Influence of Dissolved Oxygen Level on Chitin–Glucan Complex and Mannans Production by the Yeast Pichia pastoris
Abstract
:1. Introduction
2. Materials and Methods
2.1. Yeast Strain and Culture Medium
2.2. Batch Bioreactor Cultivations
2.3. Fed-Batch Bioreactor Cultivation
2.4. Analytical Techniques
2.5. Polymers’ Extraction
2.6. Polymers’ Characterization
2.7. Kinetic Parameters
2.8. Statistical Analysis
3. Results
3.1. Effect of the DO Level on P. pastoris Cultivation
3.1.1. Biomass Production
3.1.2. CGC Production
3.1.3. Mannans Production
3.2. Fed-Batch Bioreactor Cultivation
4. Discussion
4.1. Effect of the DO Level on P. pastoris Cultivation
4.1.1. Biomass Production
4.1.2. CGC Production
4.1.3. Mannans Production
4.2. Fed-Batch Bioreactor Cultivation
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Araújo, D.; Ferreira, I.C.; Torres, C.A.V.; Neves, L.; Freitas, F. Chitinous polymers: Extraction from fungal sources, characterization and processing towards value-added applications. J. Chem. Technol. Biotechnol. 2020, 95, 1277–1289. [Google Scholar] [CrossRef] [Green Version]
- Bottin, J.H.; Swann, J.R.; Cropp, E.; Chambers, E.S.; Ford, H.E.; Ghatei, M.A.; Frost, G.S. Mycoprotein reduces energy intake and postprandial insulin release without altering glucagon-like peptide-1 and peptide tyrosine-tyrosine concentrations in healthy overweight and obese adults: A randomised-controlled trial. Br. J. Nutr. 2016, 116, 360–374. [Google Scholar] [CrossRef] [Green Version]
- Neyrinck, A.M.; Catry, E.; Taminiau, B.; Cani, P.D.; Bindels, L.B.; Daube, G.; Dessy, C.; Delzenne, N.D. Chitin–glucan and pomegranate polyphenols improve endothelial dysfunction. Sci. Rep. 2019, 9, 14150. [Google Scholar] [CrossRef] [Green Version]
- Abdel-Mohsen, A.M.; Jancar, J.; Massoud, D.; Fohlerova, Z.; Elhadidy, H.; Spotz, Z.; Hebeish, A. Novel chitin/chitosan-glucan wound dressing: Isolation, characterization, antibacterial activity and wound healing properties. Int. J. Pharm. 2016, 510, 86–99. [Google Scholar] [CrossRef]
- Liu, Y.; Wu, Q.; Wu, X.; Algharib, S.A.; Gong, F.; Hu, J.; Luo, W.; Zhou, M.; Pan, Y.; Yan, Y.; et al. Structure, preparation, modification, and bioactivities of β-glucan and mannan from yeast cell wall: A review. Int. J. Biol. Macromol. 2021, 173, 445–456. [Google Scholar] [CrossRef] [PubMed]
- Tanihiro, R.; Sakano, K.; Oba, S.; Nakamura, C.; Ohki, K.; Hirota, T.; Sugiyama, H.; Ebihara, S.; Nakamura, Y. Effects of yeast mannan which promotes beneficial Bacteroides on the intestinal environment and skin condition: A randomized, double-blind, placebo-controlled study. Nutrients 2020, 12, 3673. [Google Scholar] [CrossRef]
- Farinha, I.; Araújo, D.; Freitas, F. Optimization of medium composition for production of chitin-glucan complex and mannose-containing polysaccharides by the yeast Komagataella pastoris. J. Biotechnol. 2019, 303, 30–36. [Google Scholar] [CrossRef]
- Arroyo, J.; Farkaš, V.; Sanz, A.B.; Cabib, E. Strengthening the fungal cell wall through chitin–glucan cross-links: Effects on morphogenesis and cell integrity. Cell. Microbiol. 2016, 18, 1239–1250. [Google Scholar] [CrossRef]
- Sanz, A.B.; García, R.; Rodríguez-Peña, J.M.; Arroyo, J. The CWI pathway: Regulation of the transcriptional adaptive response to cell wall stress in yeast. J. Fungi 2018, 4, 1. [Google Scholar] [CrossRef] [Green Version]
- Liu, W.-C.; Inwood, S.; Gong, T.; Sharma, A.; Yu, L.-Y.; Zhu, P. Fed-batch high-cell-density fermentation strategies for Pichia pastoris growth and production. Crit. Rev. Biotechnol. 2019, 39, 258–271. [Google Scholar] [CrossRef]
- Çalık, P.; Ata, Ö.; Günes, H.; Massahi, A.; Boy, E.; Keskin, A.; Öztürk, S.; Zerze, G.H.; Özdamar, T.H. Recombinant protein production in Pichia pastoris under glyceraldehyde-3-phosphate dehydrogenase promoter: From carbon source metabolism to bioreactor operation parameters. Biochem. Eng. J. 2015, 95, 20–36. [Google Scholar] [CrossRef]
- Chagas, B.; Farinha, I.; Galinha, C.F.; Freitas, F.; Reis, M.A.M. Chitin-glucan complex production by Pichia (Pichia) pastoris: Impact of cultivation pH and temperature on polymer content and composition. New Biotechnol. 2014, 31, 468–474. [Google Scholar] [CrossRef]
- Gmeiner, C.; Saadati, A.; Maresch, D.; Krasteva, S.; Frank, M.; Altmann, F.; Herwig, C.; Spadiut, O. Development of a fed-batch process for a recombinant Pichia pastoris Δoch1 strain expressing a plant peroxidase. Microb. Cell Fact. 2015, 14, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Farinha, I.; Freitas, F.; Reis, M.A.M. Implementation of a repeated fed-batch process for the production of chitin-glucan complex by Pichia pastoris. New Biotechnol. 2017, 37, 123–128. [Google Scholar] [CrossRef] [PubMed]
- Robert, J.M.; Garcia-Ortega, X.; Montesinos-Seguí, J.L.; Freire, D.M.G.; Valero, F. Continuous operation, a realistic alternative to fed-batch fermentation for the production of recombinant lipase B from Candida antarctica under the constitutive promoter PGK in Pichia pastoris. Biochem. Eng. J. 2019, 147, 39–47. [Google Scholar] [CrossRef]
- Noseda, D.G.; Recúpero, M.; Blasco, M.; Bozzo, J.; Galvagno, M.A. Production in stirred-tank bioreactor of recombinant bovine chymosin B by a high-level expression transformant clone of Pichia pastoris. Protein Expr. Purif. 2016, 123, 112–121. [Google Scholar] [CrossRef]
- Araújo, D.; Freitas, F.; Sevrin, C.; Grandfils, C.; Reis, M.A.M. Co-production of chitin-glucan complex and xylitol by Komagataella pastoris using glucose and xylose mixtures as carbon source. Carbohydr. Polym. 2017, 166, 24–30. [Google Scholar] [CrossRef]
- D’Anjou, M.C.; Daugulis, A.J. Mixed-feed exponential feeding for fed-batch culture of recombinant methylotrophic yeast. Biotechnol. Lett. 2000, 22, 341–346. [Google Scholar] [CrossRef]
- Günes, H.; Çalık, P. Oxygen transfer as a tool for fine-tuning recombinant protein production by Pichia pastoris under glyceraldehyde-3-phosphate dehydrogenase promoter. Bioprocess Biosyst. Eng. 2016, 39, 1061–1072. [Google Scholar] [CrossRef]
- Luo, Z.; Miao, J.; Luo, W.; Li, G.; Du, Y.; Yu, X. Crude glycerol from biodiesel as a carbon source for production of a recombinant highly thermostable b-mannanase by Pichia pastoris. Biotechnol. Lett. 2018, 40, 135–141. [Google Scholar] [CrossRef] [PubMed]
- Gow, N.A.R.; Latge, J.-P.; Munro, C.A. The fungal cell wall: Structure, biosynthesis, and function. Microbiol. Spectr. 2017, 5, 1–25. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nawawi, W.M.F.W.; Lee, K.-Y.; Kontturi, E.; Bismarck, A.; Mautner, A. Surface properties of chitin-glucan nanopapers from Agaricus bisporus. Int. J. Biol. Macromol. 2020, 148, 677–687. [Google Scholar] [CrossRef] [PubMed]
- Hong, Y.; Ying, T. Characterization of a chitin-glucan complex from the fruiting body of Termitomyces albuminosus (Berk.) Heim. Int. J. Biol. Macromol. 2019, 134, 131–138. [Google Scholar] [CrossRef]
- Zeynali, M.; Hatamian-Zarmi, A.; Larypoor, M. Evaluation of chitin-glucan complex production in submerged culture of medicinal mushroom of Schizophilum commune: Optimization and growth kinetic. Iran J. Med. Microbiol. 2019, 13, 406–424. [Google Scholar] [CrossRef]
- Galinari, E.; Sabry, D.A.; Sassaki, G.L.; Macedo, G.R.; Passos, F.M.L.; Mantovani, H.C.; Rocha, H.A.O. Chemical structure, antiproliferative and antioxidant activities of a cell wall α-d-mannan from yeast Kluyveromyces marxianus. Carbohydr. Polym. 2017, 157, 1298–1305. [Google Scholar] [CrossRef] [PubMed]
- Faustino, M.; Durão, J.; Pereira, C.F.; Pintado, M.E.; Carvalho, A.P. Mannans and mannan oligosaccharides (MOS) from Saccharomyces cerevisiae—A sustainable source of functional ingredientes. Carbohydr. Polym. 2021, 272, 118467. [Google Scholar] [CrossRef]
- Liu, Y.; Huang, G.; Lv, M. Extraction, characterization and antioxidant activities of mannan from yeast cell wall. Int. J. Biol. Macromol. 2018, 118, 952–956. [Google Scholar] [CrossRef]
- Serba, E.; Pimenov, N.; Mochalina, P.; Overchenko, M.; Borscheva, Y.; Sharikov, A.; Rimareva, L. Production of Aspergillus oryzae RCAM 01133 biomass with increased protein and polysaccharides content using by-products of food industry. Agron. Res. 2020, 18, 290–300. [Google Scholar]
DO (%) | μmax (h−1) | DCW (g/L) | CGC Content (wt%) | CGC (g/L) | Mannan Content (wt%) | Mannans (g/L) | rCGC (g/(L. day)) | rM (g/(L. day)) | YX/S (gx/gs) | YCGC/S (gc/gs) | YM/S (gm/gs) |
---|---|---|---|---|---|---|---|---|---|---|---|
5 | 0.12 | 22.51 | 18 | 4.16 | 17 | 3.92 | 2.36 | 2.23 | 0.38 | 0.07 | 0.07 |
15 | 0.15 | 25.71 | 17 | 4.42 | 20 | 5.32 | 2.51 | 3.02 | 0.45 | 0.08 | 0.09 |
30 | 0.16 | 23.29 | 17 | 4.16 | 16 | 3.80 | 2.37 | 2.16 | 0.41 | 0.07 | 0.07 |
50 | 0.17 | 22.37 | 15 | 3.55 | 15 | 3.47 | 2.09 | 2.04 | 0.36 | 0.06 | 0.06 |
p-value | 0.044 | 0.881 | 0.431 | 0.076 | 0.440 | 0.077 | 0.060 | 0.060 | 0.046 | 0.044 | 0.044 |
Strain | DO (%) | DCW (g/L) | CGC (wt%) | CGC (g/L) | Mannans (wt%) | Mannans (g/L) | rCGC (g/(L. day)) | rM (g/(L. day)) | YX/S (gx/gs) | YCGC/S (gc/gs) | YM/S (gm/gs) | Refs. |
---|---|---|---|---|---|---|---|---|---|---|---|---|
DSM 70877 | 15 | 95.1 | 18 | 17.04 | 22 | 21.30 | 8.67 | 10.69 | 0.51 | 0.09 | 0.11 | This work |
DSM 70877 | 15 | 179.4 | 19 | 34.6 | 21 | 38 | 17.5 | 19.2 | 0.50 | 0.10 | 0.11 | [7] |
DSM 70877 | 50 | 121.9 | 13.5 | 16.49 | n.a. | n.a. | 8.32 | n.a. | 0.49 | 0.07 | n.a. | [14] |
X-33 | 30 | 70.7 | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. | 0.50 | n.a. | n.a. | [15] |
GS115 | 30- | 102 | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. | 0.57 | n.a. | n.a. | [16] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Farinha, I.; Baptista, S.; Reis, M.A.M.; Freitas, F. Influence of Dissolved Oxygen Level on Chitin–Glucan Complex and Mannans Production by the Yeast Pichia pastoris. Life 2022, 12, 161. https://doi.org/10.3390/life12020161
Farinha I, Baptista S, Reis MAM, Freitas F. Influence of Dissolved Oxygen Level on Chitin–Glucan Complex and Mannans Production by the Yeast Pichia pastoris. Life. 2022; 12(2):161. https://doi.org/10.3390/life12020161
Chicago/Turabian StyleFarinha, Inês, Sílvia Baptista, Maria A. M. Reis, and Filomena Freitas. 2022. "Influence of Dissolved Oxygen Level on Chitin–Glucan Complex and Mannans Production by the Yeast Pichia pastoris" Life 12, no. 2: 161. https://doi.org/10.3390/life12020161
APA StyleFarinha, I., Baptista, S., Reis, M. A. M., & Freitas, F. (2022). Influence of Dissolved Oxygen Level on Chitin–Glucan Complex and Mannans Production by the Yeast Pichia pastoris. Life, 12(2), 161. https://doi.org/10.3390/life12020161