A Comparative Study of Stone Re-Treatment after Lithotripsy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Sources
2.2. Study Design and Sampled Participants
2.3. Statistical Criteria
2.4. Data Analysis
3. Results
3.1. Univariate Analysis of the Re-Treatment Rate of Urolithiasis
3.2. Multivariate Analysis of the Re-Treatment Rate of Urolithiasis
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lee, Y.H.; Huang, W.C.; Chang, L.S.; Chen, M.T.; Yang, Y.F.; Huang, J.K. The long-term stone recurrence rate and renal function change in unilateral nephrectomy urollithiasis patients. J. Urol. 1994, 152, 1386–1388. [Google Scholar] [CrossRef] [PubMed]
- Trinchieri, A.; Ostini, F.; Nespoli, R.; Rovera, F.; Montanari, E.; Zanetti, G. A prospective study of recurrence rate and risl factors for recurrrence after a first renal stone. Am. Urol. Assoc. 1999, 162, 27–30. [Google Scholar]
- D’Costa, M.R.; Pais, V.M.; Rule, A.D. Leave no stone unturned: Defining recurrence in kidney stone formers. Curr. Opin. Nephrol. Hypertens. 2019, 28, 148–153. [Google Scholar] [CrossRef]
- Hoffman, A.; Braun, M.M.; Khayat, M. Kidney Disease: Kidney Stones. FP Essent. 2021, 509, 33–38. [Google Scholar]
- Wang, Z.; Zhang, Y.; Zhang, J.; Deng, Q.; Liang, H. Recent advances on the mechanisms of kidney stone formation (Review). Int. J. Mol. Med. 2021, 48, 149–159. [Google Scholar] [CrossRef]
- Türk, C.; Petřík, A.; Sarica, K.; Seitz, C.; Skolarikos, A.; Straub, M.; Knoll, T. EAU guidelines on diagnosis and conservative management of urolithiasis. Eur. Urol. 2016, 69, 468–474. [Google Scholar] [CrossRef] [PubMed]
- El-Assmy, A.; Harraz, A.M.; Eldemerdash, Y.; Elkhamesy, M.; El-Nahas, A.R.; Elshal, A.M.; Sheir, K.Z. Does lithotripsy increase stone retreatment? A comparative study between extracorporeal shockwave lithotripsy and non-fragmenting percutaneous nephrolithotomy. Arab. J. Urol. 2016, 14, 108–114. [Google Scholar] [CrossRef] [Green Version]
- Köhrmann, K.U.; Rassweiler, J.; Alken, P. The recurrence rate of stones following ESWL. World J. Urol. 1993, 11, 26–30. [Google Scholar] [CrossRef]
- Knoll, T.; Wendt-Nordahl, G. Uretero(reno)scopy: Management of complications. Urol. A. 2014, 53, 689–694. [Google Scholar] [CrossRef]
- Petrík, A. Comparison of the efficacy of ESWL and ureteroscopy in the treatment of lower ureteric stone. Cas. Lek. Cesk. 2007, 146, 776–780. [Google Scholar]
- Desai, M.; Sun, Y.; Buchholz, N.; Fuller, A.; Matsuda, T.; Matlaga, B.; Miller, N.; Bolton, D.; Alomar, M.; Ganpule, A. Treatment selection for urolithiasis: Percutaneous nephrolithomy, ureteroscopy, shock wave lithotripsy, and active monitoring. World J. Urol. 2017, 35, 1395–1399. [Google Scholar] [CrossRef] [PubMed]
- Tsai, S.H.; Chung, H.J.; Tseng, P.T.; Wu, Y.C.; Tu, Y.K.; Hsu, C.W.; Lei, W.T. Comparison of the efficacy and safety of shockwave lithotripsy, retrograde intrarenal surgery, percutaneous nephrolithotomy, and minimally invasive percutaneous nephrolithotomy for lower-pole renal stones: A systematic review and network meta-analysis. Medicine 2020, 99, e19403. [Google Scholar] [CrossRef] [PubMed]
- Torres, J.P.; Oliveira, J.N.; Morais, N.; Anacleto, S.; Rodrigues, R.M.; Mota, P.; Leão, R.; Lima, E. Efficacy and safety of renal drainage options for percutaneous nephrolithotomy. Minerva Urol. Nefrol. 2020, 72, 629–636. [Google Scholar] [CrossRef]
- Doizi, S.; Traxer, O. Flexible ureteroscopy: Technique, tips and tricks. Urolithiasis 2018, 46, 47–58. [Google Scholar] [CrossRef] [PubMed]
- Schlomer, S.J. Urologic treatment of nephrolithiasis. Curr. Opin. Pediatr. 2020, 32, 288–294. [Google Scholar] [CrossRef]
- Assimos, D.G.; Krambeck, A.; Miller, N.L.; Monga, M.; Murad, M.H.; Nelson, C.P.; Pace, K.T.; Pais, V.M.; Pearle, M.S.; Preminger, G.M. Surgical management of stones: American urological association/endourological society guideline, PART I. J. Urol. 2016, 196, 1153–1160. [Google Scholar] [CrossRef] [PubMed]
- Niwal, N.; Matsumoto, K.; Miyahara, M.; Omura, M.; Kobayashi, H.; Kikuchi, E.; Miyajima, A.; Miyata, K.; Oya, M. Simple and practical nomograms for predicting the stone-free rate after shock wave lithotripsy in patients with a solitary upper ureteral stone. World J. Urol. 2017, 35, 1455–1461. [Google Scholar] [CrossRef]
- Rodríguez, D.; Sacco, D.E. Minimally invasive surgical treatment for kidney stone disease. Adv. Chronic Kidney Dis. 2015, 22, 266–272. [Google Scholar] [CrossRef]
- Agrawal, M.S.; Singh, S.K.; Singh, H. Management of multiple/staghorn kidney stones: Open surgery versus PCNL (with or without ESWL). Indian J. Urol. 2009, 25, 284–285. [Google Scholar]
- Andankar, M.G.; Maheshwari, P.N.; Saple, A.L.; Mehta, V.; Varshney, A.; Bansal, B. Symptomatic small non-obstructing lower ureteric calculi: Comparison of ureteroscopy and extra corporeal shock wave lithotripsy. J. Postgrad. Med. 2001, 47, 177–180. [Google Scholar]
- Krambeck, A.; Rangel, L.J.; LeRoy, A.J.; Patterson, D.E.; Gettman, M.T. Risk factors for stone recurrence after percutaneous nephrolithotomy. Int. Urolithiasis Res. Symp. 2008, 10, 283–292. [Google Scholar]
- Liu, Y.; Chen, Y.; Liao, B.; Luo, D.; Wang, K.; Li, Y.; Zeng, G. Epidemiology of urolithiasis in Asia. Asian J. Urol. 2018, 5, 205–214. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.W.; Song, P.H.; Kim, H.T. Predictive factors of the outcome of extracorporeal shockwave lithotripsy for ureteral stones. Korean J. Urol. 2012, 53, 424–430. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chongruksut, W.; Lojanapiwat, B.; Tawichasri, C.; Paichitvichean, S.; Euathrongchit, J.; Ayudhya, V.C.N.; Patumanond, J. Predictors for kidney stones recurrence following extracorporeal shock wave lithotripsy (ESWL)or percutaneous nephrolithotomy (PCNL). J. Med. Assoc. Thail. 2012, 95, 342–348. [Google Scholar]
- Costa-Bauza, A.; Perello, J.; Isern, B.; Sanchis, P.; Grases, F. Factors affecting calcium oxalate dihydrate fragmented calculi regrowth. BMC Urol. 2006, 6, 16. [Google Scholar] [CrossRef] [Green Version]
- De Cogain, M.; Krambeck, A.E.; Rule, A.D.; Li, X.; Bergstralh, E.J.; Gettman, M.T.; Lieske, J.C. Shock wave lithotripsy and diabetes mellitus: A population-based cohort study. Urology 2012, 79, 298–302. [Google Scholar] [CrossRef] [Green Version]
- Rule, A.D.; Roger, V.L.; Melton, L.J., 3rd; Bergstralh, E.J.; Li, X.; Peyser, P.A.; Krambeck, A.E.; Lieske, J.C. Kidney stones associate with increased risk for myocardial infarction. J. Am. Soc. Nephrol. 2010, 21, 1641–1644. [Google Scholar] [CrossRef] [Green Version]
- Shih, C.J.; Chen, Y.T.; Ou, S.M.; Yang, W.C.; Chen, T.J.; Tarng, D.C. Urinary calculi and risk of cancer: A nationwide population-based study. Medicine 2014, 93, e342. [Google Scholar] [CrossRef]
- Chugh, S.; Pietropaolo, A.; Montanari, E.; Sarica, K.; Somani, B.K. Predictors of urinary infections and urosepsis after ureteroscopy for stone disease: A systematic review from EAU section of urolithiasis (EULIS). Curr. Urol. Rep. 2020, 21, 16. [Google Scholar] [CrossRef] [Green Version]
- Corrales, M.; Traxer, O. Initial clinical experience with the new thulium fiber laser: First 50 cases. World J. Urol. 2021, 39, 3945–3950. [Google Scholar] [CrossRef]
- Hubert, K.C.; Singh, M.; Zhou, E.H.; Santos, G.D.; Stovsky, M.D. Charlson comorbidity index and success of extracorporeal shock wave lithotripsy. Can J. Urol. 2009, 16, 4733–4735. [Google Scholar]
- Cheng, C.L.; Kao, Y.H.; Lin, S.J.; Lee, C.H.; Lai, M.L. Validation of the National Health Insurance Research Database with ischemic stroke cases in Taiwan. Pharmacoepidemiol. Drug Saf. 2011, 20, 236–242. [Google Scholar] [CrossRef] [PubMed]
- Al-Ansari, A.; As-Sadiq, K.; Al-Said, S.; Younis, N.; Jaleel, O.A.; Shokeir, A.A. Prognostic factors of success of extracorporeal shock wave lithotripsy (ESWL) in the treatment of renal stones. Int. Urol. Nephrol. 2006, 38, 63–67. [Google Scholar] [CrossRef] [PubMed]
- Carbone, A.; Salhi, Y.A.; Tasca, A.; Palleschi, G.; Fuschi, A.; Nunzio, C.D.; Bozzini, G.; Mazzaferro, S.; Pastore, A.L. Obesity and kidney stone disease: A systematic review. Minerva Urol. Nefrol. 2018, 70, 393–400. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khan, S.R.; Pearle, M.S.; Robertson, W.G.; Gambaro, G.; Canales, B.K.; Doizi, S.; Traxer, O.; Tiselius, H.G. Kidney stones. Nat. Rev. Dis. Prim. 2017, 2, 16008. [Google Scholar] [CrossRef] [Green Version]
- Bargagli, M.; Ferraro, P.M.; Vittori, M.; Lombardi, G.; Gambaro, G.; Somani, B. Calcium and vitamin D supplementation and their association with kidney stone disease: A narrative review. Nutrients 2021, 13, 4363. [Google Scholar] [CrossRef]
- Cone, E.B.; Hammill, B.G.; Routh, J.C.; Lipkin, M.E.; Preminger, G.M.; Schmader, K.E.; Scales, C.D., Jr. Disproportionate use of inpatient care by older adults with kidney stones. Urology 2018, 120, 103–108. [Google Scholar] [CrossRef]
- Ferraro, P.M.; Bargagli, M. Dietetic and lifestyle recommendations for stone formers. Arch. Esp. Urol. 2021, 74, 112–122. [Google Scholar]
- Ferraro, P.M.; Bargagli, M.; Trinchieri, A.; Gambaro, G. Risk of kidney stones: Influence of dietary factors, dietary patterns, and vegetarian-vegan diets. Nutrients 2020, 12, 779. [Google Scholar] [CrossRef]
- Ziemba, J.B.; Matlaga, B.R. Epidemiology and economics of nephrolithiasis. Investig. Clin. Urol. 2017, 58, 299–306. [Google Scholar] [CrossRef]
- Wang, Y.; Zhong, B.; Yang, X.; Wang, G.; Hou, P.; Meng, J. Comparison of the efficacy and safety of URSL, RPLU, and MPCNL for treatment of large upper impacted ureteral stones: A randomized controlled trial. BMC Urol. 2017, 17, 50. [Google Scholar] [CrossRef] [PubMed]
- Yu, D.S.; Yang, Y.T.; Lai, C.H. Epidemiology and treatment of inpatients urolithiasis in Taiwan. Formos. J. Surg. 2016, 49, 136–141. [Google Scholar] [CrossRef] [Green Version]
- Knoll, T.; Buchholz, N.; Wendt-Nordahl, G. Extracorporeal shockwave lithotripsy vs. percutaneous nephrolithotomy vs. flexible ureterorenoscopy for lower-pole stones. Arab J. Urol. 2012, 10, 336–341. [Google Scholar] [CrossRef]
- Schilling, D.; Gakis, G.; Walcher, U.; Germann, M.; Stenzl, A.; Nagele, U. Minimally invasive percutaneous treatment of lower pole stones with a diameter of 8 to 15 millimeters. Aktuelle Urol. 2009, 40, 351–354. [Google Scholar] [CrossRef]
- Pearle, M.S.; Lingeman, J.E.; Leveillee, R.; Kuo, R.; Preminger, G.M.; Nadler, R.B.; Macaluso, J.; Monga, M.; Kumar, U.; Dushinski, J. Prospective, randomized trial comparing shock wave lithotripsy and ureteroscopy for lower pole caliceal calculi 1 cm or less. J. Urol. 2005, 173, 2005–2009. [Google Scholar] [CrossRef]
- Worcester, E.M.; Parks, J.H.; Evan, A.P.; Coe, F.L. Renal function in patients with nephrolithiasis. J. Urol. 2006, 176, 600–603. [Google Scholar] [CrossRef]
- Cicerello, E.; Merlo, F.; Maccatrozzo, L. Management of clinically insignificant residual fragments following shock wave lithotripsy. Adv. Urol. 2012, 2012, 5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, S.; Zhang, Y.; Zhang, X.; Tangal, Y.; Li, J. Upper urinary tract stone compositions: The role of age and gender. Int. Braz. J. Urol. 2020, 46, 70–80. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, M.H.; Barakat, S.; Almobarak, A.O. The association between renal stone disease and cholesterol gallstones: The easy to believe and not hard to retrieve theory of the metabolic syndrome. Renal Fail. 2014, 36, 957–962. [Google Scholar] [CrossRef]
- Mehta, M.; Goldfarb, D.S.; Nazzal, L. The role of the microbiome in kidney stone formation. Int. J. Surg. 2016, 36, 607–612. [Google Scholar] [CrossRef]
- Kale, S.S.; Ghole, V.S.; Pawar, N.J.; Jagtap, D.V. Inter-annual variability of urolithiasis epidemic from semi-arid part of Deccan Volcanic Province, India: Climatic and hydrogeochemical perspectives. Int. J. Environ. Health Res. 2014, 24, 278–289. [Google Scholar] [CrossRef] [PubMed]
Variables | Number of Individuals (%) | ||
---|---|---|---|
With Lithotripsy | Without Lithotripsy | ||
(n = 350) | (n = 1400) | ||
Sex | |||
Male | 216 (61.71%) | 864 (61.71%) | |
Female | 134 (38.29%) | 536 (38.29%) | |
Age (years, mean ± SD) | 50.34 ± 14.32 | 50.27 ± 14.54 | |
Age group (years) | |||
18–30 | 28(8.00%) | 112 (8.00%) | |
31–40 | 70 (20.00%) | 280 (20.00%) | |
41–50 | 97 (27.71%) | 388 (27.71%) | |
51–65 | 101 (28.86%) | 404 (28.86%) | |
>65 | 54 (15.43%) | 216 (15.43%) | |
Level of care | |||
Medical center | 52 (14.86%) | 208 (14.86%) | |
Regional hospital | 95 (27.14%) | 380 (27.14%) | |
Local hospital | 203 (58.00%) | 812 (58.00%) |
Univariate Analysis | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Variables | Case Numbers n (%) | With Re-Treatment n (%) | Without Re-Treatment n (%) | p-Value | |||||||
Total number and percentage | 1716 | (100.00) | 637 | (37.12) | 1079 | (62.88) | |||||
Lithotripsy * | <0.001 | ||||||||||
With | 341 | (19.87) | 204 | (32.03) | 137 | (12.70) | |||||
Without * | 1375 | (80.13) | 433 | (67.97) | 942 | (87.30) | |||||
ESWL | <0.001 | ||||||||||
With | 241 | (14.04) | 142 | (22.29) | 99 | (9.18) | |||||
Without | 1475 | (85.96) | 495 | (77.71) | 980 | (90.82) | |||||
PCNL | <0.001 | ||||||||||
With | 79 | (4.60) | 59 | (9.26) | 20 | (1.85) | |||||
Without | 1637 | (95.40) | 578 | (90.74) | 1059 | (98.15) | |||||
URSL | <0.001 | ||||||||||
With | 53 | (3.09) | 32 | (5.02) | 21 | (1.95) | |||||
Without | 1663 | (96.91) | 605 | (94.98) | 1058 | (98.05) | |||||
Lithotripsy | <0.001 | ||||||||||
Without | 1375 | (80.13) | 433 | (67.97) | 942 | (87.30) | |||||
ESWL only | 214 | (12.47) | 118 | (18.52) | 96 | (8.90) | |||||
PCNL only | 56 | (3.26) | 38 | (5.97) | 18 | (1.67) | |||||
URSL only | 41 | (2.39) | 21 | (3.30) | 20 | (1.85) | |||||
ESWL + PCNL | 18 | (1.05) | 16 | (2.51) | 2 | (0.19) | |||||
ESWL + URSL | 7 | (0.41) | 6 | (0.94) | 1 | (0.09) | |||||
PCNL + URSL | 3 | (0.17) | 3 | (0.47) | 0 | (0) | |||||
ESWL + PCNL + URSL | 2 | (0.12) | 2 | (0.31) | 0 | (0) | |||||
Sociodemography | |||||||||||
Sex | 0.01 | ||||||||||
Male | 1057 | (61.60) | 418 | (65.62) | 639 | (59.22) | |||||
Female | 659 | (38.40) | 219 | (34.38) | 440 | (40.78) | |||||
Age (mean ± SD) | 53.90 ± 14.36 | 52.07 ± 13.72 | 54.97 ± 14.63 | <0.001 | |||||||
Age group (years) | 0.01 | ||||||||||
18–30 | 75 | (4.37) | 33 | (5.18) | 42 | (3.89) | |||||
31–40 | 250 | (14.57) | 103 | (16.17) | 147 | (13.62) | |||||
41–50 | 458 | (26.69) | 175 | (27.47) | 283 | (26.23) | |||||
51–65 | 572 | (33.33) | 228 | (35.79) | 344 | (31.88) | |||||
>65 | 361 | (21.04) | 98 | (15.38) | 263 | (24.37) | |||||
CCI (mean ± SD) | 0.04 ± 0.44 | 0.11 ± 0.72 | 0.01 ± 0.01 | <0.001 | |||||||
Environmental factors | |||||||||||
Season | <0.001 | ||||||||||
Spring (March–May) | 301 | (17.54) | 237 | (37.21) | 64 | (5.93) | |||||
Summer (June–August) | 238 | (13.87) | 151 | (23.70) | 87 | (8.06) | |||||
Autumn (September–November) | 444 | (25.87) | 116 | (18.21) | 328 | (30.40) | |||||
Winter (December–February) | 733 | (42.72) | 133 | (20.88) | 600 | (55.61) | |||||
Hospital-related | |||||||||||
Level of care | <0.001 | ||||||||||
Medical center | 214 | (12.47) | 115 | (18.05) | 99 | (9.18) | |||||
Regional hospital | 385 | (22.44) | 214 | (33.59) | 171 | (15.85) | |||||
Local hospital | 1117 | (65.09) | 308 | (48.35) | 809 | (74.98) |
Multivariate Analysis | ||||||
---|---|---|---|---|---|---|
Variables | Adj. HR * | 95% CI | 95% CI | p-Value | ||
Lithotripsy (ESWL, PCNL, or URSL) | ||||||
With | 1.710 | 1.427 | 2.048 | <0.001 | ||
Without | Reference |
Variables | Multivariate Analysis | |||
---|---|---|---|---|
Adj. HR * | 95% CI | p-Value | ||
Total number and percentage | ||||
Lithotripsy | ||||
Without | Control | |||
ESWL only | 1.60 | 1.292–1.978 | <0.001 | |
PCNL only | 2.32 | 1.616–3.329 | <0.001 | |
URSL only | 1.82 | 1.166–2.831 | 0.008 | |
ESWL + PCNL | 0.99 | 0.520–1.900 | 0.986 | |
ESWL + URSL | 2.54 | 1.107–5.817 | 0.028 | |
PCNL + URSL | 1.26 | 0.398–3.986 | 0.695 | |
ESWL + PCNL + URSL | 6.68 | 1.633–27.325 | 0.008 | |
Socio-demography | ||||
Sex | ||||
Male | 1.02 | 0.855–1.215 | 0.833 | |
Female | Control | |||
Age (mean ± SD) | 0.99 | 0.979–0.991 | <0.001 | |
CCI (mean ± SD) | 1.36 | 1.238–1.498 | <0.001 | |
Environmental factors | ||||
Season | ||||
Spring (March–May) | 8.36 | 6.628–10.556 | <0.001 | |
Summer (June–August) | 4.37 | 3.414–5.589 | <0.001 | |
Autumn (September–November) | 1.37 | 1.059–1.760 | 0.016 | |
Winter (December–February) | Control | |||
Hospital-related | ||||
Level of care | ||||
Medical center | 2.21 | 1.736–2.816 | <0.001 | |
Regional hospital | 2.00 | 1.633–2.368 | <0.001 | |
Local hospital | Control |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chiou, Y.-E.; Chung, C.-H.; Chien, W.-C.; Tsay, P.-K.; Kan, H.-C.; Weng, W.-H. A Comparative Study of Stone Re-Treatment after Lithotripsy. Life 2022, 12, 2130. https://doi.org/10.3390/life12122130
Chiou Y-E, Chung C-H, Chien W-C, Tsay P-K, Kan H-C, Weng W-H. A Comparative Study of Stone Re-Treatment after Lithotripsy. Life. 2022; 12(12):2130. https://doi.org/10.3390/life12122130
Chicago/Turabian StyleChiou, Yueh-Er, Chi-Hsiang Chung, Wu-Chien Chien, Pei-Kwei Tsay, Hung-Cheng Kan, and Wen-Hui Weng. 2022. "A Comparative Study of Stone Re-Treatment after Lithotripsy" Life 12, no. 12: 2130. https://doi.org/10.3390/life12122130
APA StyleChiou, Y.-E., Chung, C.-H., Chien, W.-C., Tsay, P.-K., Kan, H.-C., & Weng, W.-H. (2022). A Comparative Study of Stone Re-Treatment after Lithotripsy. Life, 12(12), 2130. https://doi.org/10.3390/life12122130