# A Mutation Threshold for Cooperative Takeover

^{*}

## Abstract

**:**

## 1. Introduction

## 2. The Prisoner’s Dilemma

## 3. Simulation Design and Methods

## 4. Results

#### 4.1. Spatiality and Population Dynamics

#### 4.2. Influence of the Error Rate

#### 4.3. Heritability and Mutations of the Error Rate

## 5. Discussion

## 6. Conclusions

## Supplementary Materials

## Author Contributions

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Data Availability Statement

## Acknowledgments

## Conflicts of Interest

## Abbreviations

PD | Prisoner’s dilemma |

IPD | Iterated prisoner’s dilemma |

ALLC | Always cooperate |

ALLD | Always defect |

TFT | Tit-for-Tat |

RND | Random strategy |

RNA | Ribonucleic acid |

## Appendix A

#### Appendix A.1. Details of the Implementation

**Figure A1.**Distribution of error rates. (

**A**) Probability density functions for three distributions of the error rate with most probable value $\widehat{p}={10}^{-3}$ and shape parameter ${log}_{10}s=-0.75,-0.50,-0.25$ from which the error rates are drawn, where the logarithm of the error rates follows a normal distribution. Initial distributions of error rates are drawn from the distribution, while mutations correspond to corrections that are parametrized from a similar distribution with $m=0$. The lognormal distribution was chosen so that mutations increase or decrease the error rates with the same distribution probability, regardless of the value of the error rates (note the logarithmic horizontal axis while the vertical axis is linear). The value of m thus specifies the mode $\widehat{p}$ of the distribution, and the shape parameter s the extent of mutations. (

**B**) Probability density functions for the same three distributions of error rates, shown this time with axis scaling reversed with respect to panel (

**A**), highlighting the effect of varying parameter s. While increasing the value of the shape parameter has a minimal effect on the mode of the distribution, it extends the tail of the distribution to include higher values of the error rate.

Algorithm 1: Strategy replacement procedure. |

#### Appendix A.2. Evaluation of Quantitative Data

## References

- Schrödinger, E. What Is Life; Cambridge University Press: New York, NY, USA, 1944. [Google Scholar]
- Miller, S.L.; Urey, H.C. Organic Compound Synthes on the Primitive Eart: Several Questions about the Origin of Life Have Been Answered, but Much Remains to Be Studied. Science
**1959**, 130, 245–251. [Google Scholar] [CrossRef] [PubMed] - Gilbert, W. Origin of Life: The RNA World. Nature
**1986**, 319, 618. [Google Scholar] [CrossRef] - Rode, B.M. Peptides and the Origin of Life. Peptides
**1999**, 20, 773–786. [Google Scholar] [CrossRef] - Joyce, G.F. The Antiquity of RNA-based Evolution. Nature
**2002**, 418, 214–221. [Google Scholar] [CrossRef] [PubMed] - Rajamani, S.; Vlassov, A.; Benner, S.; Coombs, A.; Olasagasti, F.; Deamer, D. Lipid-Assisted Synthesis of RNA-like Polymers from Mononucleotides. Orig. Life Evol. Biosph.
**2008**, 38, 57–74. [Google Scholar] [CrossRef] - Lincoln, T.A.; Joyce, G.F. Self-Sustained Replication of an RNA Enzyme. Science
**2009**, 323, 1229–1232. [Google Scholar] [CrossRef] [Green Version] - Neveu, M.; Kim, H.J.; Benner, S.A. The “Strong” RNA World Hypothesis: Fifty Years Old. Astrobiology
**2013**, 13, 391–403. [Google Scholar] [CrossRef] [Green Version] - Higgs, P. Chemical Evolution and the Evolutionary Definition of Life. J. Mol. Evol.
**2017**, 84. [Google Scholar] [CrossRef] [PubMed] - Walker, S.I. Origins of Life: A Problem for Physics. arXiv
**2017**, arXiv:1705.08073. [Google Scholar] - Kauffman, S.A. Autocatalytic Sets of Proteins. J. Theor. Biol.
**1986**, 119, 1–24. [Google Scholar] [CrossRef] - Hordijk, W.; Steel, M. Detecting Autocatalytic, Self-Sustaining Sets in Chemical Reaction Systems. J. Theor. Biol.
**2004**, 227, 451–461. [Google Scholar] [CrossRef] [Green Version] - Hordijk, W. A History of Autocatalytic Sets. Biol. Theory
**2019**, 14, 224–246. [Google Scholar] [CrossRef] - Nghe, P.; Hordijk, W.; Kauffman, S.A.; Walker, S.I.; Schmidt, F.J.; Kemble, H.; Yeates, J.A.M.; Lehman, N. Prebiotic Network Evolution: Six Key Parameters. Mol. Biosyst.
**2015**, 11, 3206–3217. [Google Scholar] [CrossRef] [PubMed] - Pross, A. Toward a General Theory of Evolution: Extending Darwinian Theory to Inanimate Matter. J. Syst. Chem.
**2011**, 2. [Google Scholar] [CrossRef] [Green Version] - Nowak, M.A.; Ohtsuki, H. Prevolutionary Dynamics and the Origin of Evolution. Proc. Natl. Acad. Sci. USA
**2008**, 105, 14924–14927. [Google Scholar] [CrossRef] [Green Version] - Mathis, C.; Ramprasad, S.N.; Walker, S.I.; Lehman, N. Prebiotic RNA Network Formation: A Taxonomy of Molecular Cooperation. Life
**2017**, 7, 38. [Google Scholar] [CrossRef] [PubMed] - Voytek, S.B.; Joyce, G.F. Niche Partitioning in the Coevolution of 2 Distinct RNA Enzymes. Proc. Natl. Acad. Sci. USA
**2009**, 106, 7780–7785. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Adamala, K.; Szostak, J.W. Competition between Model Protocells Driven by an Encapsulated Catalyst. Nat. Chem.
**2013**, 5, 495–501. [Google Scholar] [CrossRef] [Green Version] - Yeates, J.A.M.; Hilbe, C.; Zwick, M.; Nowak, M.A.; Lehman, N. Dynamics of Prebiotic RNA Reproduction Illuminated by Chemical Game Theory. Proc. Natl. Acad. Sci. USA
**2016**, 113, 5030–5035. [Google Scholar] [CrossRef] [Green Version] - Damer, B.; Deamer, D. Coupled Phases and Combinatorial Selection in Fluctuating Hydrothermal Pools: A Scenario to Guide Experimental Approaches to the Origin of Cellular Life. Life
**2015**, 5, 872–887. [Google Scholar] [CrossRef] [Green Version] - Damer, B.; Deamer, D. The Hot Spring Hypothesis for an Origin of Life. Astrobiology
**2020**, 20, 429–452. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Woese, C.R.; Fox, G.E. The Concept of Cellular Evolution. J. Mol. Evol.
**1977**, 10, 1–6. [Google Scholar] [CrossRef] - Vlassov, A.; Khvorova, A.; Yarus, M. Binding and Disruption of Phospholipid Bilayers by Supramolecular RNA Complexes. Proc. Natl. Acad. Sci. USA
**2001**, 98, 7706–7711. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Cornell, C.E.; Black, R.A.; Xue, M.; Litz, H.E.; Ramsay, A.; Gordon, M.; Mileant, A.; Cohen, Z.R.; Williams, J.A.; Lee, K.K.; et al. Prebiotic Amino Acids Bind to and Stabilize Prebiotic Fatty Acid Membranes. Proc. Natl. Acad. Sci. USA
**2019**, 116, 17239–17244. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Colman, A.M.; Colman, A.M. Game Theory and Its Applications in the Social and Biological Sciences; Psychology Press: London, UK, 2013. [Google Scholar]
- Myerson, R.B. Game Theory Analysis of Conflict; Harvard University Press: Cumberland, UK, 2013. [Google Scholar]
- Watson, J. Strategy: An Introduction to Game Theory; Norton & Company: New York, NY, USA; London, UK, 2016. [Google Scholar]
- Sigmund, K. Games of Life: Explorations in Ecology, Evolution, and Behaviour; Oxford University Press: Oxford, UK, 1993. [Google Scholar]
- Keinan, A.; Sandbank, B.; Hilgetag, C.C.; Meilijson, I.; Ruppin, E. Axiomatic Scalable Neurocontroller Analysis via the Shapley Value. Artif. Life
**2006**, 12, 333–352. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Schuster, S.; Kreft, J.U.; Schroeter, A.; Pfeiffer, T. Use of Game-Theoretical Methods in Biochemistry and Biophysics. J. Biol. Phys.
**2008**, 34, 1–17. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Pfeiffer, T.; Schuster, S. Game-Theoretical Approaches to Studying the Evolution of Biochemical Systems. Trends Biochem. Sci.
**2005**, 30, 20–25. [Google Scholar] [CrossRef] - Turner, P.E.; Chao, L. Prisoner’s Dilemma in an RNA Virus. Nature
**1999**, 398, 441–443. [Google Scholar] [CrossRef] - Bohl, K.; Hummert, S.; Werner, S.; Basanta, D.; Deutsch, A.; Schuster, S.; Theißen, G.; Schroeter, A. Evolutionary Game Theory: Molecules as Players. Mol. BioSyst.
**2014**, 10, 3066–3074. [Google Scholar] [CrossRef] [Green Version] - Hong, J.I.; Feng, Q.; Rotello, V.; Rebek, J. Competition, Cooperation, and Mutation: Improving a Synthetic Replicator by Light Irradiation. Science
**1992**, 255, 848–850. [Google Scholar] [CrossRef] [PubMed] - Sievers, D.; von Kiedrowski, G. Self-Replication of Complementary Nucleotide-Based Oligomers. Nature
**1994**, 369, 221–224. [Google Scholar] [CrossRef] [PubMed] - Lee, D.H.; Severin, K.; Ghadiri, M.R. Autocatalytic Networks: The Transition from Molecular Self-Replication to Molecular Ecosystems. Curr. Opin. Chem. Biol.
**1997**, 1, 491–496. [Google Scholar] [CrossRef] - Larson, B.C.; Jensen, R.P.; Lehman, N. The Chemical Origin of Behavior Is Rooted in Abiogenesis. Life
**2012**, 2, 313–322. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Massey, S.E.; Mishra, B. Origin of Biomolecular Games: Deception and Molecular Evolution. J. R. Soc. Interface
**2018**, 15, 20180429. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Kovács, I.A.; Szalay, M.S.; Csermely, P. Water and Molecular Chaperones Act as Weak Links of Protein Folding Networks: Energy Landscape and Punctuated Equilibrium Changes Point towards a Game Theory of Proteins. FEBS Lett.
**2005**, 579, 2254–2260. [Google Scholar] [CrossRef] [Green Version] - Damore, J.A.; Gore, J. Understanding Microbial Cooperation. J. Theor. Biol.
**2012**, 299, 31–41. [Google Scholar] [CrossRef] [Green Version] - Farmer, J.D.; Kauffman, S.A.; Packard, N.H. Autocatalytic Replication of Polymers. Phys. D Nonlinear Phenom.
**1986**, 22, 50–67. [Google Scholar] [CrossRef] - Higgs, P.G.; Lehman, N. The RNA World: Molecular Cooperation at the Origins of Life. Nat. Rev. Genet.
**2015**, 16, 7–17. [Google Scholar] [CrossRef] - Wächtershäuser, G. Before Enzymes and Templates: Theory of Surface Metabolism. Microbiol. Rev.
**1988**, 52, 452–484. [Google Scholar] [CrossRef] - Van Dyken, J.D.; Müller, M.J.I.; Mack, K.M.L.; Desai, M.M. Spatial Population Expansion Promotes the Evolution of Cooperation in an Experimental Prisoner’s Dilemma. Curr. Biol.
**2013**, 23, 919–923. [Google Scholar] [CrossRef] [Green Version] - Dugatkin, L.A. Do Guppies Play TIT FOR TAT during Predator Inspection Visits? Behav. Ecol. Sociobiol.
**1988**, 23, 395–399. [Google Scholar] [CrossRef] - Heinsohn, R.; Packer, C. Complex Cooperative Strategies in Group-Territorial African Lions. Science
**1995**, 269, 1260–1262. [Google Scholar] [CrossRef] - Dugatkin, L.A. Cooperation among Animals: An Evolutionary Perspective; Oxford University Press: New York, NY, USA, 1997. [Google Scholar]
- Dugatkin, L.A.; Reeve, H.K. Game Theory & Animal Behavior; Oxford University Press: New York, NY, USA; Oxford, UK, 2000. [Google Scholar]
- Fehr, E.; Fischbacher, U. The Nature of Human Altruism. Nature
**2003**, 425, 785–791. [Google Scholar] [CrossRef] - Rand, D.G.; Nowak, M.A. Human Cooperation. Trends Cogn. Sci.
**2013**, 17, 413–425. [Google Scholar] [CrossRef] [PubMed] - Frick, T.; Schuster, S. An Example of the Prisoner’s Dilemma in Biochemistry. Naturwissenschaften
**2003**, 90, 327–331. [Google Scholar] [CrossRef] - Queller, D.C. Cooperators Since Life Began. Q. Rev. Biol.
**1997**, 72, 184–188. [Google Scholar] [CrossRef] - Szathmáry, E. Toward Major Evolutionary Transitions Theory 2.0. Proc. Natl. Acad. Sci. USA
**2015**, 112, 10104–10111. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Vaidya, N.; Manapat, M.L.; Chen, I.A.; Xulvi-Brunet, R.; Hayden, E.J.; Lehman, N. Spontaneous Network Formation among Cooperative RNA Replicators. Nature
**2012**, 491, 72–77. [Google Scholar] [CrossRef] [PubMed] - Smith, J.M. Game Theory and the Evolution of Behaviour. Behav. Brain Sci.
**1984**, 7, 95–101. [Google Scholar] [CrossRef] - Axelrod, R.M. The Evolution of Cooperation; Basic Books: New York, NY, USA, 1984. [Google Scholar]
- Nowak, M.A.; May, R.M. Evolutionary Games and Spatial Chaos. Nature
**1992**, 359, 826–829. [Google Scholar] [CrossRef] - Nowak, M.A. Evolutionary Dynamics: Exploring the Equations of Life; Belknap Press of Harvard University Press: Cambridge, MA, USA, 2006. [Google Scholar]
- Kaneko, K. Life: An Introduction to Complex Systems Biology; Springer: Berlin/Heidelberg, Germany, 2010. [Google Scholar]
- Cleland, C.E. The Quest for a Universal Theory of Life: Searching for Life As We Don’t Know It; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2019. [Google Scholar]
- Nowak, M.A.; May, R.M. The Spatial Dilemmas of Evolution. Int. J. Bifurc. Chaos
**1993**, 3, 35–78. [Google Scholar] [CrossRef] - Lindgren, K.; Nordahl, M.G. Evolutionary Dynamics of Spatial Games. Phys. D Nonlinear Phenom.
**1994**, 75, 292–309. [Google Scholar] [CrossRef] - Nowak, M.A.; Bonhoeffer, S.; May, R.M. Spatial Games and the Maintenance of Cooperation. Proc. Natl. Acad. Sci. USA
**1994**, 91, 4877–4881. [Google Scholar] [CrossRef] [Green Version] - Nowak, M.A.; Bonhoeffer, S.; May, R.M. More Spatial Games. Int. J. Bifurc. Chaos
**1994**, 04, 33–56. [Google Scholar] [CrossRef] [Green Version] - Szabó, G.; Toke, C. Evolutionary Prisoner’s Dilemma Game on a Square Lattice. Phys. Rev. E
**1998**, 58, 69–73. [Google Scholar] [CrossRef] [Green Version] - Szabó, G.; Vukov, J.; Szolnoki, A. Phase Diagrams for an Evolutionary Prisoner’s Dilemma Game on Two-Dimensional Lattices. Phys. Rev. E
**2005**, 72, 047107. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Eigen, M. Selforganization of Matter and the Evolution of Biological Macromolecules. Die Naturwissenschaften
**1971**, 58, 465–523. [Google Scholar] [CrossRef] - Sasaki, A. Noisy Clues to the Origin of Life. Proc. R. Soc. Lond. Ser. B Biol. Sci.
**2002**, 269, 2423–2428. [Google Scholar] [CrossRef] - Frey, E. Evolutionary Game Theory: Theoretical Concepts and Applications to Microbial Communities. Phys. A Stat. Mech. Its Appl.
**2010**, 389, 4265–4298. [Google Scholar] [CrossRef] [Green Version] - Nowak, M.; Sigmund, K. The Evolution of Stochastic Strategies in the Prisoner’s Dilemma. Acta Appl. Math.
**1990**, 20, 247–265. [Google Scholar] [CrossRef] - Fundenberg, D.; Maskin, E. Evolution and Cooperation in Noisy Repeated Games. Am. Econ. Rev.
**1990**, 80, 274–279. [Google Scholar] - Bendor, J.; Kramer, R.M.; Stout, S. When in Doubt...: Cooperation in a Noisy Prisoner’s Dilemma. J. Confl. Resolut.
**1991**, 35, 691–719. [Google Scholar] [CrossRef] - Nowak, M.A.; Sigmund, K.; El-Sedy, E. Automata, Repeated Games and Noise. J. Math. Biol.
**1995**, 33, 703–722. [Google Scholar] [CrossRef] - Chong, S.Y.; Yao, X. The Impact of Noise on Iterated Prisoner’s Dilemma with Multiple Levels of Cooperation. In Proceedings of the 2004 Congress on Evolutionary Computation, Piscataway, NJ, USA, 19–23 June 2004; pp. 348–355. [Google Scholar]
- O’Riordan, C. Evolving Strategies for Agents in the Iterated Prisoner’s Dilemma in Noisy Environments. In Adaptive Agents and Multi-Agent Systems II; Hutchison, D., Kanade, T., Kittler, J., Kleinberg, J.M., Mattern, F., Mitchell, J.C., Naor, M., Nierstrasz, O., Pandu Rangan, C., Steffen, B., et al., Eds.; Springer: Berlin/Heidelberg, Germany, 2005; Volume 3394, pp. 205–215. [Google Scholar] [CrossRef]
- Vukov, J.; Szabó, G.; Szolnoki, A. Cooperation in the Noisy Case: Prisoner’s Dilemma Game on Two Types of Regular Random Graphs. Phys. Rev. E
**2006**, 73, 067103. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Chen, X.; Fu, F.; Wang, L. Interaction Stochasticity Supports Cooperation in Spatial Prisoner’s Dilemma. Phys. Rev. E
**2008**, 78. [Google Scholar] [CrossRef] [Green Version] - Menon, S.N.; Sasidevan, V.; Sinha, S. Emergence of Cooperation as a Non-equilibrium Transition in Noisy Spatial Games. Front. Phys.
**2018**, 6, 34. [Google Scholar] [CrossRef] [Green Version] - Morowitz, H.J. Energy Flow in Biology: Biological Organization as a Problem in Thermal Physics; Ox Bow Press: Woodbridge, CN, USA, 1968. [Google Scholar]
- Goodwin, B.C. How the Leopard Changed Its Spots: The Evolution of Complexity; Princeton University Press: Princeton, NJ, USA, 2001. [Google Scholar]
- Chaisson, E. A Unifying Concept for Astrobiology. Int. J. Astrobiol.
**2003**, 2, 91–101. [Google Scholar] [CrossRef] [Green Version] - Schneider, E.D.; Sagan, D. Into the Cool: Energy Flow, Thermodynamics, and Life; University of Chicago Press: Chicago, IL, USA; London, UK, 2005. [Google Scholar]
- Morowitz, H.; Smith, E. Energy Flow and the Organization of Life. Complexity
**2007**, 13, 51–59. [Google Scholar] [CrossRef] - Kauffman, S. At Home in the Universe The Search for the Laws of Self-Organization and Complexity; Oxford University Press: Cary, NC, USA, 2014. [Google Scholar]
- Lane, N. The Vital Question: Energy Evolution And The Origins Of Complex Life; WW Norton: New York, NY, USA, 2015. [Google Scholar]
- Ranjan, S.; Kufner, C.L.; Lozano, G.G.; Todd, Z.R.; Haseki, A.; Sasselov, D.D. UV Transmission in Natural Waters on Prebiotic Earth. Astrobiology
**2021**. [Google Scholar] [CrossRef] - Hopfield, J.J.; Yamane, T.; Yue, V.; Coutts, S.M. Direct Experimental Evidence for Kinetic Proofreading in Amino Acylation of tRNAIle. Proc. Natl. Acad. Sci. USA
**1976**, 73, 1164–1168. [Google Scholar] [CrossRef] [Green Version] - Rajamani, S.; Ichida, J.K.; Antal, T.; Treco, D.A.; Leu, K.; Nowak, M.A.; Szostak, J.W.; Chen, I.A. Effect of Stalling after Mismatches on the Error Catastrophe in Nonenzymatic Nucleic Acid Replication. J. Am. Chem. Soc.
**2010**, 132, 5880–5885. [Google Scholar] [CrossRef] [PubMed] - Leu, K.; Obermayer, B.; Rajamani, S.; Gerland, U.; Chen, I.A. The Prebiotic Evolutionary Advantage of Transferring Genetic Information from RNA to DNA. Nucleic Acids Res.
**2011**, 39, 8135–8147. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Tarazona, P. Error Thresholds for Molecular Quasispecies as Phase Transitions: From Simple Landscapes to Spin-Glass Models. Phys. Rev. A
**1992**, 45, 6038–6050. [Google Scholar] [CrossRef] [PubMed] - Solé, R.V.; Manrubia, S.C.; Luque, B.; Delgado, J.; Bascompte, J. Phase Transitions and Complex Systems: Simple, Nonlinear Models Capture Complex Systems at the Edge of Chaos. Complexity
**1996**, 1, 13–26. [Google Scholar] [CrossRef] [Green Version] - Campos, P.R.A.; Fontanari, J.F. Finite-Size Scaling of the Error Threshold Transition in Finite Populations. J. Phys. A Math. Gen.
**1999**, 32, L1–L7. [Google Scholar] [CrossRef] [Green Version] - Eigen, M. Error Catastrophe and Antiviral Strategy. Proc. Natl. Acad. Sci. USA
**2002**, 99, 13374–13376. [Google Scholar] [CrossRef] [Green Version] - Eigen, M.; McCaskill, J.; Schuster, P. The Molecular Quasi-Species. In Advances in Chemical Physics; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2007; pp. 149–263. [Google Scholar] [CrossRef]
- Jeancolas, C.; Malaterre, C.; Nghe, P. Thresholds in Origin of Life Scenarios. iScience
**2020**, 23, 101756. [Google Scholar] [CrossRef] - Takeuchi, N.; Hogeweg, P. Evolutionary Dynamics of RNA-like Replicator Systems: A Bioinformatic Approach to the Origin of Life. Phys. Life Rev.
**2012**, 9, 219–263. [Google Scholar] [CrossRef] [Green Version] - Mizuuchi, R.; Ichihashi, N. Sustainable Replication and Coevolution of Cooperative RNAs in an Artificial Cell-like System. Nat. Ecol. Evol.
**2018**, 2, 1654. [Google Scholar] [CrossRef] - Mizuuchi, R.; Ichihashi, N. Primitive Compartmentalization for the Sustainable Replication of Genetic Molecules. Life
**2021**, 11, 191. [Google Scholar] [CrossRef] [PubMed] - Hickinbotham, S.J.; Stepney, S.; Hogeweg, P. Nothing in Evolution Makes Sense except in the Light of Parasitism: Evolution of Complex Replication Strategies. R. Soc. Open Sci.
**2021**, 8, 210441. [Google Scholar] [CrossRef] - Axelrod, R.; Hamilton, W.D. The Evolution of Cooperation. Science
**1981**, 211, 1390–1396. [Google Scholar] [CrossRef] [PubMed] - Sethna, J.P. Entropy, Order Parameters, and Complexity; Clarendon Press: Oxford, UK, 2006. [Google Scholar]
- Maynard Smith, J.; Szathmary, E.; Szathm?ry, E.; Szathm Ry, E.R. The Major Transitions in Evolution; Oxford University Press: Oxford, UK, 1997. [Google Scholar]
- Higgs, P.G.; Wu, M. The Importance of Stochastic Transitions for the Origin of Life. Orig. Life Evol. Biosph.
**2012**, 42, 453–457. [Google Scholar] [CrossRef] [PubMed] - Walker, S.I. Evolutionary Transitions and Top-Down Causation. In Proceedings of the ALIFE2012: The Thirteenth International Conference on the Synthesis and Simulation of Living Systems, Stanford, CA, USA, 8–12 October 2012; MIT Press: Cambridge, MA, USA, 2012; pp. 283–290. [Google Scholar] [CrossRef]
- Mathis, C.; Bhattacharya, T.; Walker, S.I. The Emergence of Life as a First-Order Phase Transition. Astrobiology
**2017**, 17, 266–276. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Daniels, B.C.; Kim, H.; Moore, D.; Zhou, S.; Smith, H.B.; Karas, B.; Kauffman, S.A.; Walker, S.I. Criticality Distinguishes the Ensemble of Biological Regulatory Networks. Phys. Rev. Lett.
**2018**, 121, 138102. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Erdos, P.; Rényi, A. On the Evolution of Random Graphs. Publ. Math. Inst. Hung. Acad. Sci.
**1960**, 5, 17–61. [Google Scholar] - Monnard, P.A.; Kanavarioti, A.; Deamer, D.W. Eutectic Phase Polymerization of Activated Ribonucleotide Mixtures Yields Quasi-Equimolar Incorporation of Purine and Pyrimidine Nucleobases. J. Am. Chem. Soc.
**2003**, 125, 13734–13740. [Google Scholar] [CrossRef] [PubMed] - Bachmann, P.A.; Luisi, P.L.; Lang, J. Autocatalytic Self-Replicating Micelles as Models for Prebiotic Structures. Nature
**1992**, 357, 57–59. [Google Scholar] [CrossRef] - Solé, R.V.; Valverde, S. Information Theory of Complex Networks: On Evolution and Architectural Constraints. In Complex Networks; Ben-Naim, E., Frauenfelder, H., Toroczkai, Z., Eds.; Springer: Berlin/Heidelberg, Germany, 2004; Volume 650, pp. 189–207. [Google Scholar] [CrossRef] [Green Version]
- Tononi, G.; Boly, M.; Massimini, M.; Koch, C. Integrated Information Theory: From Consciousness to Its Physical Substrate. Nat. Rev. Neurosci.
**2016**, 17, 450–461. [Google Scholar] [CrossRef] - Thurner, S.; Corominas-Murtra, B.; Hanel, R. Three Faces of Entropy for Complex Systems: Information, Thermodynamics, and the Maximum Entropy Principle. Phys. Rev. E
**2017**, 96. [Google Scholar] [CrossRef] [Green Version] - Walker, S.I.; Callahan, B.J.; Arya, G.; Barry, J.D.; Bhattacharya, T.; Grigoryev, S.; Pellegrini, M.; Rippe, K.; Rosenberg, S.M. Evolutionary Dynamics and Information Hierarchies in Biological Systems: Evolutionary Dynamics and Information Hierarchies. Ann. N. Y. Acad. Sci.
**2013**, 1305, 1–17. [Google Scholar] [CrossRef] [PubMed] - Walker, S.I. Top-Down Causation and the Rise of Information in the Emergence of Life. Information
**2014**, 5, 424–439. [Google Scholar] [CrossRef] [Green Version] - Seoane, L.F.; Solé, R.V. Information Theory, Predictability and the Emergence of Complex Life. R. Soc. Open Sci.
**2018**, 5, 172221. [Google Scholar] [CrossRef] [PubMed] [Green Version]

**Figure 1.**Evolution algorithm. (

**A**) At the beginning of each simulation, strategies ALLC (“always cooperate”, green), ALLD (“always defect”, red), and TFT (“mutual reciprocation”, blue) are placed randomly on the lattice. Then the following process is repeated at each lattice site: strategies play M PD games against every neighbor in their neighborhood, and the scores of each player are recorded. (

**B**) In a second step, the score of each strategy is compared against their neighbor’s score, and (

**C**) the highest scoring strategy (boxed in yellow) is assigned to the site being examined. This process is repeated for each of the T iterations of the model.

**Figure 2.**First fourteen iterations of the model for a deterministic simulation (i.e., $p=0$): strategies ALLC (green), ALLD (red), TFT (blue), and RND (“play randomly”, pink) are initially placed randomly on the lattice, then IPD games are played and the highest scoring strategies are propagated. For such a simulation where no stochasticity is included—each move is determined by the assigned strategy and the players make no mistake playing the PD—a very brief invasion by ALLD precedes an eventual predominance of TFT. RND is quickly eliminated from the lattice, as in most of the simulations over the parameter space of the model. The majority of such deterministic simulations become stationary after only a few tens iterations.

**Figure 3.**Population evolution and final lattice state for two simulations with $\widehat{p}\simeq 3.16\times {10}^{-5}$ (

**A**,

**B**) and $\widehat{p}\simeq 3.16\times {10}^{-2}$ (

**C**,

**D**). Simulations were carried out on a Cartesian lattice of size $L=128$ with periodic boundaries over $T=500$ iterations of the model, with iterated prisoner’s dilemma (IPD) games of $M=2000$ moves. In the second lattice (

**D**), formations of ALLC cooperating together successfully survive while being surrounded by defectors. An animation of the two simulations is available in the Supplementary Material of the online version of this article.

**Figure 4.**Final populations fractions for error rates that are immutable, heritable, and subject to mutations. Relative population frequencies with respect to the total population of strategies following either a strategy of unconditional cooperation (ALLC), unconditional defection (ALLD), or mutual reciprocity (TFT), as a function of the most probable error rate of the initial distribution $\widehat{p}$. Final population fractions are averaged over samples of 20 simulations with random initial conditions, with shaded areas proportional to the standard deviation of final populations. Simulations were all carried out on a 2D periodic lattice of side length $L=128$ sites over $T=500$ iterations of the model, with IPD games of $M=2000$ moves. Error rates were initially set according to a lognormal distribution with the most probable values in abscissa and a fixed shape parameter $s=0.5$. (

**A**) Error rates are immutable over the duration of the simulation. (

**B**) Error rates become heritable (i.e., the player losing the game adopts its opponent’s error rate in addition to its strategy). (

**C**) Introduction of a mutation probability $\mu ={10}^{-4}$. While heritability readily contributes to an increase in cooperative behavior—mostly at lower (≲${10}^{-3}$) error rates—the introduction of mutations (

**C**) is the primary driver of the dominance of cooperative behavior, allowing TFT to invade the lattice on a much larger region of the system’s parameter space.

**Figure 5.**Transition towards TFT-mediated cooperation. (

**A**) Relative population frequency for each strategy as a function of the mutation rate $\mu $. Simulation parameters are identical as in Figure 4, and the data presented here refers to simulations initialized with an initial distribution of error rates having $\widehat{p}={10}^{-4}$ and $s=0.5$. Final populations are averaged on ensembles of 20 simulations with random initial distributions of strategies, with shaded areas proportional to the standard deviation in final population fractions. Increasing the mutation probability $\mu $ drives a continuous transition of the final population fractions towards invasion by TFT until a breakdown of cooperative behavior occurs at very high error rates (inset). (

**B**) RGB-coding for relative population frequency of mutual cooperative behavior (TFT) as a function of mutation rate $\mu $ and shape parameter s of the error rate distribution. Measures are derived from 100 samples of s and $\mu $ combinations, and the results for each parameter configuration pair are averaged over 10 simulations with random initial conditions. (

**C**–

**F**) Final lattice state, error rates distributions, and temporal population, stationarity index, and mean error rate evolutions of five representative simulations taken from the statistical ensemble shown on panel (

**A**). The initial distribution of error rates is shown as a dotted curve on (

**D**), grey bars indicate the error rates distribution for all strategies, while colored curves indicate the ones specific for each strategy. Panel (

**E**) shows population evolution with colored curves, while the black curve indicates the stationarity of the simulation. Panel (

**F**) displays the mean of the error rate for each strategy.

**Figure 6.**Temporal snapshots from a simulation including ALLC (green), ALLD (red) and TFT (blue) with initial error rate distribution parameters $\widehat{p}={10}^{-6}$ and $s=1$, and for which $\mu ={10}^{-4}$, taken at regular intervals of 25 iterations each. In this regime ALLC and TFT coexist while ALLD is a predator for ALLC. Traveling wavefronts of ALLC propagate through time on the lattice, although the fragmentation of ALLC populations into spatially distinct colonies acts as a barrier guarding against complete and immediate invasion by ALLD. The dynamics of the three strategies is reminiscent of a forest-fire model where there is an accumulation of trees (ALLC) according to a growth rate dictated by simulation parameters, which is conducive to dramatic reorganizations of the lattice following ignition (ALLD mutants).

**Table 1.**Score matrix of the Prisoner’s dilemma (PD). Numbers refer to the PD’s score matrix as traditionally defined [57], indicating the reward of the player adopting the strategy in the leftmost column. Mutual cooperation leads to the best possible mean outcome, while defection either leads to the absolute maximum or the absolute minimum reward. Letters refer to the general form of the score matrix for the PD: mutual cooperation leads to the reward payoff (R), while mutual defection leads to the punishment (P). Exploitation—with one player defecting while the opponent chooses to cooperate—leads to the temptation payoff (T) and sucker’s payoff (S). The game satisfies the PD constraint when $T>R>P>S$.

Cooperate | Defect | |||
---|---|---|---|---|

Cooperate | R | S | ||

3 | 0 | |||

Defect | T | P | ||

5 | 1 |

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Champagne-Ruel, A.; Charbonneau, P.
A Mutation Threshold for Cooperative Takeover. *Life* **2022**, *12*, 254.
https://doi.org/10.3390/life12020254

**AMA Style**

Champagne-Ruel A, Charbonneau P.
A Mutation Threshold for Cooperative Takeover. *Life*. 2022; 12(2):254.
https://doi.org/10.3390/life12020254

**Chicago/Turabian Style**

Champagne-Ruel, Alexandre, and Paul Charbonneau.
2022. "A Mutation Threshold for Cooperative Takeover" *Life* 12, no. 2: 254.
https://doi.org/10.3390/life12020254