Defining the Potential Targets for Biological Activity of Isoegomaketone Based on Network Pharmacology and Molecular Docking Methods
Abstract
:1. Introduction
2. Method
2.1. Molecular Formula and In Silico Drug Properties of Isoegomaketone
2.2. Target Gene Screening for Isoegomaketone
2.3. Analysis of PPI Network
2.4. Gene Function and Pathway Enrichment Analysis
2.5. Compound–Target Molecular Docking
3. Result
3.1. Molecular Formula and In Silico Drug Properties of Isoegomaketone
3.2. Candidate Target Genes from Literature Analysis
3.3. Construction of the PPI Network and Screening of Key Targets
3.4. GO Enrichment Analysis
3.5. KEGG Enrichment Analysis
3.6. Results of Molecular Docking
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Xu, H.; Zhang, Y.; Wang, P.; Zhang, J.; Chen, H.; Zhang, L.; Du, X.; Zhao, C.; Wu, D.; Liu, F.; et al. A comprehensive review of integrative pharmacology-based investigation: A paradigm shift in traditional Chinese medicine. Acta Pharm. Sin. B 2021, 11, 1379–1399. [Google Scholar] [CrossRef] [PubMed]
- Xu, X. New concepts and approaches for drug discovery based on traditional Chinese medicine. Drug Discov. Today Technol. 2006, 3, 247–253. [Google Scholar] [CrossRef]
- Başer, K.; Demirci, B.; Dönmez, A. Composition of the essential oil of Perilla frutescens (L.) Britton from Turkey. Flavour Fragr. J. 2003, 18, 122–123. [Google Scholar] [CrossRef]
- Ha, T.J.; Lee, M.-H.; Lee, J.H. Comparison of antioxidant activities and volatile components using GC/MS from leaves of Korean purple perilla (Perilla frutescens) grown in a greenhouse. Food Sci. Biotechnol. 2015, 24, 1979–1986. [Google Scholar] [CrossRef]
- Lee, J.-H.; Cho, H.-D.; Jeong, I.-Y.; Lee, M.-K.; Seo, K.-I. Sensitization of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-resistant primary prostate cancer cells by isoegomaketone from Perilla frutescens. J. Nat. Prod. 2014, 77, 2438–2443. [Google Scholar] [CrossRef]
- Park, Y.D.; Jin, C.H.; Choi, D.S.; Byun, M.-W.; Jeong, I.Y. Biological evaluation of isoegomaketone isolated from Perilla frutescens and its synthetic derivatives as anti-inflammatory agents. Arch. Pharmacal Res. 2011, 34, 1277–1282. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.-R.; Nam, B.; Han, A.-R.; Kim, J.-B.; Jin, C.H. Isoegomaketone from Perilla frutescens (L.) Britt stimulates MAPK/ERK pathway in human keratinocyte to promote skin wound healing. Evid.-Based Complement. Altern. Med. 2021, 2021, 6642606. [Google Scholar] [CrossRef] [PubMed]
- Jin, C.H.; So, Y.; Nam, B.; Han, S.N.; Kim, J.-B. Isoegomaketone alleviates the development of collagen antibody-induced arthritis in male Balb/c mice. Molecules 2017, 22, 1209. [Google Scholar] [CrossRef] [Green Version]
- So, Y.; Jo, Y.H.; Nam, B.M.; Lee, S.Y.; Kim, J.-B.; Kang, S.-Y.; Jeong, H.G.; Jin, C.H. Anti-obesity effect of isoegomaketone isolated from Perilla frutescens (L.) Britt. cv. Leaves. Korean J. Pharmacogn. 2015, 46, 283–288. [Google Scholar]
- Guan, M.; Guo, L.; Ma, H.; Wu, H.; Fan, X. Network pharmacology and molecular docking suggest the mechanism for biological activity of rosmarinic acid. Evid.-Based Complement. Altern. Med. 2021, 2021, 5190808. [Google Scholar] [CrossRef]
- Li, H.; Hung, A.; Yang, A.W.H. Herb-target virtual screening and network pharmacology for prediction of molecular mechanism of Danggui Beimu Kushen Wan for prostate cancer. Sci. Rep. 2021, 11, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Hopkins, A.L. Network pharmacology: The next paradigm in drug discovery. Nat. Chem. Biol. 2008, 4, 682–690. [Google Scholar] [CrossRef]
- Chen, C.Y.-C. TCM Database@ Taiwan: The world’s largest traditional Chinese medicine database for drug screening in silico. PLoS ONE 2011, 6, e15939. [Google Scholar] [CrossRef] [Green Version]
- Daina, A.; Michielin, O.; Zoete, V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep. 2017, 7, 1–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, Y.; Pei, J.; Lai, L. Deep learning based regression and multiclass models for acute oral toxicity prediction with automatic chemical feature extraction. J. Chem. Inf. Model. 2017, 57, 2672–2685. [Google Scholar] [CrossRef]
- Wang, Y. Exploration of the Effect and Mechanism of Radiosensitization of Isoegomaketone on Hepatocellular Carcinoma Cells. Ph.D. Thesis, Southern Medical University, Guangzhou, China, 2013. [Google Scholar]
- Wu, G.; Huan, X.; Wu, X.; Tian, J.; Liu, J.; Liu, F.; Yao, X. The preliminary study for radiotherapy sensitization effect of isoegomaketone on human colorectal cancer xenograft tumor in nude mice. J. Multidiscip. Cancer Manag. (Electron. Version) 2020, 6, 109–112. [Google Scholar]
- Yang, F.C.; Wang, Y.J. The effect of radiosensitization of isoegomaketone on lung cancer cells and the involvement of endoplasmic reticulum stress. J. Clin. Exp. Med. 2016, 15, 1151–1154. [Google Scholar]
- Cho, B.O.; Jin, C.H.; Park, Y.D.; Ryu, H.W.; Byun, M.W.; Seo, K.I.; Jeong, I.Y. Isoegomaketone induces apoptosis through caspase-dependent and caspase-independent pathways in human DLD1 cells. Biosci. Biotechnol. Biochem. 2011, 75, 1306–1311. [Google Scholar] [CrossRef] [Green Version]
- Kwon, S.-J.; Lee, J.-H.; Moon, K.-D.; Jeong, I.-Y.; Ahn, D.-U.; Lee, M.-K.; Seo, K.-I. Induction of apoptosis by isoegomaketone from Perilla frutescens L. in B16 melanoma cells is mediated through ROS generation and mitochondrial-dependent,-independent pathway. Food Chem. Toxicol. 2014, 65, 97–104. [Google Scholar] [CrossRef] [PubMed]
- Kwon, S.-J.; Lee, J.-H.; Moon, K.-D.; Jeong, I.-Y.; Yee, S.-T.; Lee, M.-K.; Seo, K.-I. Isoegomaketone induces apoptosis in SK-MEL-2 human melanoma cells through mitochondrial apoptotic pathway via activating the PI3K/Akt pathway. Int. J. Oncol. 2014, 45, 1969–1976. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Huang, X.; Han, J.; Zheng, W.; Ma, W. Extract of Perilla frutescens inhibits tumor proliferation of HCC via PI3K/AKT signal pathway. Afr. J. Tradit. Complement. Altern. Med. 2013, 10, 251–257. [Google Scholar] [CrossRef] [PubMed]
- Jin, C.H.; Lee, H.J.; Park, Y.D.; Choi, D.S.; Kim, D.S.; Kang, S.Y.; Seo, K.I.; Jeong, I.Y. Isoegomaketone inhibits lipopolysaccharide-induced nitric oxide production in RAW 264.7 macrophages through the heme oxygenase-1 induction and inhibition of the interferon-beta-STAT-1 pathway. J. Agric. Food Chem. 2010, 58, 860–867. [Google Scholar] [CrossRef]
- Jin, C.H.; So, Y.K.; Han, S.N.; Kim, J.B. Isoegomaketone Upregulates Heme Oxygenase-1 in RAW264.7 Cells via ROS/p38 MAPK/Nrf2 Pathway. Biomol. Ther. 2016, 24, 510–516. [Google Scholar] [CrossRef] [PubMed]
- Szklarczyk, D.; Gable, A.L.; Lyon, D.; Junge, A.; Wyder, S.; Huerta-Cepas, J.; Simonovic, M.; Doncheva, N.T.; Morris, J.H.; Bork, P.; et al. STRING v11: Protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 2018, 47, D607–D613. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, X.; Wei, S.; Niu, S.; Ma, X.; Li, H.; Jing, M.; Zhao, Y. Network pharmacology prediction and molecular docking-based strategy to explore the potential mechanism of Huanglian Jiedu Decoction against sepsis. Comput. Biol. Med. 2022, 144, 105389. [Google Scholar] [CrossRef]
- Chin, C.H.; Chen, S.H.; Wu, H.H.; Ho, C.W.; Ko, M.T.; Lin, C.Y. cytoHubba: Identifying hub objects and sub-networks from complex interactome. BMC Syst. Biol. 2014, 8 (Suppl. 4), S11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- The Gene Ontology Consortium. Expansion of the Gene Ontology knowledgebase and resources. Nucleic Acids Res. 2017, 45, D331–D338. [Google Scholar] [CrossRef] [Green Version]
- Kanehisa, M.; Furumichi, M.; Tanabe, M.; Sato, Y.; Morishima, K. KEGG: New perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res. 2017, 45, D353–D361. [Google Scholar] [CrossRef] [Green Version]
- Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev. 2001, 46, 3–26. [Google Scholar] [CrossRef] [PubMed]
- Ghose, A.K.; Viswanadhan, V.N.; Wendoloski, J.J. A knowledge-based approach in designing combinatorial or medicinal chemistry libraries for drug discovery. 1. A qualitative and quantitative characterization of known drug databases. J. Comb. Chem. 1999, 1, 55–68. [Google Scholar] [CrossRef] [PubMed]
- Veber, D.F.; Johnson, S.R.; Cheng, H.Y.; Smith, B.R.; Ward, K.W.; Kopple, K.D. Molecular properties that influence the oral bioavailability of drug candidates. J. Med. Chem. 2002, 45, 2615–2623. [Google Scholar] [CrossRef] [PubMed]
- Congreve, M.; Carr, R.; Murray, C.; Jhoti, H. A ‘rule of three’ for fragment-based lead discovery? Drug Discov. Today 2003, 8, 876–877. [Google Scholar] [CrossRef] [PubMed]
- Fukunishi, Y.; Kurosawa, T.; Mikami, Y.; Nakamura, H. Prediction of synthetic accessibility based on commercially available compound databases. J. Chem. Inf. Model. 2014, 54, 3259–3267. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Zhu, X.; Bai, H.; Ning, K. Network Pharmacology Databases for Traditional Chinese Medicine: Review and Assessment. Front. Pharmacol. 2019, 10, 123. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Di, L.; Kerns, E.H.; Carter, G.T. Drug-like property concepts in pharmaceutical design. Curr. Pharm. Des. 2009, 15, 2184–2194. [Google Scholar] [CrossRef]
- Zhuang, Y.; Zhang, X.; Luo, S.; Wei, F.; Song, Y.; Lin, G.; Yao, M.; Gong, A. Exploring the Molecular Mechanism of Zhi Bai Di Huang Wan in the Treatment of Systemic Lupus Erythematosus Based on Network Pharmacology and Molecular Docking Techniques. Processes 2022, 10, 1914. [Google Scholar] [CrossRef]
- Huang, X.; Rehman, H.M.; Szöllősi, A.G.; Zhou, S. Network Pharmacology-Based Approach Combined with Bioinformatic Analytics to Elucidate the Potential of Curcumol against Hepatocellular Carcinoma. Genes 2022, 13, 653. [Google Scholar] [CrossRef]
- Dai, L.; Zhang, G.; Wan, X. Network Pharmacology and Molecular Docking Analysis Reveal Insights into the Molecular Mechanism of Shengma-Gegen Decoction on Monkeypox. Pathogens 2022, 11, 1342. [Google Scholar] [CrossRef]
- Zhou, W.; Wang, J.; Wu, Z.; Huang, C.; Lu, A.; Wang, Y. Systems pharmacology exploration of botanic drug pairs reveals the mechanism for treating different diseases. Sci. Rep. 2016, 6, 36985. [Google Scholar] [CrossRef] [Green Version]
- Wang, R.; Zhang, Q.; Feng, C.; Zhang, J.; Qin, Y.; Meng, L. Advances in the Pharmacological Activities and Effects of Perilla Ketone and Isoegomaketone. Evid.-Based Complement. Alternat. Med. 2022, 2022, 8809792. [Google Scholar] [CrossRef]
MW (g/mol) | LogP | nRotB | nHBD | nHBA | MR | TPSA (Å2) | LogS | GI Absorption | BBB Permeance |
---|---|---|---|---|---|---|---|---|---|
164.20 | 2.40 | 3 | 0 | 2 | 47.7 | 30.21 | −2.39 | High | Yes |
Lipinski | Ghose | Veber | RO(3) | Synthetic accessibility | |||||
Yes | Yes | Yes | Yes | 2.89 |
Compound | LD50 | Toxicity Evaluation |
---|---|---|
isoegomaketone | 31.2 | Caution |
No. | Gene ID | Gene Name | Gene Description |
---|---|---|---|
1 | ENSG00000275199 | AKT3 | AKT serine/threonine kinase 3 |
2 | ENSG00000171791 | BCL2 | BCL2 apoptosis regulator |
3 | ENSG00000015475 | BID | BH3 interacting domain death agonist |
4 | ENSG00000156709 | AIFM1 | apoptosis inducing factor mitochondria associated 1 |
5 | ENSG00000121691 | CAT | catalase |
6 | ENSG00000188130 | MAPK12 | mitogen-activated protein kinase 12 |
7 | ENSG00000185386 | MAPK11 | mitogen-activated protein kinase 11 |
8 | ENSG00000077150 | NFKB2 | nuclear factor kappa B subunit 2 |
9 | ENSG00000198793 | MTOR | mechanistic target of rapamycin kinase |
10 | ENSG00000125740 | FOSB | FosB proto-oncogene, AP-1 transcription factor subunit |
11 | ENSG00000172115 | CYCS | cytochrome c, somatic |
12 | ENSG00000007171 | NOS2 | nitric oxide synthase 2 |
13 | ENSG00000104856 | RELB | RELB proto-oncogene, NF-kB subunit |
14 | ENSG00000132906 | CASP9 | caspase 9 |
15 | ENSG00000105221 | AKT2 | AKT serine/threonine kinase 2 |
16 | ENSG00000243955 | GSTA1 | glutathione S-transferase alpha 1 |
17 | ENSG00000181019 | NQO1 | NAD(P)H quinone dehydrogenase 1 |
18 | ENSG00000123080 | CDKN2C | cyclin dependent kinase inhibitor 2C |
19 | ENSG00000111537 | IFNG | interferon gamma |
20 | ENSG00000105851 | PIK3CG | phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit gamma |
21 | ENSG00000142208 | AKT1 | AKT serine/threonine kinase 1 |
22 | ENSG00000112062 | MAPK14 | mitogen-activated protein kinase 14 |
23 | ENSG00000156711 | MAPK13 | mitogen-activated protein kinase 13 |
24 | ENSG00000213366 | GSTM2 | glutathione S-transferase mu 2 |
25 | ENSG00000130522 | JUND | JunD proto-oncogene, AP-1 transcription factor subunit |
26 | ENSG00000120889 | TNFRSF10B | TNF receptor superfamily member 10b |
27 | ENSG00000164305 | CASP3 | caspase 3 |
28 | ENSG00000051382 | PIK3CB | phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit beta |
29 | ENSG00000162924 | REL | REL proto-oncogene, NF-kB subunit |
30 | ENSG00000115415 | STAT1 | signal transducer and activator of transcription 1 |
31 | ENSG00000109320 | NFKB1 | nuclear factor kappa B subunit 1 |
32 | ENSG00000141510 | TP53 | tumor protein p53 |
33 | ENSG00000107643 | MAPK8 | mitogen-activated protein kinase 8 |
34 | ENSG00000197448 | GSTK1 | glutathione S-transferase kappa 1 |
35 | ENSG00000116044 | NFE2L2 | nuclear factor, erythroid 2 like 2 |
36 | ENSG00000124762 | CDKN1A | cyclin dependent kinase inhibitor 1A |
37 | ENSG00000127666 | TICAM1 | Toll-like receptor adaptor molecule 1 |
38 | ENSG00000087088 | BAX | BCL2-associated X, apoptosis regulator |
39 | ENSG00000173039 | RELA | RELA proto-oncogene, NF-kB subunit |
40 | ENSG00000175197 | DDIT3 | DNA damage inducible transcript 3 |
41 | ENSG00000121879 | PIK3CA | phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha |
42 | ENSG00000177606 | JUN | Jun proto-oncogene, AP-1 transcription factor subunit |
43 | ENSG00000136244 | IL6 | interleukin 6 |
44 | ENSG00000143799 | PARP1 | poly(ADP-ribose) polymerase 1 |
45 | ENSG00000115966 | ATF2 | activating transcription factor 2 |
46 | ENSG00000108691 | CCL2 | C-C motif chemokine ligand 2 |
47 | ENSG00000171608 | PIK3CD | phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit delta |
48 | ENSG00000064012 | CASP8 | caspase 8 |
No. | Target | PDB ID | Binding Energy (kcal/mol) |
---|---|---|---|
1 | AKT1 | 2uzs | −3.8 |
2 | TP53 | 6shz | −5.2 |
3 | JUN | 1jun | −3.7 |
4 | MAPK8 | 1ukh | −5.2 |
5 | CASP3 | 1cp3 | −5.3 |
6 | IL6 | 1alu | −4.7 |
7 | MTOR | 1aue | −4.6 |
8 | MAPK14 | 1a9u | −5.5 |
9 | CASP8 | 1qtn | −5.4 |
10 | STAT1 | 1yvl | −4.3 |
11 | CAT | 1dgf | −6.0 |
12 | NFE2L2 | 3zgc | −3.8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, J.; Wang, R.; Qin, Y.; Feng, C. Defining the Potential Targets for Biological Activity of Isoegomaketone Based on Network Pharmacology and Molecular Docking Methods. Life 2022, 12, 2115. https://doi.org/10.3390/life12122115
Zhang J, Wang R, Qin Y, Feng C. Defining the Potential Targets for Biological Activity of Isoegomaketone Based on Network Pharmacology and Molecular Docking Methods. Life. 2022; 12(12):2115. https://doi.org/10.3390/life12122115
Chicago/Turabian StyleZhang, Juzhao, Ruo Wang, Yuxuan Qin, and Chengling Feng. 2022. "Defining the Potential Targets for Biological Activity of Isoegomaketone Based on Network Pharmacology and Molecular Docking Methods" Life 12, no. 12: 2115. https://doi.org/10.3390/life12122115
APA StyleZhang, J., Wang, R., Qin, Y., & Feng, C. (2022). Defining the Potential Targets for Biological Activity of Isoegomaketone Based on Network Pharmacology and Molecular Docking Methods. Life, 12(12), 2115. https://doi.org/10.3390/life12122115