A Comparative Study of Stone Re-Treatment after Lithotripsy
Abstract
1. Introduction
2. Materials and Methods
2.1. Data Sources
2.2. Study Design and Sampled Participants
2.3. Statistical Criteria
2.4. Data Analysis
3. Results
3.1. Univariate Analysis of the Re-Treatment Rate of Urolithiasis
3.2. Multivariate Analysis of the Re-Treatment Rate of Urolithiasis
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lee, Y.H.; Huang, W.C.; Chang, L.S.; Chen, M.T.; Yang, Y.F.; Huang, J.K. The long-term stone recurrence rate and renal function change in unilateral nephrectomy urollithiasis patients. J. Urol. 1994, 152, 1386–1388. [Google Scholar] [CrossRef] [PubMed]
- Trinchieri, A.; Ostini, F.; Nespoli, R.; Rovera, F.; Montanari, E.; Zanetti, G. A prospective study of recurrence rate and risl factors for recurrrence after a first renal stone. Am. Urol. Assoc. 1999, 162, 27–30. [Google Scholar]
- D’Costa, M.R.; Pais, V.M.; Rule, A.D. Leave no stone unturned: Defining recurrence in kidney stone formers. Curr. Opin. Nephrol. Hypertens. 2019, 28, 148–153. [Google Scholar] [CrossRef]
- Hoffman, A.; Braun, M.M.; Khayat, M. Kidney Disease: Kidney Stones. FP Essent. 2021, 509, 33–38. [Google Scholar]
- Wang, Z.; Zhang, Y.; Zhang, J.; Deng, Q.; Liang, H. Recent advances on the mechanisms of kidney stone formation (Review). Int. J. Mol. Med. 2021, 48, 149–159. [Google Scholar] [CrossRef]
- Türk, C.; Petřík, A.; Sarica, K.; Seitz, C.; Skolarikos, A.; Straub, M.; Knoll, T. EAU guidelines on diagnosis and conservative management of urolithiasis. Eur. Urol. 2016, 69, 468–474. [Google Scholar] [CrossRef] [PubMed]
- El-Assmy, A.; Harraz, A.M.; Eldemerdash, Y.; Elkhamesy, M.; El-Nahas, A.R.; Elshal, A.M.; Sheir, K.Z. Does lithotripsy increase stone retreatment? A comparative study between extracorporeal shockwave lithotripsy and non-fragmenting percutaneous nephrolithotomy. Arab. J. Urol. 2016, 14, 108–114. [Google Scholar] [CrossRef]
- Köhrmann, K.U.; Rassweiler, J.; Alken, P. The recurrence rate of stones following ESWL. World J. Urol. 1993, 11, 26–30. [Google Scholar] [CrossRef]
- Knoll, T.; Wendt-Nordahl, G. Uretero(reno)scopy: Management of complications. Urol. A. 2014, 53, 689–694. [Google Scholar] [CrossRef]
- Petrík, A. Comparison of the efficacy of ESWL and ureteroscopy in the treatment of lower ureteric stone. Cas. Lek. Cesk. 2007, 146, 776–780. [Google Scholar]
- Desai, M.; Sun, Y.; Buchholz, N.; Fuller, A.; Matsuda, T.; Matlaga, B.; Miller, N.; Bolton, D.; Alomar, M.; Ganpule, A. Treatment selection for urolithiasis: Percutaneous nephrolithomy, ureteroscopy, shock wave lithotripsy, and active monitoring. World J. Urol. 2017, 35, 1395–1399. [Google Scholar] [CrossRef] [PubMed]
- Tsai, S.H.; Chung, H.J.; Tseng, P.T.; Wu, Y.C.; Tu, Y.K.; Hsu, C.W.; Lei, W.T. Comparison of the efficacy and safety of shockwave lithotripsy, retrograde intrarenal surgery, percutaneous nephrolithotomy, and minimally invasive percutaneous nephrolithotomy for lower-pole renal stones: A systematic review and network meta-analysis. Medicine 2020, 99, e19403. [Google Scholar] [CrossRef] [PubMed]
- Torres, J.P.; Oliveira, J.N.; Morais, N.; Anacleto, S.; Rodrigues, R.M.; Mota, P.; Leão, R.; Lima, E. Efficacy and safety of renal drainage options for percutaneous nephrolithotomy. Minerva Urol. Nefrol. 2020, 72, 629–636. [Google Scholar] [CrossRef]
- Doizi, S.; Traxer, O. Flexible ureteroscopy: Technique, tips and tricks. Urolithiasis 2018, 46, 47–58. [Google Scholar] [CrossRef] [PubMed]
- Schlomer, S.J. Urologic treatment of nephrolithiasis. Curr. Opin. Pediatr. 2020, 32, 288–294. [Google Scholar] [CrossRef]
- Assimos, D.G.; Krambeck, A.; Miller, N.L.; Monga, M.; Murad, M.H.; Nelson, C.P.; Pace, K.T.; Pais, V.M.; Pearle, M.S.; Preminger, G.M. Surgical management of stones: American urological association/endourological society guideline, PART I. J. Urol. 2016, 196, 1153–1160. [Google Scholar] [CrossRef] [PubMed]
- Niwal, N.; Matsumoto, K.; Miyahara, M.; Omura, M.; Kobayashi, H.; Kikuchi, E.; Miyajima, A.; Miyata, K.; Oya, M. Simple and practical nomograms for predicting the stone-free rate after shock wave lithotripsy in patients with a solitary upper ureteral stone. World J. Urol. 2017, 35, 1455–1461. [Google Scholar] [CrossRef]
- Rodríguez, D.; Sacco, D.E. Minimally invasive surgical treatment for kidney stone disease. Adv. Chronic Kidney Dis. 2015, 22, 266–272. [Google Scholar] [CrossRef]
- Agrawal, M.S.; Singh, S.K.; Singh, H. Management of multiple/staghorn kidney stones: Open surgery versus PCNL (with or without ESWL). Indian J. Urol. 2009, 25, 284–285. [Google Scholar]
- Andankar, M.G.; Maheshwari, P.N.; Saple, A.L.; Mehta, V.; Varshney, A.; Bansal, B. Symptomatic small non-obstructing lower ureteric calculi: Comparison of ureteroscopy and extra corporeal shock wave lithotripsy. J. Postgrad. Med. 2001, 47, 177–180. [Google Scholar]
- Krambeck, A.; Rangel, L.J.; LeRoy, A.J.; Patterson, D.E.; Gettman, M.T. Risk factors for stone recurrence after percutaneous nephrolithotomy. Int. Urolithiasis Res. Symp. 2008, 10, 283–292. [Google Scholar]
- Liu, Y.; Chen, Y.; Liao, B.; Luo, D.; Wang, K.; Li, Y.; Zeng, G. Epidemiology of urolithiasis in Asia. Asian J. Urol. 2018, 5, 205–214. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.W.; Song, P.H.; Kim, H.T. Predictive factors of the outcome of extracorporeal shockwave lithotripsy for ureteral stones. Korean J. Urol. 2012, 53, 424–430. [Google Scholar] [CrossRef] [PubMed]
- Chongruksut, W.; Lojanapiwat, B.; Tawichasri, C.; Paichitvichean, S.; Euathrongchit, J.; Ayudhya, V.C.N.; Patumanond, J. Predictors for kidney stones recurrence following extracorporeal shock wave lithotripsy (ESWL)or percutaneous nephrolithotomy (PCNL). J. Med. Assoc. Thail. 2012, 95, 342–348. [Google Scholar]
- Costa-Bauza, A.; Perello, J.; Isern, B.; Sanchis, P.; Grases, F. Factors affecting calcium oxalate dihydrate fragmented calculi regrowth. BMC Urol. 2006, 6, 16. [Google Scholar] [CrossRef]
- De Cogain, M.; Krambeck, A.E.; Rule, A.D.; Li, X.; Bergstralh, E.J.; Gettman, M.T.; Lieske, J.C. Shock wave lithotripsy and diabetes mellitus: A population-based cohort study. Urology 2012, 79, 298–302. [Google Scholar] [CrossRef][Green Version]
- Rule, A.D.; Roger, V.L.; Melton, L.J., 3rd; Bergstralh, E.J.; Li, X.; Peyser, P.A.; Krambeck, A.E.; Lieske, J.C. Kidney stones associate with increased risk for myocardial infarction. J. Am. Soc. Nephrol. 2010, 21, 1641–1644. [Google Scholar] [CrossRef]
- Shih, C.J.; Chen, Y.T.; Ou, S.M.; Yang, W.C.; Chen, T.J.; Tarng, D.C. Urinary calculi and risk of cancer: A nationwide population-based study. Medicine 2014, 93, e342. [Google Scholar] [CrossRef]
- Chugh, S.; Pietropaolo, A.; Montanari, E.; Sarica, K.; Somani, B.K. Predictors of urinary infections and urosepsis after ureteroscopy for stone disease: A systematic review from EAU section of urolithiasis (EULIS). Curr. Urol. Rep. 2020, 21, 16. [Google Scholar] [CrossRef]
- Corrales, M.; Traxer, O. Initial clinical experience with the new thulium fiber laser: First 50 cases. World J. Urol. 2021, 39, 3945–3950. [Google Scholar] [CrossRef]
- Hubert, K.C.; Singh, M.; Zhou, E.H.; Santos, G.D.; Stovsky, M.D. Charlson comorbidity index and success of extracorporeal shock wave lithotripsy. Can J. Urol. 2009, 16, 4733–4735. [Google Scholar]
- Cheng, C.L.; Kao, Y.H.; Lin, S.J.; Lee, C.H.; Lai, M.L. Validation of the National Health Insurance Research Database with ischemic stroke cases in Taiwan. Pharmacoepidemiol. Drug Saf. 2011, 20, 236–242. [Google Scholar] [CrossRef] [PubMed]
- Al-Ansari, A.; As-Sadiq, K.; Al-Said, S.; Younis, N.; Jaleel, O.A.; Shokeir, A.A. Prognostic factors of success of extracorporeal shock wave lithotripsy (ESWL) in the treatment of renal stones. Int. Urol. Nephrol. 2006, 38, 63–67. [Google Scholar] [CrossRef] [PubMed]
- Carbone, A.; Salhi, Y.A.; Tasca, A.; Palleschi, G.; Fuschi, A.; Nunzio, C.D.; Bozzini, G.; Mazzaferro, S.; Pastore, A.L. Obesity and kidney stone disease: A systematic review. Minerva Urol. Nefrol. 2018, 70, 393–400. [Google Scholar] [CrossRef] [PubMed]
- Khan, S.R.; Pearle, M.S.; Robertson, W.G.; Gambaro, G.; Canales, B.K.; Doizi, S.; Traxer, O.; Tiselius, H.G. Kidney stones. Nat. Rev. Dis. Prim. 2017, 2, 16008. [Google Scholar] [CrossRef]
- Bargagli, M.; Ferraro, P.M.; Vittori, M.; Lombardi, G.; Gambaro, G.; Somani, B. Calcium and vitamin D supplementation and their association with kidney stone disease: A narrative review. Nutrients 2021, 13, 4363. [Google Scholar] [CrossRef]
- Cone, E.B.; Hammill, B.G.; Routh, J.C.; Lipkin, M.E.; Preminger, G.M.; Schmader, K.E.; Scales, C.D., Jr. Disproportionate use of inpatient care by older adults with kidney stones. Urology 2018, 120, 103–108. [Google Scholar] [CrossRef]
- Ferraro, P.M.; Bargagli, M. Dietetic and lifestyle recommendations for stone formers. Arch. Esp. Urol. 2021, 74, 112–122. [Google Scholar]
- Ferraro, P.M.; Bargagli, M.; Trinchieri, A.; Gambaro, G. Risk of kidney stones: Influence of dietary factors, dietary patterns, and vegetarian-vegan diets. Nutrients 2020, 12, 779. [Google Scholar] [CrossRef]
- Ziemba, J.B.; Matlaga, B.R. Epidemiology and economics of nephrolithiasis. Investig. Clin. Urol. 2017, 58, 299–306. [Google Scholar] [CrossRef]
- Wang, Y.; Zhong, B.; Yang, X.; Wang, G.; Hou, P.; Meng, J. Comparison of the efficacy and safety of URSL, RPLU, and MPCNL for treatment of large upper impacted ureteral stones: A randomized controlled trial. BMC Urol. 2017, 17, 50. [Google Scholar] [CrossRef] [PubMed]
- Yu, D.S.; Yang, Y.T.; Lai, C.H. Epidemiology and treatment of inpatients urolithiasis in Taiwan. Formos. J. Surg. 2016, 49, 136–141. [Google Scholar] [CrossRef]
- Knoll, T.; Buchholz, N.; Wendt-Nordahl, G. Extracorporeal shockwave lithotripsy vs. percutaneous nephrolithotomy vs. flexible ureterorenoscopy for lower-pole stones. Arab J. Urol. 2012, 10, 336–341. [Google Scholar] [CrossRef]
- Schilling, D.; Gakis, G.; Walcher, U.; Germann, M.; Stenzl, A.; Nagele, U. Minimally invasive percutaneous treatment of lower pole stones with a diameter of 8 to 15 millimeters. Aktuelle Urol. 2009, 40, 351–354. [Google Scholar] [CrossRef]
- Pearle, M.S.; Lingeman, J.E.; Leveillee, R.; Kuo, R.; Preminger, G.M.; Nadler, R.B.; Macaluso, J.; Monga, M.; Kumar, U.; Dushinski, J. Prospective, randomized trial comparing shock wave lithotripsy and ureteroscopy for lower pole caliceal calculi 1 cm or less. J. Urol. 2005, 173, 2005–2009. [Google Scholar] [CrossRef]
- Worcester, E.M.; Parks, J.H.; Evan, A.P.; Coe, F.L. Renal function in patients with nephrolithiasis. J. Urol. 2006, 176, 600–603. [Google Scholar] [CrossRef]
- Cicerello, E.; Merlo, F.; Maccatrozzo, L. Management of clinically insignificant residual fragments following shock wave lithotripsy. Adv. Urol. 2012, 2012, 5. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Wang, S.; Zhang, Y.; Zhang, X.; Tangal, Y.; Li, J. Upper urinary tract stone compositions: The role of age and gender. Int. Braz. J. Urol. 2020, 46, 70–80. [Google Scholar] [CrossRef]
- Ahmed, M.H.; Barakat, S.; Almobarak, A.O. The association between renal stone disease and cholesterol gallstones: The easy to believe and not hard to retrieve theory of the metabolic syndrome. Renal Fail. 2014, 36, 957–962. [Google Scholar] [CrossRef]
- Mehta, M.; Goldfarb, D.S.; Nazzal, L. The role of the microbiome in kidney stone formation. Int. J. Surg. 2016, 36, 607–612. [Google Scholar] [CrossRef]
- Kale, S.S.; Ghole, V.S.; Pawar, N.J.; Jagtap, D.V. Inter-annual variability of urolithiasis epidemic from semi-arid part of Deccan Volcanic Province, India: Climatic and hydrogeochemical perspectives. Int. J. Environ. Health Res. 2014, 24, 278–289. [Google Scholar] [CrossRef] [PubMed]
Variables | Number of Individuals (%) | ||
---|---|---|---|
With Lithotripsy | Without Lithotripsy | ||
(n = 350) | (n = 1400) | ||
Sex | |||
Male | 216 (61.71%) | 864 (61.71%) | |
Female | 134 (38.29%) | 536 (38.29%) | |
Age (years, mean ± SD) | 50.34 ± 14.32 | 50.27 ± 14.54 | |
Age group (years) | |||
18–30 | 28(8.00%) | 112 (8.00%) | |
31–40 | 70 (20.00%) | 280 (20.00%) | |
41–50 | 97 (27.71%) | 388 (27.71%) | |
51–65 | 101 (28.86%) | 404 (28.86%) | |
>65 | 54 (15.43%) | 216 (15.43%) | |
Level of care | |||
Medical center | 52 (14.86%) | 208 (14.86%) | |
Regional hospital | 95 (27.14%) | 380 (27.14%) | |
Local hospital | 203 (58.00%) | 812 (58.00%) |
Univariate Analysis | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Variables | Case Numbers n (%) | With Re-Treatment n (%) | Without Re-Treatment n (%) | p-Value | |||||||
Total number and percentage | 1716 | (100.00) | 637 | (37.12) | 1079 | (62.88) | |||||
Lithotripsy * | <0.001 | ||||||||||
With | 341 | (19.87) | 204 | (32.03) | 137 | (12.70) | |||||
Without * | 1375 | (80.13) | 433 | (67.97) | 942 | (87.30) | |||||
ESWL | <0.001 | ||||||||||
With | 241 | (14.04) | 142 | (22.29) | 99 | (9.18) | |||||
Without | 1475 | (85.96) | 495 | (77.71) | 980 | (90.82) | |||||
PCNL | <0.001 | ||||||||||
With | 79 | (4.60) | 59 | (9.26) | 20 | (1.85) | |||||
Without | 1637 | (95.40) | 578 | (90.74) | 1059 | (98.15) | |||||
URSL | <0.001 | ||||||||||
With | 53 | (3.09) | 32 | (5.02) | 21 | (1.95) | |||||
Without | 1663 | (96.91) | 605 | (94.98) | 1058 | (98.05) | |||||
Lithotripsy | <0.001 | ||||||||||
Without | 1375 | (80.13) | 433 | (67.97) | 942 | (87.30) | |||||
ESWL only | 214 | (12.47) | 118 | (18.52) | 96 | (8.90) | |||||
PCNL only | 56 | (3.26) | 38 | (5.97) | 18 | (1.67) | |||||
URSL only | 41 | (2.39) | 21 | (3.30) | 20 | (1.85) | |||||
ESWL + PCNL | 18 | (1.05) | 16 | (2.51) | 2 | (0.19) | |||||
ESWL + URSL | 7 | (0.41) | 6 | (0.94) | 1 | (0.09) | |||||
PCNL + URSL | 3 | (0.17) | 3 | (0.47) | 0 | (0) | |||||
ESWL + PCNL + URSL | 2 | (0.12) | 2 | (0.31) | 0 | (0) | |||||
Sociodemography | |||||||||||
Sex | 0.01 | ||||||||||
Male | 1057 | (61.60) | 418 | (65.62) | 639 | (59.22) | |||||
Female | 659 | (38.40) | 219 | (34.38) | 440 | (40.78) | |||||
Age (mean ± SD) | 53.90 ± 14.36 | 52.07 ± 13.72 | 54.97 ± 14.63 | <0.001 | |||||||
Age group (years) | 0.01 | ||||||||||
18–30 | 75 | (4.37) | 33 | (5.18) | 42 | (3.89) | |||||
31–40 | 250 | (14.57) | 103 | (16.17) | 147 | (13.62) | |||||
41–50 | 458 | (26.69) | 175 | (27.47) | 283 | (26.23) | |||||
51–65 | 572 | (33.33) | 228 | (35.79) | 344 | (31.88) | |||||
>65 | 361 | (21.04) | 98 | (15.38) | 263 | (24.37) | |||||
CCI (mean ± SD) | 0.04 ± 0.44 | 0.11 ± 0.72 | 0.01 ± 0.01 | <0.001 | |||||||
Environmental factors | |||||||||||
Season | <0.001 | ||||||||||
Spring (March–May) | 301 | (17.54) | 237 | (37.21) | 64 | (5.93) | |||||
Summer (June–August) | 238 | (13.87) | 151 | (23.70) | 87 | (8.06) | |||||
Autumn (September–November) | 444 | (25.87) | 116 | (18.21) | 328 | (30.40) | |||||
Winter (December–February) | 733 | (42.72) | 133 | (20.88) | 600 | (55.61) | |||||
Hospital-related | |||||||||||
Level of care | <0.001 | ||||||||||
Medical center | 214 | (12.47) | 115 | (18.05) | 99 | (9.18) | |||||
Regional hospital | 385 | (22.44) | 214 | (33.59) | 171 | (15.85) | |||||
Local hospital | 1117 | (65.09) | 308 | (48.35) | 809 | (74.98) |
Multivariate Analysis | ||||||
---|---|---|---|---|---|---|
Variables | Adj. HR * | 95% CI | 95% CI | p-Value | ||
Lithotripsy (ESWL, PCNL, or URSL) | ||||||
With | 1.710 | 1.427 | 2.048 | <0.001 | ||
Without | Reference |
Variables | Multivariate Analysis | |||
---|---|---|---|---|
Adj. HR * | 95% CI | p-Value | ||
Total number and percentage | ||||
Lithotripsy | ||||
Without | Control | |||
ESWL only | 1.60 | 1.292–1.978 | <0.001 | |
PCNL only | 2.32 | 1.616–3.329 | <0.001 | |
URSL only | 1.82 | 1.166–2.831 | 0.008 | |
ESWL + PCNL | 0.99 | 0.520–1.900 | 0.986 | |
ESWL + URSL | 2.54 | 1.107–5.817 | 0.028 | |
PCNL + URSL | 1.26 | 0.398–3.986 | 0.695 | |
ESWL + PCNL + URSL | 6.68 | 1.633–27.325 | 0.008 | |
Socio-demography | ||||
Sex | ||||
Male | 1.02 | 0.855–1.215 | 0.833 | |
Female | Control | |||
Age (mean ± SD) | 0.99 | 0.979–0.991 | <0.001 | |
CCI (mean ± SD) | 1.36 | 1.238–1.498 | <0.001 | |
Environmental factors | ||||
Season | ||||
Spring (March–May) | 8.36 | 6.628–10.556 | <0.001 | |
Summer (June–August) | 4.37 | 3.414–5.589 | <0.001 | |
Autumn (September–November) | 1.37 | 1.059–1.760 | 0.016 | |
Winter (December–February) | Control | |||
Hospital-related | ||||
Level of care | ||||
Medical center | 2.21 | 1.736–2.816 | <0.001 | |
Regional hospital | 2.00 | 1.633–2.368 | <0.001 | |
Local hospital | Control |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chiou, Y.-E.; Chung, C.-H.; Chien, W.-C.; Tsay, P.-K.; Kan, H.-C.; Weng, W.-H. A Comparative Study of Stone Re-Treatment after Lithotripsy. Life 2022, 12, 2130. https://doi.org/10.3390/life12122130
Chiou Y-E, Chung C-H, Chien W-C, Tsay P-K, Kan H-C, Weng W-H. A Comparative Study of Stone Re-Treatment after Lithotripsy. Life. 2022; 12(12):2130. https://doi.org/10.3390/life12122130
Chicago/Turabian StyleChiou, Yueh-Er, Chi-Hsiang Chung, Wu-Chien Chien, Pei-Kwei Tsay, Hung-Cheng Kan, and Wen-Hui Weng. 2022. "A Comparative Study of Stone Re-Treatment after Lithotripsy" Life 12, no. 12: 2130. https://doi.org/10.3390/life12122130
APA StyleChiou, Y.-E., Chung, C.-H., Chien, W.-C., Tsay, P.-K., Kan, H.-C., & Weng, W.-H. (2022). A Comparative Study of Stone Re-Treatment after Lithotripsy. Life, 12(12), 2130. https://doi.org/10.3390/life12122130