Optimum Nitrogen Application Acclimatizes Root Morpho-Physiological Traits and Yield Potential in Rice under Subtropical Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Sites and Plant Materials
2.2. Experimental Design and Crop Management
2.3. Measurement of Root Morphological and Physiological Traits
2.3.1. Root Number
2.3.2. Root Length (cm)
2.3.3. Root Volume (cm3 hill−1)
2.3.4. Root Porosity (%)
2.3.5. Physiological Traits
2.3.6. Total Dry Matter (TDM)
2.3.7. Yield and Yield Components
2.4. Statistical Analysis
3. Results
3.1. Root Morphological Traits, Total Dry Matter and Leaf Area Index
3.2. Growth Parameters
3.3. Yield Attributing Characters and Yield
3.4. Relationship among Root Traits, Growth Parameters, Yield Attribute and Yield
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, H.; Liu, H.; Hou, D.; Zhou, Y.; Liu, M.; Wang, Z.; Liu, L.; Gu, J.; Yang, J. The effect of integrative crop management on root growth and methane emission of paddy rice. Crop J. 2019, 7, 444–457. [Google Scholar] [CrossRef]
- Duncan, E.G.; O’Sullivan, C.A.; Roper, M.M.; Biggs, J.S.; Peoples, M.B. Influence of Co-Application of Nitrogen with Phosphorus, Potassium and Sulphur on the Apparent Efficiency of Nitrogen Fertiliser Use, Grain Yield and Protein Content of Wheat: Review. Field Crops Res. 2018, 226, 56–65. [Google Scholar] [CrossRef]
- Meng, F.; Xiang, D.; Zhu, J.; Li, Y.; Mao, C. Molecular mechanisms of root development in rice. Rice 2019, 12, 1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bown, H.E.; Watt, M.S.; Clinton, P.W.; Mason, E.G. Influence of ammonium and nitrate supply on growth, dry matter partitioning, N uptake and photosynthetic capacity of Pinusradiata seedlings. Trees 2010, 24, 1097–1107. [Google Scholar] [CrossRef]
- Costa, C.; Dwyer, L.; Zhou, X.; Dutilleul, P.; Hamel, C.; Reid, L.M.; Smith, D.L. Root morphology of contrasting maize genotypes. Agron. J. 2002, 94, 96–101. [Google Scholar] [CrossRef]
- Yang, J.C.; Zhang, H.; Zhang, J.H. Root morphology and physiology in relation to the yield formation of rice. J. Integr. Agric. 2012, 11, 920–926. [Google Scholar] [CrossRef]
- Tilahun, Z.M. Effect of row spacing and nitrogen fertilizer levels on yield and yield components of rice varieties. World Sci. News 2019, 116, 80–193. [Google Scholar]
- Djaman, K.; Bado, B.V.; Mel, V.C. Effect of nitrogen fertilizer on yield and nitrogen use efficiency of four aromatic rice varieties. Emir. J. Food Agric. 2016, 28, 126–135. [Google Scholar] [CrossRef] [Green Version]
- Fageria, N.K.; Baligar, V.C. Enhancing Nitrogen Use Efficiency in Crop Plants. Adv. Agron. 2005, 88, 97–185. [Google Scholar] [CrossRef]
- Ju, X.T.; Xing, G.X.; Chen, X.P.; Zhang, S.L.; Zhang, L.J.; Liu, X.J.; Cui, Z.L.; Yin, B.; Christiea, P.; Zhu, Z.L.; et al. Reducing environmental risk by improving N management in intensive Chinese agricultural systems. Proc. Natl. Acad. Sci. USA 2009, 106, 3041–3046. [Google Scholar] [CrossRef] [Green Version]
- Peng, S.; Tang, Q.; Zou, Y. Current status and challenges of rice production in China. Plant Prod. Sci. 2009, 12, 3–8. [Google Scholar] [CrossRef]
- Peng, S.; Buresh, R.J.; Huang, J.; Zhong, X.; Zou, Y.; Yang, J.; Wang, G.; Liu, Y.; Tang, Q.; Cui, K.; et al. Improving nitrogen fertilization in rice by site-specific N management. A review. Agron. Sustain. Dev. 2010, 30, 649–656. [Google Scholar] [CrossRef]
- Iqbal, A.; He, L.; Khan, A.; Wei, S.; Akhtar, K.; Ali, I.; Ullah, S.; Munsif, F.; Zhao, Q.; Jiang, L. Organic manure coupled with inorganic fertilizer: An approach for the sustainable production of rice by improving soil properties and nitrogen use efficiency. Agronomy 2019, 9, 651. [Google Scholar] [CrossRef] [Green Version]
- Garnett, T.; Conn, V.; Kaiser, B.N. Root based approaches to improving nitrogen use efficiency in plants. Plant Cell Environ. 2009, 32, 1272–1283. [Google Scholar] [CrossRef]
- Liao, H.; Ge, Z.Y.; Yan, X.L. 2001. Ideal root architecture for phosphorus acquisition of plants under water and phosphorus coupled stresses: From simulation to application. Chin. Agric. Sci. Bull. 2001, 46, 1346–1351. (In Chinese) [Google Scholar] [CrossRef]
- Forde, B.; Lorenzo, H. The nutritional control of root development. In Interactions in the Root Environment: An Integrated Approach; Springer: Berlin/Heidelberg, Germany, 2002; pp. 51–68. [Google Scholar] [CrossRef] [Green Version]
- Nacry, P.; Bouguyon, E.; Gojon, A. Nitrogen acquisition by roots: Physiological and developmental mechanisms ensuring plant adaptation to a fluctuating resource. Plant Soil 2013, 370, 1–29. [Google Scholar] [CrossRef] [Green Version]
- Lima, J.E.; Kojima, S.; Takahashi, H.; von Wirén, N. Ammonium triggers lateral root branching in Arabidopsis in an ammonium transporter 1;3-dependent manner. Plant Cell. 2010, 22, 3621–3633. [Google Scholar] [CrossRef] [Green Version]
- Tsay, Y.F.; Ho, C.H.; Chen, H.Y.; Lin, S.H. 2011. Integration of nitrogen and potassium signaling. Ann. Rev. Plant Biol. 2011, 62, 207–226. [Google Scholar] [CrossRef]
- Liu, T.Y.; Chang, C.Y.; Chiou, T.J. 2009. The long-distance signaling of mineral macronutrients. Curr. Opin. Plant Biol. 2009, 12, 312–319. [Google Scholar] [CrossRef]
- Gojon, A.; Nacry, P.; Davidian, J.C. Root uptake regulation: A central process for NPS homeostasis in plants. Curr. Opin. Plant Biol. 2009, 12, 328–338. [Google Scholar] [CrossRef]
- Ju, C.X.; Buresh, R.J.; Wang, Z.Q.; Zhang, H.; Liu, L.J.; Yang, J.C.; Zhang, J.H. Root and shoot traits for rice varieties with higher grain yield and higher nitrogen use efficiency at lower nitrogen rates application. Field Crops Res. 2015, 175, 47–55. [Google Scholar] [CrossRef]
- Meng, T.Y.; Wei, H.H.; Li, X.Y.; Dai, Q.G.; Huo, Z.Y. A better root morpho-physiology after heading contributing to yield superiority of japonica/indica hybrid rice. Field Crops Res. 2018, 228, 135–146. [Google Scholar] [CrossRef]
- Zhu, K.Y.; Zhou, Q.; Shen, Y.; Yan, J.; Xu, Y.J.; Wang, Z.Q.; Yang, J.C. Agronomic and physiological performance of an indica-japonica rice variety with a high yield and high nitrogen use efficiency. J. Crop Sci. 2020, 60, 1556–1568. [Google Scholar] [CrossRef]
- Yang, L.; Wang, Y.; Kobayashi, K.; Zhu, J.; Hunag, J.; Yang, H.; Wang, Y.; Dong, G.; Liu, G.; Han, Y.; et al. Seasonal changes in the effects of free air CO2 enrichment (FACE) on growth, morphology and physiology of rice root at three levels of nitrogen fertilization. Global Change Biol. 2008, 14, 10. [Google Scholar] [CrossRef]
- Dong, G.C.; Wang, Y.L.; Wu, H. Effect of nitrogen supplying levels on the development of roots in rice (Orza sativa L.). Jiangsu Agr. Res. 2001, 22, 9–13. [Google Scholar]
- Zhang, H.; Xue, Y.; Wang, Z.; Yang, J.; Zhang, J. Morphological and physiological traits of roots and their relationships with shoot growth in “super” rice. Field Crops Res. 2009, 113, 31–40. [Google Scholar] [CrossRef]
- Xin, W.; Zhang, L.; Zhang, W.; Gao, J.; Yi, J.; Zhen, X.; Du, M.; Zhao, Y.; Chen, L. An integrated analysis of the rice transcriptome and metabolome reveals root growth regulation mechanisms in response to nitrogen availability. Int. J. Mol. Sci. 2019, 20, 5893. [Google Scholar] [CrossRef] [Green Version]
- Samejima, H.; Kondo, M.; Ito, O.; Nozoe, T.; Shinano, T.; Osaki, M. Characterization of root systems with respect to morphological traits and nitrogen absorbing ability in new plant type of tropical rice lines. J Plant Nutr. 2005, 28, 835–850. [Google Scholar] [CrossRef]
- UNDP and FAO (United Nations Development Program and Food and Agriculture Organization). Land Resources Appraisal of Bangladesh for Agricultural Development. Report 2. Agro-Ecological Region of Bangladesh; United Nations Development Program and Food and Agricultural Organization: Dhaka, Bangladesh, 1988; pp. 212–221. [Google Scholar]
- FRG. Fertilizer Recommendation Guide; Bangladesh Agricultural Research Council (BARC): Dhaka, Bangladesh, 2018; p. 274.
- Pantuwan, G.; Fukai, S.; Cooper, M.; O’Toole, J.C.; Sarkarung, S. Root traits to increase drought resistance in rainfed lowland rice. In Breeding Strategies for Rainfed Lowland Rice in Drought-Prone Environments; Fukai, S., Cooper, M., Salisbury, J., Eds.; Australian Centre for International Agricultural Research: Canberra, Australia, 1997; pp. 170–179. [Google Scholar]
- Kato, Y.; Kamoshita, A.; Yamagishi, J. Growth of Three Rice Cultivars (Oryza sativa L.) under Upland Conditions with Different Levels of Water Supply. Plant Prod. Sci. 2006, 9, 435–445. [Google Scholar] [CrossRef]
- Bridgit, A.J.; Potty, N.N. Influence of root characters on rice productivity in iron soils of Kerala. Int. Rice Res. News 2002, 27, 45–46. [Google Scholar]
- Jensen, C.R.; Luxmoore, R.J.; Van Gundy, S.D.; Stolzy, L.H. Root air space measurements by a pycnometer method. Agron. J. 1969, 61, 474–475. [Google Scholar] [CrossRef]
- Blackman, V.H. Soil Plant Relationships, 2nd ed.; John Wiley and Sons: New York, NY, USA, 1919; pp. 230–234. [Google Scholar]
- Watson, D. The Physiological Basis of Variation in Yield. Adv. Agron. 1952, 4, 101–145. [Google Scholar] [CrossRef]
- Fisher, R.A. Some remark on the methods formulated in recent article on ‘The quantitative analysis of plant growth’. Ann. Appl. Biol. 1921, 7, 367–372. [Google Scholar] [CrossRef] [Green Version]
- Radford, P.J. Growth analysis formulae-their use and abuse. Crop Sci. 1967, 7, 171–175. [Google Scholar] [CrossRef]
- Yoshida, S.; Foron, D.A.; Cock, J.H. Laboratory Manual for Physiological Studies of Rice; International Rice Research Institute: Los Baños, Philippines, 1971; p. 70. [Google Scholar]
- Zhang, H.C.; Wu, G.C.; Dai, Q.G.; Huo, Z.Y.; Xu, K.; Gao, H. Precise postponing nitrogen application and its mechanism in rice. Crop Res. 2011, 37, 1837–1851, (In Chinese with English abstract). [Google Scholar] [CrossRef]
- Fageria, N.K.; Moreira, A.; Coelho, A.M. Yield and yield components of upland rice as influenced by nitrogen sources. J. Plant Nutr. 2011, 34, 361–370. [Google Scholar] [CrossRef] [Green Version]
- Singh, P.; Agrawal, M.; Agrawal, S.B. Evaluation of Physiological, Growth and Yield Responses of a Tropical Oil Crop (Brassica campestris L. var. Kranti) under Ambient Ozone Pollution at Varying NPK Levels. Environ. Pollut. 2009, 157, 871–880. [Google Scholar] [CrossRef]
- Azarpour, E.; Moraditochaee, M.; Bozorgi, H.R. Effect of nitrogen fertilizer management on growth analysis of rice cultivars. Int. J. Biosci. 2014, 4, 35–47. [Google Scholar] [CrossRef]
- Adhikari, J.; Sarkar, M.A.R.; Uddin, M.R.; Sarker, U.K.; Hossen, K.; Rosemila, U. Effect of nitrogen fertilizer and weed management on the yield of transplanted aman rice. J. Bangladesh Agric. Univ. 2018, 16, 12–16. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Wang, D.; Shi, P.; Omasa, K. Estimating rice chlorophyll content and leaf nitrogen concentration with a digital still color camera under natural light. Plant Methods 2014, 10, 36. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Islam, M.S.; Peng, S.; Visperas, R.M.; Ereful, N.; Bhuiya, M.S.U.; Julfiquar, A.W. Lodging-Related MorphologicalTraits of Hybrid Rice in a Tropical Irrigated Ecosystem. Field Crops Res. 2007, 101, 240–248. [Google Scholar] [CrossRef]
- Esfahani, M.; Sadrzadelr, S.; Kavoossi, M.; Dabaghm, M.N.A. Study the Effect of Different Levels of Nitrogen and Potassium Fertilizers on Growth Grain Yield Components of Rice Cultivar Khazar. Iran J. Crop Sci. 2006, 3, 226–242. [Google Scholar]
- Yang, L.; Liu, H.; Wang, Y.; Zhu, J.; Huang, J.; Liu, G.; Dong, G.; Wang, Y. Impact of Elevated CO2 Concentrationon Inter-Subspecific Hybrid Rice Cultivar Liangyoupeijiu under Fully Open-Air Field Conditions. Field Crops Res. 2009, 112, 7–15. [Google Scholar] [CrossRef]
- Shibu, M.E.; Leffelaar, P.A.; Van Keulen, H.; Aggarwal, P.K. A simulation model for nitrogen-limited situations: Application to rice. Eur. J. Agron. 2010, 32, 255–271. [Google Scholar] [CrossRef]
- Azarpour, E.; Motamed, M.K.; Moraditochaee, M.; Bozorgi, H.R. Effect of nitrogen fertilizer and nitroxinbiofertilizer management on growth analysis and yield of rice cultivars (Iran). World Appl. Sci. J. 2011, 142, 193–198. [Google Scholar]
- Dordas, C.A.; Sioulas, C. Safflower Yield, Chlorophyll Content, Photosynthesis, and Water Use Efficiency Response to Nitrogen Fertilization under Rainfed Conditions. Ind. Crops Prod. 2008, 27, 75–85. [Google Scholar] [CrossRef]
- Kiniry, J.R.; McCauley, G.; Xie, Y.; Arnold, J.G. Rice Parameters Describing Crop Performance of Four US Cultivars. Agron. J. 2001, 93, 1354–1361. [Google Scholar] [CrossRef] [Green Version]
- Sinclair, T.R.; Sheehy, J.E. Erect Leaves and Photosynthesis in Rice. Science 1999, 283, 1456–1457. [Google Scholar] [CrossRef]
- Chaturvedi, I. Effect of nitrogen fertilizers on growth, yield and quality of hybrid rice (Oryza sativa). J. Central Eur. Agric. 2005, 6, 611–618. [Google Scholar] [CrossRef]
- Sarker, U.K.; Uddin, M.R.; Hasan, A.K.; Sarkar, M.A.R.; Salam, M.A.; Hossain, M.A.; Dessoky, E.S.; Ismail, I.A. Sources of nitrogen in combination with systems of irrigation influence the productivity of modern rice (Oryza sativa L.) cultivars during dry season in sub-tropical environment. Python 2022, 91, 1687–1708. [Google Scholar] [CrossRef]
- Kern, C.C.; Friend, A.L.; Johnson, J.M.F.; Coleman, M.D. Fine root dynamics in a developing Populus deltoids plantation. Tree Physiol. 2004, 24, 651–660. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- LoÂpez-Bucio, J.; Cruz-RamõÂrez, A.; Herrera, L. The role of nutrient availability in regulating root architecture. Curr. Opin. Plant Biol. 2003, 6, 280–287. [Google Scholar] [CrossRef]
- Fageria, N.K.; Moreira, A. The role of mineral nutrition on root growth of crop plants. Adv. Agron. 2011, 110, 251–331. [Google Scholar] [CrossRef]
- Britto, D.T.; Kronzucker, H.J. NH4+ toxicity in higher plants: A critical review. J. Plant Physiol. 2002, 159, 567–584. [Google Scholar] [CrossRef]
- Hu, X.Y.; Guo, J.X.; Tlan, G.L.; Gao, L.M.; Shen, Q.R.; Guo, S.W. Effects of different nitrogen supply patterns on root morphological and physiological characteristics of rice. Chin. J. Rice Sci. 2017, 31, 72–80. [Google Scholar] [CrossRef]
- Fan, J.B.; Zhang, Y.L.; Wan, X.Y.; Shen, Q.R. Progress in research of rice root related to nitrogen uptake and utilization. Chinese Agricultural Science Bulletin 2007, 23, 236–240. (In Chinese) [Google Scholar]
- Fan, J.B.; Zhang, Y.L.; Turner, D.; Duan, Y.H.; Wang, D.S.; Shen, Q.R. Root physiological and morphological characteristics of two rice cultivars with different nitrogen-use efficiency. Pedosphere 2010, 20, 446–455. [Google Scholar] [CrossRef]
- Luxmoorer, J.; Stolzyl, H.; Letey, J. Oxygen diffusion in the soil-plant system- H. Respiration rate, permeability, and porosity of consecutive excised segments of maize and rice roots. Agron. J. 1970, 62, 322–324. [Google Scholar] [CrossRef]
- Lwemoore, R.J.; Stolzy, L.H. Oxygen consumption rates predicted from respiration, permeability and porosity measurements on excised wheat root segments. Crop Sci. 1972, 12, 442–445. [Google Scholar] [CrossRef]
- Abiko, T.; Obara, M. Enhancement of porosity and aerenchyma formation in nitrogen-deficient rice roots. Plant Sci. 2014, 215–216, 76–83. [Google Scholar] [CrossRef]
- Kariali, E.; Mohapatra, P.K. Hormonal regulation of tiller dynamics in differentially-tillering in rice cultivars. Plant Growth Regul. 2007, 53, 215–223. [Google Scholar] [CrossRef]
- Zhang, Y.J.; Zhou, Y.R.; Du, B.; Yang, J.C. Effects of nitrogen nutrition on grain yield of upland and paddy rice under different cultivation methods. Acta Agron. Sin. 2008, 6, 1005–1013. [Google Scholar] [CrossRef]
- Lin, M.; Zhang, X.L.; Jiang, X.F.; Wang, Q.J.; Huang, Q.W.; Xu, Y.C.; Yang, X.M.; Shen, Q.R. Effects of partial mineral nitrogen substitution by organic fertilizer nitrogen on the yield of rice grains and their proper substitution rate. Sci. Agric. 2009, 42, 532–542. [Google Scholar]
- Razaee, M.; ShokriVahed, H.; Amiri, E.; Motamed, M.K.; Azarpour, E. The effects of irrigation and nitrogen management on yield and water productivity of rice. World Appl. Sci. J. 2009, 2, 203–210. [Google Scholar]
- Lampayan, R.M.; Bouman, B.A.M.; De Dios, J.L.; Espiritu, A.J.; Soriana, J.B.; Lactaoen, J.E.; Faronilo, A.T.; Thant, K.M. Yield of aerobic rice in rainfed lowlands of the Philippines as affected by nitrogen management and row spacing. Field Crops Res. 2010, 116, 165–174. [Google Scholar] [CrossRef]
- Zhu, D.-W.; Zhang, H.-C.; Guo, B.-W.; Xu, K.; Dai, Q.-G.; Wei, H.-Y.; Gao, H.; Hu, Y.-J.; Cui, P.-Y.; Huo, Z.-Y. Effects of nitrogen level on yield and quality of japonica soft super rice. J. Integr. Agric. 2017, 16, 1018–1027. [Google Scholar] [CrossRef]
- Hou, W.; Khan, M.R.; Zhang, J.; Lu, J.; Ren, T.; Cong, R.; Li, X. Nitrogen rate and plant density interaction en-hances radiation interception, yield and nitrogen use efficiency of mechanically transplanted rice. Agric. Ecosyst. Environ. 2019, 269, 183–192. [Google Scholar] [CrossRef]
- Sun, T.; Yang, X.; Tan, X.; Han, K.; Tang, S.; Tong, W.; Zhu, S.; Hu, Z.; Wu, L. Comparison of Agronomic Performance between Japonica/Indica Hybrid and Japonica Cultivars of Rice Based on Different Nitrogen Rates. Agronomy 2020, 10, 171. [Google Scholar] [CrossRef] [Green Version]
- Pham, Q.D.; Akira, A.; Mitsugu, H.; Satoru, S.; Eiki, K. Analysis of lodging-resistant characteristics of different rice genotypes grown under the standard and nitrogen free basal dressing accompanied with sparse planting density practices. Plant Prod Sci. 2004, 7, 243–251. [Google Scholar] [CrossRef]
- Feng, Y.; Chen, H.F.; Hu, X.M.; Cai, H.M.; Xu, F.S. Optimal nitrogen application rates on rice grain yield and nitrogen use efficiency in high, middle and low-yield paddy fields. J. Plant Nutr. Fertil. 2014, 1, 7–16. [Google Scholar]
- Elkhoby, W.M.H.; Abd El-Lattef, A.S.M.; Mikhael, B.B. Inheritance of some rice root characters and productivity under water stress conditions. Egypt. J. Agric. Res. 2014, 92, 529–548. [Google Scholar]
- Kaysar, M.S.; Sarker, U.K.; Monira, S.; Hossain, M.A.; Haque, M.S.; Somaddar, U.; Saha, G.; Chaki, A.K.; Uddin, M.R. Dissecting the relationship between root morphological traits and yield attributes in diverse rice cultivars under subtropical condition. Life 2022, 12, 1519. [Google Scholar] [CrossRef] [PubMed]
Sl. No | Cultivar | Genetic Origin | Parental Source/Accession Number | Source |
---|---|---|---|---|
1. | BRRI dhan29 | Inbred | BG90-2 × BR51-46-5 | BRRI |
2. | Binadhan-10 | Inbred | IR42598-B-B-B-B-12 × Nona Bokra | BINA |
3. | Hira-2 | Hybrid | - | Local market |
Soil Characteristics | Values |
---|---|
Soil texture | Clay loam |
Soil pH | 6.15 |
Electric conductivity (µs/cm) | 641 |
Organic carbon (%) | 1.211 |
Total nitrogen (N) (%) | 0.110 |
Available form of phosphorus (P) (ppm) | 28.8 |
Available form of potassium (K) (ppm) | 83.51 |
Available form of sulfur (S) (ppm) | 25.78 |
Variety (V) | PH (cm) | ET (no.) | PL (cm) | GP (No.) | TGW (g) | GY (g pot−1) | SY (g pot−1) | HI (%) |
---|---|---|---|---|---|---|---|---|
V1 | 85.58 b | 10.08 c | 20.42 b | 111.08 c | 22.96 b | 23.47 c | 23.63 c | 49.83 |
V2 | 81.75 b | 11.50 b | 21.76 ab | 113.67 b | 23.65 ab | 23.90 b | 24.06 b | 49.84 |
V3 | 96.00 a | 12.58 a | 22.71 a | 115.75 a | 24.11 a | 24.73 a | 24.90 a | 49.84 |
Nitrogen (N) | ||||||||
N0 | 77.00 b | 6.44 c | 18.66 c | 104.22 d | 20.98 d | 18.91 c | 19.03 c | 49.84 a |
N70 | 90.89 a | 11.89 b | 21.60 b | 112.22 c | 22.38 c | 25.45 b | 25.59 b | 49.87 a |
N140 | 93.44 a | 14.33 a | 23.86 a | 120.00 a | 26.23 a | 26.40 a | 26.58 a | 49.84 a |
N210 | 89.78 a | 12.89 b | 22.40 b | 117.56 b | 24.69 b | 25.38 b | 25.58 b | 49.80 b |
ANOVA | ||||||||
V | ** | ** | ** | ** | * | ** | ** | NS |
N | ** | ** | ** | ** | ** | ** | ** | ** |
CV (%) | 1.26 | 6.71 | 3.88 | 1.24 | 5.05 | 1.18 | 1.23 | 0.06 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kaysar, M.S.; Sarker, U.K.; Monira, S.; Hossain, M.A.; Somaddar, U.; Saha, G.; Hossain, S.S.F.; Mokarroma, N.; Chaki, A.K.; Bhuiya, M.S.U.; et al. Optimum Nitrogen Application Acclimatizes Root Morpho-Physiological Traits and Yield Potential in Rice under Subtropical Conditions. Life 2022, 12, 2051. https://doi.org/10.3390/life12122051
Kaysar MS, Sarker UK, Monira S, Hossain MA, Somaddar U, Saha G, Hossain SSF, Mokarroma N, Chaki AK, Bhuiya MSU, et al. Optimum Nitrogen Application Acclimatizes Root Morpho-Physiological Traits and Yield Potential in Rice under Subtropical Conditions. Life. 2022; 12(12):2051. https://doi.org/10.3390/life12122051
Chicago/Turabian StyleKaysar, Md. Salahuddin, Uttam Kumer Sarker, Sirajam Monira, Md. Alamgir Hossain, Uzzal Somaddar, Gopal Saha, S. S. Farhana Hossain, Nadira Mokarroma, Apurbo Kumar Chaki, Md. Sultan Uddin Bhuiya, and et al. 2022. "Optimum Nitrogen Application Acclimatizes Root Morpho-Physiological Traits and Yield Potential in Rice under Subtropical Conditions" Life 12, no. 12: 2051. https://doi.org/10.3390/life12122051
APA StyleKaysar, M. S., Sarker, U. K., Monira, S., Hossain, M. A., Somaddar, U., Saha, G., Hossain, S. S. F., Mokarroma, N., Chaki, A. K., Bhuiya, M. S. U., & Uddin, M. R. (2022). Optimum Nitrogen Application Acclimatizes Root Morpho-Physiological Traits and Yield Potential in Rice under Subtropical Conditions. Life, 12(12), 2051. https://doi.org/10.3390/life12122051