, 4, 155–160. [Google Scholar] [CrossRef] [PubMed]
- Faramarzi, A.; Khalili, M.A.; Ashourzadeh, S.; Palmerini, M.G. Does rescue in vitro maturation of germinal vesicle stage oocytes impair embryo morphokinetics development? Zygote 2018, 26, 430–434. [Google Scholar] [CrossRef] [PubMed]
- Alcoba, D.D.; Pimentel, A.M.; Brum, I.S.; Corleta, H.E. Developmental potential of in vitro or in vivo matured oocytes. Zygote 2015, 23, 93–98. [Google Scholar] [CrossRef] [PubMed]
- Hassan, H.A.; Azab, H.; Rahman, A.A.; Nafee, T.M. Clinical Assisted Reproduction: Effects of Growth Hormone on in Vitro Maturation of Germinal Vesicle of Human Oocytes Retrieved from Small Antral Follicles. J. Assist. Reprod. Genet. 2001, 18, 417–420. [Google Scholar] [CrossRef] [PubMed]
- Benkhalifa, M.; Madkour, A.; Louanjli, N.; Bouamoud, N.; Saadani, B.; Kaarouch, I.; Chahine, H.; Sefrioui, O.; Merviel, P.; Copin, H. From global proteome profiling to single targeted molecules of follicular fluid and oocyte: Contribution to embryo development and IVF outcome. Expert Rev. Proteom. 2015, 12, 407–423. [Google Scholar] [CrossRef]
- Rajabi, Z.; Khokhar, Z.; Yazdekhasti, H. The Growth of Preantral Follicles and the Impact of Different Supplementations and Circumstances: A Review Study with Focus on Bovine and Human Preantral Follicles. Cell. Reprogram. 2018, 20, 164–177. [Google Scholar] [CrossRef]
- Ménézo, Y.J.; el Mouatassim, S.; Chavrier, M.; Servy, E.J.; Nicolet, B. Human oocytes and preimplantation embryos express mRNA for growth hormone receptor. Zygote 2003, 11, 293–297. [Google Scholar] [CrossRef]
- Lobie, P.E.; Breipohl, W.; Waters, M.J. Growth hormone receptor expression in the rat gastrointestinal tract. Endocrinology 1990, 126, 299–306. [Google Scholar] [CrossRef]
- Zhao, J.; Taverne, M.A.; van der Weijden, G.C.; Bevers, M.M.; van den Hurk, R. Immunohistochemical localisation of growth hormone (GH), GH receptor (GHR), insulin-like growth factor I (IGF-I) and type I IGF-I receptor, and gene expression of GH and GHR in rat pre-antral follicles. Zygote 2002, 10, 85–94. [Google Scholar] [CrossRef]
- Izadyar, F.; Van Tol, H.T.; Colenbrander, B.; Bevers, M.M. Stimulatory effect of growth hormone on in vitro maturation of bovine oocytes is exerted through cumulus cells and not mediated by IGF-I. Mol. Reprod. Dev. 1997, 47, 175–180. [Google Scholar] [CrossRef]
- Iga, K.; Niwa, K.; Bartke, A. Recombinant Bovine Growth Hormone Stimulates Nuclear Maturation of Bovine Oocytes In Vitro and Promotes Subsequent Embryonic Development. J. Reprod. Dev. 1998, 44, 45–52. [Google Scholar] [CrossRef][Green Version]
- Eddie, S.L.; Childs, A.J.; Jabbour, H.N.; Anderson, R.A. Developmentally regulated IL6-type cytokines signal to germ cells in the human fetal ovary. Mol. Hum. Reprod. 2011, 18, 88–95. [Google Scholar] [CrossRef] [PubMed]
Control Group | +OSM | +IGF-1 | +GH | p | |
---|---|---|---|---|---|
Weight (g) | 324.28 ± 13.94 | 330.00 ± 3.08 | 344.28 ± 17.30 | 320.00 ± 7.86 | 0.405 |
Right ovarian weight (g) | 106.61 ± 9.91 | 98.45 ± 9.09 | 93.47 ± 15.22 | 95.62 ± 9.03 | 0.580 |
Left ovarian weight (g) | 105.82 ± 7.53 | 91.68 ± 9.11 | 78.31 ± 6.96 | 92.35 ± 8.19 | 0.237 |
FSH (mIU/mL) | 7.75 ± 0.56 | 7.07 ± 0.25 | 7.81 ± 0.37 | 8.75 ± 0.52 | 0.103 |
AMH (ng/mL) | 7.20 ± 0.31 | 7.35 ± 0.38 | 7.81 ± 0.43 | 8.06 ± 0.32 | 0.515 |
No. of GV Oocytes | No. (%) of Oocytes after Rescue IVM | |||
---|---|---|---|---|
GV→GV | GV→MI | GV→MII | ||
Control group | 30 | 8 (26.6%) | 5 (16.6) | 17 (56.6%) |
+OSM | 28 | 7 (25%) | 6 (21.4%) | 15 (53.5%) |
+IGF-1 | 30 | 18 (60%) | 2 (6.6%) | 10 (33.3%) |
+GH | 23 | 16 (69.5%) | 0 | 7 (30.3%) |
p | 0.001 | 0.001 | 0.001 |
No. of MI Oocytes | No. (%) of Oocytes after Rescue IVM | ||
---|---|---|---|
MI→MI | MI→MII | ||
Control group | 7 | 0 | 7 (100%) |
+OSM | 4 | 0 | 4 (100%) |
+IGF-1 | 1 | 0 | 1 (100%) |
+GH | 5 | 4 (80%) | 1 (20%) |
p | 0.004 | 0.004 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Akdemir, Y.; Donmez Cakil, Y.; Selam, B.; Sitar, M.E.; Cincik, M. Rescue IVM of Denuded GV- and MI-Stage Oocytes of Premenopausal Rats with Oncostatin M, Insulin-like Growth Factor I, and Growth Hormone. Life 2022, 12, 1247. https://doi.org/10.3390/life12081247
Akdemir Y, Donmez Cakil Y, Selam B, Sitar ME, Cincik M. Rescue IVM of Denuded GV- and MI-Stage Oocytes of Premenopausal Rats with Oncostatin M, Insulin-like Growth Factor I, and Growth Hormone. Life. 2022; 12(8):1247. https://doi.org/10.3390/life12081247
Chicago/Turabian StyleAkdemir, Yesim, Yaprak Donmez Cakil, Belgin Selam, Mustafa Erinc Sitar, and Mehmet Cincik. 2022. "Rescue IVM of Denuded GV- and MI-Stage Oocytes of Premenopausal Rats with Oncostatin M, Insulin-like Growth Factor I, and Growth Hormone" Life 12, no. 8: 1247. https://doi.org/10.3390/life12081247
APA StyleAkdemir, Y., Donmez Cakil, Y., Selam, B., Sitar, M. E., & Cincik, M. (2022). Rescue IVM of Denuded GV- and MI-Stage Oocytes of Premenopausal Rats with Oncostatin M, Insulin-like Growth Factor I, and Growth Hormone. Life, 12(8), 1247. https://doi.org/10.3390/life12081247