Long-Term Predictors of Hospitalized Reinfarction after an Incident Acute Myocardial Infarction
Abstract
:1. Introduction
2. Methods
2.1. Data Collection
2.2. Statistical Analysis
3. Results
3.1. Comparison of Characteristics between Incident AMI and Reinfarction
3.2. Predictors of Hospitalized Reinfarction
4. Discussion
4.1. Predictors of Hospitalized Reinfarction
4.2. Strengths and Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, M.; Vaez, M.; Dorner, T.E.; Rahman, S.; Helgesson, M.; Ivert, T.; Mittendorfer-Rutz, E. Sociodemographic, labour market marginalisation and medical characteristics as risk factors for reinfarction and mortality within 1 year after a first acute myocardial infarction: A register-based cohort study of a working age population in Sweden. BMJ Open 2019, 9, e033616. [Google Scholar] [CrossRef] [PubMed]
- Stone, S.G.; Serrao, G.W.; Mehran, R.; Tomey, M.I.; Witzenbichler, B.; Guagliumi, G.; Peruga, J.; Brodie, B.R.; Dudek, D.; Möckel, M.; et al. Incidence, predictors, and implications of reinfarction after primary percutaneous coronary intervention in ST-segment-elevation myocardial infarction: The Harmonizing Outcomes with Revascularization and Stents in Acute Myocardial Infarction Trial. Circ. Cardiovasc. Interv. 2014, 7, 543–551. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dwyer, E.M.; McMaster, P.; Greenberg, H. Nonfatal cardiac events and recurrent infarction in the year after acute myocardial infarction. J. Am. Coll. Cardiol. 1984, 4, 695–702. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Norris, R.M.; Barnaby, P.F.; Brandt, P.W.; Geary, G.G.; Whitlock, R.M.; Wild, C.J.; Barratt-Boyes, B.G. Prognosis after recovery from first acute myocardial infarction: Determinants of reinfarction and sudden death. Am. J. Cardiol. 1984, 53, 408–413. [Google Scholar] [CrossRef]
- Gilpin, E.; Ricou, F.; Dittrich, H.; Nicod, P.; Henning, H.; Ross, J. Factors associated with recurrent myocardial infarction within one year after acute myocardial infarction. Am. Heart J. 1991, 121, 457–465. [Google Scholar] [CrossRef]
- Kernis, S.J.; Harjai, K.J.; Stone, G.W.; Grines, L.L.; A Boura, J.; Yerkey, M.W.; O’Neill, W.; Grines, C.L. The incidence, predictors, and outcomes of early reinfarction after primary angioplasty for acute myocardial infarction. J. Am. Coll. Cardiol. 2003, 42, 1173–1177. [Google Scholar] [CrossRef] [Green Version]
- De Luca, G.; Ernst, N.; Hof, A.W.V.; Ottervanger, J.P.; Hoorntje, J.C.; Gosselink, A.M.; Dambrink, J.-H.E.; de Boer, M.-J.; Suryapranata, H. Predictors and clinical implications of early reinfarction after primary angioplasty for ST-segment elevation myocardial infarction. Am. Heart J. 2006, 151, 1256–1259. [Google Scholar] [CrossRef]
- Fokkema, M.L.; van der Vleuten, P.A.; Vlaar, P.J.; Svilaas, T.; Zijlstra, F. Incidence, predictors, and outcome of reinfarction and stent thrombosis within one year after primary percutaneous coronary intervention for ST-elevation myocardial infarction. Catheter. Cardiovasc. Interv. 2009, 73, 627–634. [Google Scholar] [CrossRef]
- Ahumada, M.; Cabadés, A.; Valencia, J.; Cebrián, J.; Payá, E.; Morillas, P.; Sogorb, F.; Francés, M.; Juan Cardona, F.G.; El Reinfarto Como Complicación del Infarto Agudo de Miocardio. Datos del registro PRIMVAC. Rev. Esp. Cardiol. 2005, 58, 13–19. [Google Scholar] [CrossRef]
- Dunlay, S.M.; Weston, S.A.; Killian, J.M.; Bell, M.R.; Jaffe, A.S.; Roger, V.L. Thirty-day rehospitalizations after acute myocardial infarction: A cohort study. Ann. Intern. Med. 2012, 157, 11–18. [Google Scholar] [CrossRef]
- Khawaja, F.J.; Shah, N.D.; Lennon, R.J.; Slusser, J.P.; Alkatib, A.A.; Rihal, C.S.; Gersh, B.J.; Montori, V.; Holmes, D.R.; Bell, M.R.; et al. Factors associated with 30-day readmission rates after percutaneous coronary intervention. Arch. Intern. Med. 2012, 172, 112–117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brown, J.R.; Conley, S.M.; Niles, N.W. Predicting readmission or death after acute ST-elevation myocardial infarction. Clin. Cardiol. 2013, 36, 570–575. [Google Scholar] [CrossRef] [PubMed]
- Agrawal, Y.; Panaich, S.; Aggarwal, S.; Saltiel, F.; Kalavakunta, J.K.; Gupta, V. Demographic parameters related to 30-day readmission of patients with acute myocardial infarction: Analysis of 2,371,867 hospitalizations. Int. J. Cardiol. 2016, 214, 408–409. [Google Scholar] [CrossRef]
- Waldecker, B.; Waas, W.; Haberbosch, W.; Voss, R.; Heizmann, H.; Tillmanns, H. Long-term follow-up after direct percutaneous transluminal coronary angioplasty for acute myocardial infarction. J. Am. Coll. Cardiol. 1998, 32, 1320–1325. [Google Scholar] [CrossRef]
- Löwel, H.; Meisinger, C.; Heier, M.; Hörmann, A. The population-based acute myocardial infarction (AMI) registry of the MONICA/KORA study region of Augsburg. Gesundh. Bundesverb. Arzte Offentlichen Gesundh. 2005, 67 (Suppl 1), S31–S37. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kuch, B.; Heier, M.; von Scheidt, W.; Kling, B.; Hoermann, A.; Meisinge, C. 20-year trends in clinical characteristics, therapy and short-term prognosis in acute myocardial infarction according to presenting electrocardiogram: The MONICA/KORA AMI Registry (1985–2004). J. Intern. Med. 2008, 264, 254–264. [Google Scholar] [CrossRef] [PubMed]
- Meisinger, C.; Hörmann, A.; Heier, M.; Kuch, B.; Löwel, H. Admission blood glucose and adverse outcomes in non-diabetic patients with myocardial infarction in the reperfusion era. Int. J. Cardiol. 2006, 113, 229–235. [Google Scholar] [CrossRef]
- Gärtner, C.; Walz, L.; Bauernschmitt, E.; Ladwig, K.-H. The causes of prehospital delay in myocardial infarction. Dtsch. Ärzteblatt Int. 2008, 105, 286–291. [Google Scholar] [CrossRef]
- Wu, J.-R.; Moser, D.K.; Riegel, B.; McKinley, S.; Doering, L.V. Impact of prehospital delay in treatment seeking on in-hospital complications after acute myocardial infarction. J. Cardiovasc. Nurs. 2011, 26, 184–193. [Google Scholar] [CrossRef]
- De Luca, G.; Hof, A.W.J.V.; De Boer, M.-J.; Ottervanger, J.P.; Hoorntje, J.C.; Gosselink, A.; E Dambrink, J.-H.; Zijlstra, F.; Suryapranata, H. Time-to-treatment significantly affects the extent of ST-segment resolution and myocardial blush in patients with acute myocardial infarction treated by primary angioplasty. Eur. Heart J. 2004, 25, 1009–1013. [Google Scholar] [CrossRef]
- Joury, A.U.; Hersi, A.S.; Alfaleh, H.; Alhabib, K.F.; Kashour, T.S. Baseline characteristics, management practices, and long-term outcomes among patients with first presentation acute myocardial infarction in the Second Gulf Registry of Acute Coronary Events (Gulf RACE-II). J. Saudi Heart Assoc. 2018, 30, 233–239. [Google Scholar] [CrossRef] [PubMed]
- Höpner, J.; Junge, U.; Schmidt-Pokrzywniak, A.; Fischer, C.; Mikolajczyk, R. Determinants of persistent smoking after acute myocardial infarction: An observational study. BMC Cardiovasc. Disord. 2020, 20, 384. [Google Scholar] [CrossRef] [PubMed]
- Wilson, K.; Gibson, N.; Willan, A.; Cook, D. Effect of smoking cessation on mortality after myocardial infarction: Meta-analysis of cohort studies. Arch. Intern. Med. 2000, 160, 939–944. [Google Scholar] [CrossRef] [PubMed]
- Dohi, T.; Maehara, A.; Brener, S.J.; Généreux, P.; Gershlick, A.H.; Mehran, R.; Gibson, C.M.; Mintz, G.S.; Stone, G.W. Utility of peak creatine kinase-MB measurements in predicting myocardial infarct size, left ventricular dysfunction, and outcome after first anterior wall acute myocardial infarction (from the INFUSE-AMI trial). Am. J. Cardiol. 2015, 115, 563–570. [Google Scholar] [CrossRef] [PubMed]
- Hedström, E.; Åström-Olsson, K.; Öhlin, H.; Frogner, F.; Carlsson, M.; Billgren, T.; Jovinge, S.; Cain, P.; Wagner, G.S.; Arheden, H. Peak CKMB and cTnT accurately estimates myocardial infarct size after reperfusion. Scand. Cardiovasc. J. SCJ 2007, 41, 44–50. [Google Scholar] [CrossRef]
- Maeng, M.; Nielsen, P.H.; Busk, M.; Mortensen, L.S.; Kristensen, S.D.; Nielsen, T.T.; Andersen, H.R. Time to treatment and three-year mortality after primary percutaneous coronary intervention for ST-segment elevation myocardial infarction-a DANish Trial in Acute Myocardial Infarction-2 (DANAMI-2) substudy. Am. J. Cardiol. 2010, 105, 1528–1534. [Google Scholar] [CrossRef]
- Guerchicoff, A.; Brener, S.J.; Maehara, A.; Witzenbichler, B.; Fahy, M.; Xu, K.; Gersh, B.J.; Mehran, R.; Gibson, C.M.; Stone, G.W. Impact of delay to reperfusion on reperfusion success, infarct size, and clinical outcomes in patients with ST-segment elevation myocardial infarction: The INFUSE-AMI Trial (INFUSE-Anterior Myocardial Infarction). JACC Cardiovasc. Interv. 2014, 7, 733–740. [Google Scholar] [CrossRef] [Green Version]
- Fu, X.; Wilson, P.; Chung WS, F. Time-to-reperfusion in patients with acute myocardial infarction and mortality in prehospital emergency care: Meta-analysis. BMC Emerg. Med. 2020, 20, 65. [Google Scholar] [CrossRef]
- Neumann, F.J.; Sousa-Uva, M.; Ahlsson, A.; Alfonso, F.; Banning, A.P.; Benedetto, U.; Byrne, R.A.; Collet, J.P.; Falk, V.; Head, S.J.; et al. 2018 ESC/EACTS Guidelines on myocardial revascularization. Eur. Heart J. 2019, 40, 87–165. [Google Scholar] [CrossRef] [Green Version]
- Natali, A.; Vichi, S.; Landi, P.; Severi, S.; L’Abbate, A.; Ferrannini, E. Coronary atherosclerosis in Type II diabetes: Angiographic findings and clinical outcome. Diabetologia 2000, 43, 632–641. [Google Scholar] [CrossRef]
- Norhammar, A.; Malmberg, K.; Diderholm, E.; Lagerqvist, B.; Lindahl, B.; Rydén, L.; Wallentin, L. Diabetes mellitus: The major risk factor in unstable coronary artery disease even after consideration of the extent of coronary artery disease and benefits of revascularization. J. Am. Coll. Cardiol. 2004, 43, 585–591. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sponder, M.; Fritzer-Szekeres, M.; Marculescu, R.; Litschauer, B.; Strametz-Juranek, J. A new coronary artery disease grading system correlates with numerous routine parameters that were associated with atherosclerosis: A grading system for coronary artery disease severity. Vasc. Health Risk Manag. 2014, 10, 641–647. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hammoud, T.; Tanguay, J.-F.; Bourassa, M.G. Management of coronary artery disease: Therapeutic options in patients with diabetes. J. Am. Coll. Cardiol. 2000, 36, 355–365. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Olechnowicz-Tietz, S.; Gluba, A.; Paradowska, A.; Banach, M.; Rysz, J. The risk of atherosclerosis in patients with chronic kidney disease. Int. Urol. Nephrol. 2013, 45, 1605–1612. [Google Scholar] [CrossRef] [Green Version]
- Campean, V.; Neureiter, D.; Varga, I.; Runk, F.; Reiman, A.; Garlichs, C.; Achenbach, S.; Nonnast-Daniel, B.; Amann, K. Atherosclerosis and vascular calcification in chronic renal failure. Kidney Blood Press. Res. 2005, 28, 280–289. [Google Scholar] [CrossRef] [Green Version]
- Roy, S.K.; Cespedes, A.; Li, D.; Choi, T.; Budoff, M.J. Chronic Kidney Disease is Associated with Increased Coronary Artery Atherosclerosis as Revealed by Multidetector Computed Tomographic Angiography. Tex. Heart Inst. J. 2012, 39, 811–816. [Google Scholar]
- Khanra, D.; Mishra, V.; Jain, B.; Soni, S.; Bahurupi, Y.; Duggal, B.; Rathore, S.; Guha, S.; Agarwal, S.; Aggarwal, P.; et al. Percutaneous coronary intervention provided better long term results than optimal medical therapy alone in patients with chronic total occlusion: A meta-analysis. Indian Heart J. 2020, 72, 225–231. [Google Scholar] [CrossRef]
- Keeley, E.C.; Boura, J.A.; Grines, C.L. Primary angioplasty versus intravenous thrombolytic therapy for acute myocardial infarction: A quantitative review of 23 randomised trials. Lancet 2003, 361, 13–20. [Google Scholar] [CrossRef]
- Wong, G.C.; Welsford, M.; Ainsworth, C.; Abuzeid, W.; Fordyce, C.B.; Greene, J.; Huynh, T.; Lambert, L.; Le May, M.; Lutchmedial, S.; et al. 2019 Canadian Cardiovascular Society/Canadian Association of Interventional Cardiology Guidelines on the Acute Management of ST-Elevation Myocardial Infarction: Focused Update on Regionalization and Reperfusion. Can. J. Cardiol. 2019, 35, 107–132. [Google Scholar] [CrossRef] [Green Version]
- Spadaccio, C.; Benedetto, U. Coronary artery bypass grafting (CABG) vs. percutaneous coronary intervention (PCI) in the treatment of multivessel coronary disease: Quo vadis?—A review of the evidences on coronary artery disease. Ann. Cardiothorac. Surg. 2018, 7, 506–515. [Google Scholar] [CrossRef] [Green Version]
- Zhang, F.; Yang, Y.; Hu, D.; Lei, H.; Wang, Y. Percutaneous coronary intervention (PCI) versus coronary artery bypass grafting (CABG) in the treatment of diabetic patients with multi-vessel coronary disease: A meta-analysis. Diabetes Res. Clin. Pract. 2012, 97, 178–184. [Google Scholar] [CrossRef] [PubMed]
- Habib, R.H.; Dimitrova, K.R.; Badour, S.A.; Yammine, M.B.; El-Hage-Sleiman, A.M.; Hoffman, D.M.; Geller, C.M.; Schwann, T.A.; Tranbaugh, R.F. CABG Versus PCI: Greater Benefit in Long-Term Outcomes With Multiple Arterial Bypass Grafting. J. Am. Coll. Cardiol. 2015, 66, 1417–1427. [Google Scholar] [CrossRef] [PubMed]
Incident AMI | First Reinfarction | Second Reinfarction | p-Value | ||
---|---|---|---|---|---|
n = 11,871 | n = 1217 | n = 202 | n | ||
male | 8469 (71.4) | 887 (72.9) | 148 (73.6) | 0.4299 | 13,276 |
age (mean, SD) | 64.1 (11.4) | 66.4 (11) | 66.5 (10.3) | <0.0001 | 13,276 |
Comorbidities | |||||
hypertension | 9052 (76.3) | 1103 (90.7) | 187 (93) | <0.0001 | 13,276 |
diabetes mellitus | 3729 (31.4) | 582 (47.9) | 106 (52.7) | <0.0001 | 13,276 |
hyperlipidemia | 6909 (58.3) | 906 (74.5) | 160 (79.6) | <0.0001 | 13,276 |
Smoking status | <0.0001 | 13,276 | |||
current smoker | 3760 (31.7) | 275 (22.6) | 42 (20.9) | ||
ex-smoker | 3332 (28.1) | 466 (38.3) | 76 (37.8) | ||
never smoker | 3403 (28.7) | 348 (28.6) | 57 (28.4) | ||
smoking status unknown | 1364 (11.5) | 127 (10.4) | 26 (12.9) | ||
Clinical characteristics | |||||
typical chest pain symptoms yes | 9239 (77.9) | 950 (78.1) | 146 (72.6) | 0.239 | 13,276 |
prehospital time in minutes | 157.0 (83–495) | 134.0 (77–316.5) | 133.5 (75–284.75) | 0.0043 | 9816 |
Type of infarction (ECG) | <0.0001 | 13,276 | |||
STEMI | 4275 (36) | 252 (20.7) | 35 (17.4) | ||
NSTEMI | 6194 (52.2) | 751 (61.8) | 113 (56.2) | - | |
Bundle branch block | 885 (7.5) | 152 (12.5) | 38 (18.9) | - | |
ECG unknown | 505 (4.3) | 61 (5) | 15 (7.5) | - | |
left ventricular EF | <0.0001 | 13,276 | |||
≤30% | 665 (5.6) | 92 (7.6) | 11 (5.5) | ||
>30% | 8536 (72) | 774 (63.7) | 113 (56.2) | ||
no information on EF | 2658 (22.4) | 350 (28.8) | 77 (38.3) | ||
any in-hospital complication yes | 2183 (18.4) | 225 (18.5) | 43 (21.4) | 0.5567 | 13,276 |
Kidney function | <0.0001 | 13,276 | |||
eGFR ≥ 60 mL/min/1.73 m2 | 6108 (51.5) | 556 (45.7) | 83 (41.3) | ||
eGFR 30–59 mL/min/1.73 m2 | 2377 (20) | 360 (29.6) | 59 (29.4) | - | |
eGFR < 30 mL/min/1.73 m2 | 560 (4.7) | 145 (11.9) | 36 (17.9) | - | |
eGFR unknown | 2814 (23.7) | 155 (12.7) | 23 (11.4) | - | |
days in intensive care | <0.0001 | 13,276 | |||
median (IQR) | 2 (1–4) | 2 (1–3) | 2 (1–3) | ||
mean (SD) | 3.5 (5.5) | 2.9 (4.9) | 2.8 (3.9) | ||
died within the first 28 days | 782 (6.6) | 92 (7.6) | 15 (7.5) | 0.3949 | 13,276 |
Laboratory value | |||||
peak CKMB | 56 (25–144) | 42 (21–104) | 42 (21–82) | <0.0001 | 11,493 |
Troponin I at admission | 0.640 (0.13–4.07) | 0.240 (0.06–1.12) | 0.435 (0.12–2.2575) | <0.0001 | 7904 |
hemoglobin at admission | 141 (129–152) | 136 (120–148) | 136 (118–148) | <0.0001 | 10,308 |
peak CRP | 4.44 (1.21–13.855) | 2.74 (0.77–11.57) | 3.47 (0.785–8.93) | <0.0001 | 12,703 |
Therapy | |||||
PCI yes | 8040 (67.8) | 810 (66.6) | 132 (65.7) | 0.8666 | 13,276 |
Bypass yes | 1703 (14.4) | 107 (8.8) | 12 (6) | 0 | 13,276 |
Lysis yes | 531 (4.5) | 9 (0.7) | 1 (0.5) | 0 | 13,276 |
EBM at discharge | 7853 (66.2) | 825 (67.8) | 127 (63.2) | 0.332 | 13,276 |
Sociodemographic characteristics | |||||
Family status | 0.0086 | 13,276 | |||
married | 7920 (66.8) | 760 (62.5) | 124 (61.7) | ||
not married | 3086 (26) | 370 (30.4) | 63 (31.3) | - | |
family status unknown | 853 (7.2) | 86 (7.1) | 14 (7) | - | |
Employment status | <0.0001 | 13,276 | |||
currently employed | 2478 (20.9) | 141 (11.6) | 25 (12.4) | ||
currently not employed | 4982 (42) | 544 (44.7) | 98 (48.8) | - | |
never employed | 167 (1.4) | 17 (1.4) | 2 (1) | - | |
no information on employment | 4232 (35.7) | 514 (42.3) | 76 (37.8) | - | |
nationality German yes | 10,792 (91) | 1073 (88.2) | 182 (90.5) | 0.0081 | 13,276 |
Peak CKMB | Incident AMI | First Reinfarction |
---|---|---|
first reinfarction | <0.0001 | - |
second reinfarction | <0.0001 | 0.2 |
Troponin I at admission | incident AMI | first reinfarction |
first reinfarction | 0.0053 | - |
second reinfarction | 0.7341 | 1 |
hemoglobin at admission | incident AMI | first reinfarction |
first reinfarction | <0.0001 | - |
second reinfarction | <0.0001 | 1 |
peak CRP | incident AMI | first reinfarction |
first reinfarction | <0.0001 | - |
second reinfarction | 0.008 | 1 |
days in intensive care | incident AMI | first reinfarction |
first reinfarction | 0.00014 | - |
second reinfarction | 0.10383 | 1 |
prehospital time in minutes | incident AMI | first reinfarction |
first reinfarction | 0.0017 | - |
second reinfarction | 0.3482 | 1 |
Variable | Hazard Ratio [95% CI] | p-Value |
---|---|---|
sex | ||
male | 1 (reference) | |
female | 0.92 [0.80–1.05] | 0.226 |
Age | 1.01 [1.00–1.02] | 0.003 |
hypertension | ||
no | 1 (reference) | |
yes | 1.19 [1.02–1.38] | 0.024 |
diabetes | ||
no | 1 (reference) | |
yes | 1.64 [1.45–1.54] | <0.001 |
hyperlipidemia | ||
not | 1 (reference) | |
yes | 1.17 [1.03–1.33] | 0.013 |
smoking status | ||
never smoker | 1 (reference) | |
current smoker | 1.18 [1.01–1.38] | 0.039 |
ex-smoker | 0.92 [0.79–1.07] | 0.291 |
no information | 1.19 [0.91–1.54] | 0.196 |
Type of infarction (ECG) | ||
STEMI | 1 (reference) | |
NSTEMI | 1.25 [1.10–1.42] | <0.001 |
bundle branch block | 1.76 [1.40–2.20] | <0.001 |
no information | 1.88 [1.41–2.52] | <0.001 |
eGFR | ||
≥60 mL/min/1.73 m2 | 1 (reference) | |
30–59 mL/min/1.73 m2 | 1.35 [1.13–1.61] | <0.001 |
<30 mL/min/1.73 m2 | 2.82 [2.14–3.71] | <0.001 |
no information | 1.59 [1.39–1.82] | <0.001 |
Bypass therapy | ||
no | 1 (reference) | |
yes | 0.59 [0.49–0.72] | <0.001 |
family status | ||
married | 1 (reference) | |
not married | 1.24 [1.09–1.42] | 0.001 |
no information | 1.31 [0.99–1.75] | 0.061 |
nationality | ||
German | 1 (reference) | |
not German | 1.56 [1.30–1.87] | <0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schmitz, T.; Harmel, E.; Heier, M.; Peters, A.; Linseisen, J.; Meisinger, C. Long-Term Predictors of Hospitalized Reinfarction after an Incident Acute Myocardial Infarction. Life 2022, 12, 2090. https://doi.org/10.3390/life12122090
Schmitz T, Harmel E, Heier M, Peters A, Linseisen J, Meisinger C. Long-Term Predictors of Hospitalized Reinfarction after an Incident Acute Myocardial Infarction. Life. 2022; 12(12):2090. https://doi.org/10.3390/life12122090
Chicago/Turabian StyleSchmitz, Timo, Eva Harmel, Margit Heier, Annette Peters, Jakob Linseisen, and Christa Meisinger. 2022. "Long-Term Predictors of Hospitalized Reinfarction after an Incident Acute Myocardial Infarction" Life 12, no. 12: 2090. https://doi.org/10.3390/life12122090
APA StyleSchmitz, T., Harmel, E., Heier, M., Peters, A., Linseisen, J., & Meisinger, C. (2022). Long-Term Predictors of Hospitalized Reinfarction after an Incident Acute Myocardial Infarction. Life, 12(12), 2090. https://doi.org/10.3390/life12122090