The Impact of Cardiac Comorbidity Sequence at Baseline and Mortality Risk in Type 2 Diabetes Mellitus: A Retrospective Population-Based Cohort Study
Abstract
:1. Introduction
2. Methods
2.1. Patient Selection and Data Extraction
2.2. Study Outcome and Statistical Analysis
3. Results
3.1. Baseline Characteristics
3.2. Univariable Cox Regression Model
3.3. Multivariable Cox Regression of Sequential Complications Adjusted for Age, Sex and Renal Disease
3.4. Mortality Risk after Adjusting for Comorbidities and Cardiovascular and Antidiabetic Medications
4. Discussion
Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Das, S.R.; Everett, B.M.; Birtcher, K.K.; Brown, J.M.; Cefalu, W.T.; Januzzi, J.L., Jr.; Kalyani, R.R.; Kosiborod, M.; Magwire, M.L.; Morris, P.B. Sperling LS. 2018 ACC Expert Consensus Decision Pathway on Novel Therapies for Cardiovascular Risk Reduction in Patients With Type 2 Diabetes and Atherosclerotic Cardiovascular Disease: A Report of the American College of Cardiology Task Force on Expert Consensus Decision Pathways. J. Am. Coll. Cardiol. 2018, 72, 3200–3223. [Google Scholar]
- Marso, S.P.; Daniels, G.H.; Brown-Frandsen, K.; Kristensen, P.; Mann, J.F.; Nauck, M.A.; Nissen, S.E.; Pocock, S.; Poulter, N.R.; Ravn, L.S.; et al. Liraglutide and Cardiovascular Outcomes in Type 2 Diabetes. N. Engl. J. Med. 2016, 375, 311–322. [Google Scholar] [CrossRef][Green Version]
- Marso, S.P.; Bain, S.C.; Consoli, A.; Eliaschewitz, F.G.; Jódar, E.; Leiter, L.A.; Lingvay, I.; Rosenstock, J.; Seufert, J.; Warren, M.L.; et al. Semaglutide and Cardiovascular Outcomes in Patients with Type 2 Diabetes. N. Engl. J. Med. 2016, 375, 1834–1844. [Google Scholar] [CrossRef][Green Version]
- Baqui, P.; Bica, I.; Marra, V.; Ercole, A.; van der Schaar, M. Ethnic and regional variations in hospital mortality from COVID-19 in Brazil: A cross-sectional observational study. Lancet Glob. Health 2020, 8, e1018–e1026. [Google Scholar] [CrossRef]
- Christiansen, M.N.; Køber, L.; Weeke, P.; Vasan, R.S.; Jeppesen, J.L.; Smith, J.G.; Gislason, G.H.; Torp-Pedersen, C.; Andersson, C. Age-Specific Trends in Incidence, Mortality, and Comorbidities of Heart Failure in Denmark, 1995 to 2012. Circulation 2017, 135, 1214–1223. [Google Scholar] [CrossRef]
- Crowe, F.; Zemedikun, D.T.; Okoth, K.; Adderley, N.J.; Rudge, G.; Sheldon, M.; Nirantharakumar, K.; Marshall, T. Comorbidity phenotypes and risk of mortality in patients with ischaemic heart disease in the UK. Heart 2020, 106, 810–816. [Google Scholar] [CrossRef]
- Stevens, S.L.; Wood, S.; Koshiaris, C.; Law, K.; Glasziou, P.; Stevens, R.J.; McManus, R.J. Blood pressure variability and cardiovascular disease: Systematic review and meta-analysis. BMJ 2016, 354, i4098. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Zhou, J.; Lee, S.; Wong, W.T.; Waleed, K.B.; Leung, K.S.K.; Lee, T.T.L.; Wai, A.K.C.; Liu, T.; Chang, C.; Cheung, B.M.Y.; et al. Gender-specific clinical risk scores incorporating blood pressure variability for predicting incident dementia. J. Am. Med. Inform. Assoc. 2022, 29, 335–347. [Google Scholar] [CrossRef] [PubMed]
- Ceriello, A.; Prattichizzo, F. Variability of risk factors and diabetes complications. Cardiovasc. Diabetol. 2021, 20, 101. [Google Scholar] [CrossRef]
- Lee, S.; Liu, T.; Zhou, J.; Zhang, Q.; Wong, W.T.; Tse, G. Predictions of diabetes complications and mortality using hba1c variability: A 10-year observational cohort study. Acta Diabetol. 2021, 58, 171–180. [Google Scholar] [CrossRef]
- Gazzaruso, C.; Coppola, A.; Montalcini, T.; Falcone, C. Anti-diabetic agents and heart health: How to use new diabetes medications in a global strategy for the prevention of cardiovascular complications in type 2 diabetes. Ann. Transl. Med. 2018, 6, 195. [Google Scholar] [CrossRef] [PubMed]
- Waagstein, F.; Strömblad, O.; Andersson, B.; Böhm, M.; Darius, M.; Delius, W.; Goss, F.; Osterziel, K.J.; Sigmund, M.; Trenkwalder, S.P.; et al. Increased exercise ejection fraction and reversed remodeling after long-term treatment with metoprolol in congestive heart failure: A randomized, stratified, double-blind, placebo-controlled trial in mild to moderate heart failure due to ischemic or idiopathic dilated cardiomyopathy. Eur. J. Heart Fail. 2003, 5, 679–691. [Google Scholar] [PubMed]
- Groenewegen, A.; Zwartkruis, V.W.; Cekic, B.; de Boer, R.A.; Rienstra, M.; Hoes, A.W.; Rutten, F.H.; Hollander, M. Incidence of atrial fibrillation, ischaemic heart disease and heart failure in patients with diabetes. Cardiovasc. Diabetol. 2021, 20, 123. [Google Scholar] [CrossRef] [PubMed]
- Bano, A.; Rodondi, N.; Beer, J.H.; Moschovitis, G.; Kobza, R.; Aeschbacher, S.; Baretella, O.; Muka, T.; Stettler, C.; Franco, O.H.; et al. Association of Diabetes With Atrial Fibrillation Phenotype and Cardiac and Neurological Comorbidities: Insights From the Swiss-AF Study. J. Am. Heart. Assoc. 2021, 10, e021800. [Google Scholar] [CrossRef]
- Lee, S.; Zhou, J.; Guo, C.L.; Wong, W.T.; Liu, T.; Wong, I.C.K.; Jeevaratnam, K.; Zhang, Q.; Tse, G. Predictive scores for identifying patients with type 2 diabetes mellitus at risk of acute myocardial infarction and sudden cardiac death. Endocrinol. Diabetes Metab. 2021, 4, e00240. [Google Scholar] [CrossRef]
- Lee, S.; Zhou, J.; Wong, W.T.; Liu, T.; Wu, W.K.K.; Wong, I.C.K.; Zhang, Q.; Tse, G. Glycemic and lipid variability for predicting complications and mortality in diabetes mellitus using machine learning. BMC Endocr. Disord. 2021, 21, 94. [Google Scholar] [CrossRef]
- Lee, S.; Zhou, J.; Leung, K.S.K.; Wu, W.K.K.; Wong, W.T.; Liu, T.; Wong, I.C.K.; Jeevaratnam, K.; Zhang, Q.; Tse, G. Development of a predictive risk model for all-cause mortality in diabetic patients in Hong Kong. BMJ Open Diabetes Res. Care 2021, 9, e001950. [Google Scholar] [CrossRef]
- Zhou, J.; Lee, S.; Liu, X.; Satti, D.I.; Lee, T.T.L.; Chou, O.H.I.; Chang, C.; Roever, L.; Wong, W.T.; Wai, A.K.C.; et al. Hip fractures risks in edoxaban versus warfarin users: A propensity score-matched population-based cohort study with competing risk analyses. Bone 2022, 156, 116303. [Google Scholar] [CrossRef]
- Ju, C.; Zhou, J.; Lee, S.; Tan, M.S.; Liu, T.; Bazoukis, G.; Jeevaratnam, K.; Chan, E.W.Y.; Wong, I.C.K.; Wei, L.; et al. Derivation of an electronic frailty index for predicting short-term mortality in heart failure: A machine learning approach. ESC Heart Fail. 2021, 8, 2837–2845. [Google Scholar] [CrossRef]
- Lee, T.T.L.; Hui, J.M.H.; Lee, Y.H.A.; Satti, D.I.; Shum, Y.K.L.; Kiu, P.T.H.; Wai, A.K.C.; Liu, T.; Wong, W.T.; Chan, J.S.K.; et al. Sulfonylurea Is Associated With Higher Risks of Ventricular Arrhythmia or Sudden Cardiac Death Compared With Metformin: A Population-Based Cohort Study. J. Am. Heart Assoc. 2022, 11, e026289. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Zhang, G.; Chang, C.; Chou, O.H.I.; Lee, S.; Leung, K.S.K.; Wong, W.T.; Liu, T.; Wai, A.K.C.; Cheng, S.H.; et al. Metformin versus sulphonylureas for new onset atrial fibrillation and stroke in type 2 diabetes mellitus: A population-based study. Acta Diabetol. 2022, 59, 697–709. [Google Scholar] [CrossRef]
- Wong, J.Y.H.; Luk, L.Y.F.; Yip, T.F.; Lee, T.T.L.; Wai, A.K.C.; Ho, J.W.K. Incidence of Emergency Department Visits for Sexual Abuse Among Youth in Hong Kong Before and During the COVID-19 Pandemic. JAMA Netw. Open 2022, 5, e2236278. [Google Scholar] [CrossRef]
- Wai, A.K.C.; Wong, C.K.H.; Wong, J.Y.H.; Xiong, X.; Chu, O.C.K.; Wong, M.S.; Tsui, M.S.H.; Rainer, T.H. Changes in Emergency Department Visits, Diagnostic Groups, and 28-Day Mortality Associated With the COVID-19 Pandemic: A Territory-Wide, Retrospective, Cohort Study. Ann. Emerg. Med. 2022, 79, 148–157. [Google Scholar] [CrossRef]
- Xiong, X.; Wai, A.K.C.; Wong, J.Y.H.; Tang, E.H.M.; Chu, O.C.K.; Wong, C.K.H.; Rainer, T.H. Impact of varying wave periods of COVID-19 on in-hospital mortality and length of stay for admission through emergency department: A territory-wide observational cohort study. Influenza Other Respir. Viruses 2022, 16, 193–203. [Google Scholar] [CrossRef]
- Tinetti, M.E.; McAvay, G.; Trentalange, M.; Cohen, A.B.; Allore, H.G. Association between guideline recommended drugs and death in older adults with multiple chronic conditions: Population based cohort study. BMJ 2015, 351, h4984. [Google Scholar] [CrossRef][Green Version]
- Kim, Y.; Kim, Y.J.; Cho, W.K. Effect of multiple comorbidities on mortality in chronic obstructive pulmonary disease among Korean population: A nationwide cohort study. BMC Pulm. Med. 2021, 21, 56. [Google Scholar] [CrossRef]
- Hanlon, P.; Nicholl, B.I.; Jani, B.D.; Lee, D.; McQueenie, R.; Mair, F.S. Frailty and pre-frailty in middle-aged and older adults and its association with multimorbidity and mortality: A prospective analysis of 493 737 UK Biobank participants. Lancet Public Health 2018, 3, e323–e332. [Google Scholar] [CrossRef]
- Taudorf, L.; Nørgaard, A.; Brodaty, H.; Laursen, T.M.; Waldemar, G. Dementia increases mortality beyond effects of comorbid conditions: A national registry-based cohort study. Eur. J. Neurol. 2021, 28, 2174–2184. [Google Scholar] [CrossRef] [PubMed]
- Gopinathannair, R.; Chen, L.Y.; Chung, M.K.; Cornwell, W.K.; Furie, K.L.; Lakkireddy, D.R.; Marrouche, N.F.; Natale, A.; Olshansky, B.; Joglar, J.A. Managing Atrial Fibrillation in Patients with Heart Failure and Reduced Ejection Fraction: A Scientific Statement from the American Heart Association. Circ. Arrhythm. Electrophysiol. 2021, 14, Hae0000000000000078. [Google Scholar] [CrossRef]
- Kotecha, D.; Holmes, J.; Krum, H.; Altman, D.G.; Manzano, L.; Cleland, J.G.; Lip, G.Y.; Coats, A.J.; Andersson, B.; Kirchhof, P.; et al. Efficacy of β blockers in patients with heart failure plus atrial fibrillation: An individual-patient data meta-analysis. Lancet 2014, 384, 2235–2243. [Google Scholar] [CrossRef][Green Version]
- Pastori, D.; Baratta, F.; Di Rocco, A.; Farcomeni, A.; Del Ben, M.; Angelico, F.; Violi, F.; Pignatelli, P.; Lip, G.Y.H. Statin use and mortality in atrial fibrillation: A systematic review and meta-analysis of 100,287 patients. Pharmacol. Res. 2021, 165, 105418. [Google Scholar] [CrossRef] [PubMed]
- Figtree, G.A.; Vernon, S.T.; Hadziosmanovic, N.; Sundström, J.; Alfredsson, J.; Arnott, C.; Delatour, V.; Leósdóttir, M.; Hagström, E. Mortality in STEMI patients without standard modifiable risk factors: A sex-disaggregated analysis of SWEDEHEART registry data. Lancet 2021, 397, 1085–1094. [Google Scholar] [CrossRef]
- Khan, A.A.; Chung, M.J.; Novak, E.; Brown, D.L. Increased Hazard of Myocardial Infarction with Insulin-Provision Therapy in Actively Smoking Patients with Diabetes Mellitus and Stable Ischemic Heart Disease: The BARI 2D (Bypass Angioplasty Revascularization Investigation 2 Diabetes) Trial. J. Am. Heart Assoc. 2017, 6, e005946. [Google Scholar] [CrossRef] [PubMed]
- Damluji, A.A.; Cohen, E.R.; Moscucci, M.; Myerburg, R.J.; Cohen, M.G.; Brooks, M.M.; Rich, M.W.; Forman, D.E. Insulin provision therapy and mortality in older adults with diabetes mellitus and stable ischemic heart disease: Insights from BARI-2D trial. Int. J. Cardiol. 2017, 241, 35–40. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.; Xie, H.; Liu, Y.; Gao, P.; Yang, X.; Shen, Z. Effect of metformin on all-cause and cardiovascular mortality in patients with coronary artery diseases: A systematic review and an updated meta-analysis. Cardiovasc. Diabetol. 2019, 18, 96. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Raghavan, S.; Liu, W.G.; Saxon, D.R.; Grunwald, G.K.; Maddox, T.M.; Reusch, J.E.B.; Berkowitz, S.A.; Caplan, L. Oral diabetes medication monotherapy and short-term mortality in individuals with type 2 diabetes and coronary artery disease. BMJ Open Diabetes Res. Care 2018, 6, e000516. [Google Scholar] [CrossRef][Green Version]
- Reiff, S.; Fava, S. All-cause mortality in patients on sulphonylurea monotherapy compared to metformin monotherapy in a nation-wide cohort. Diabetes Res. Clin. Pract. 2019, 147, 62–66. [Google Scholar] [CrossRef]
- Douros, A.; Dell’Aniello, S.; Yu, O.H.Y.; Filion, K.B.; Azoulay, L.; Suissa, S. Sulfonylureas as second line drugs in type 2 diabetes and the risk of cardiovascular and hypoglycaemic events: Population based cohort study. BMJ 2018, 362, k2693. [Google Scholar] [CrossRef][Green Version]
- Sun, Y.H.; Chen, K.; Chen, X.; Gu, W.J.; Guo, Y.L.; Li, Y.J.; Liu, T.; Peng, D.Q.; Mu, Y.M.; Ma, C.S. Expert consensus on the management of diabetic patients with cardiovascular diseases. Zhonghua Nei Ke Za Zhi 2021, 60, 421–437. [Google Scholar]
- Bashier, A.; Bin Hussain, A.; Abdelgadir, E.; Alawadi, F.; Sabbour, H.; Chilton, R. Consensus recommendations for management of patients with type 2 diabetes mellitus and cardiovascular diseases. Diabetol. Metab. Syndr. 2019, 11, 80. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Zinman, B.; Wanner, C.; Lachin, J.M.; Fitchett, D.; Bluhmki, E.; Hantel, S.; Mattheus, M.; Devins, T.; Johansen, O.E.; Woerle, H.J.; et al. Empagliflozin, Cardiovascular Outcomes, and Mortality in Type 2 Diabetes. N. Engl. J. Med. 2015, 373, 2117–2128. [Google Scholar] [CrossRef][Green Version]
- Tanabe, M.; Nomiyama, T.; Motonaga, R.; Murase, K.; Yanase, T. Reduced vascular events in type 2 diabetes by biguanide relative to sulfonylurea: Study in a Japanese Hospital Database. BMC Endocr. Disord. 2015, 15, 49. [Google Scholar] [CrossRef] [PubMed]
- Gejl, M.; Starup-Linde, J.; Scheel-Thomsen, J.; Gregersen, S.; Vestergaard, P. Risk of cardiovascular disease: The effects of diabetes and anti-diabetic drugs—A nested case-control study. Int. J. Cardiol. 2015, 178, 292–296. [Google Scholar] [CrossRef] [PubMed]
- Kotecha, D.; Lam, C.S.; Van Veldhuisen, D.J.; Van Gelder, I.C.; Voors, A.A.; Rienstra, M. Heart Failure With Preserved Ejection Fraction and Atrial Fibrillation: Vicious Twins. J. Am. Coll. Cardiol. 2016, 68, 2217–2228. [Google Scholar] [CrossRef] [PubMed]
- Korantzopoulos, P.; Letsas, K.; Fragakis, N.; Tse, G.; Liu, T. Oxidative stress and atrial fibrillation: An update. Free Radic. Res. 2018, 52, 1199–1209. [Google Scholar] [CrossRef]
- Goette, A.; Lendeckel, U. Atrial Cardiomyopathy: Pathophysiology and Clinical Consequences. Cells 2021, 10, 2605. [Google Scholar] [CrossRef]
- Goette, A.; Bukowska, A.; Dobrev, D.; Pfeiffenberger, J.; Morawietz, H.; Strugala, D.; Wiswedel, I.; Röhl, F.W.; Wolke, C.; Bergmann, S.; et al. Acute atrial tachyarrhythmia induces angiotensin II type 1 receptor-mediated oxidative stress and microvascular flow abnormalities in the ventricles. Eur. Heart J. 2009, 30, 1411–1420. [Google Scholar] [CrossRef][Green Version]
- Alasady, M.; Shipp, N.J.; Brooks, A.G.; Lim, H.S.; Lau, D.H.; Barlow, D.; Kuklik, P.; Worthley, M.I.; Roberts-Thomson, K.C.; Saint, D.A.; et al. Myocardial infarction and atrial fibrillation: Importance of atrial ischemia. Circ. Arrhythm. Electrophysiol. 2013, 6, 738–745. [Google Scholar] [CrossRef][Green Version]
- Guo, X.Y.; Li, N.; Du, X.; Bai, R.; Yu, R.H.; Long, D.Y.; Tang, R.B.; Sang, C.H.; Jiang, C.X.; Ning, M.; et al. Atrial fibrillation is associated with an increased risk of myocardial infarction: Insights from a meta-analysis. Atherosclerosis 2016, 254, 1–7. [Google Scholar] [CrossRef]
- Lee, H.Y.; Yang, P.S.; Kim, T.H.; Uhm, J.S.; Pak, H.N.; Lee, M.H.; Joung, B. Atrial fibrillation and the risk of myocardial infarction: A nation-wide propensity-matched study. Sci. Rep. 2017, 7, 12716. [Google Scholar] [CrossRef][Green Version]
- Chao, T.F.; Huang, Y.C.; Liu, C.J.; Chen, S.J.; Wang, K.L.; Lin, Y.J.; Chang, S.L.; Lo, L.W.; Hu, Y.F.; Tuan, T.C.; et al. Acute myocardial infarction in patients with atrial fibrillation with a CHA2DS2-VASc score of 0 or 1: A nationwide cohort study. Heart Rhythm 2014, 11, 1941–1947. [Google Scholar] [CrossRef]
Parameter | Total Number (%)/ Mean (Standard Deviation) |
---|---|
Demographic | |
Age | 66.04 (12.44) |
Male | 118,262 (47.44) |
All-cause mortality | 85,870 (34.45) |
Medications | |
Biguanide | 185,069 (74.24) |
Sulphonylurea | 172,779 (69.31) |
Insulin | 29,401 (11.79) |
Thiazolidinedione | 3637 (1.46) |
Meglitinide | 22 (0.01) |
Dipeptidyl peptidase-4 inhibitors | 310 (0.12) |
Glucagon-like receptor peptide-1 agonists | 17 (0.01) |
Angiotensin-converting enzyme inhibitors/angiotensin receptor blockers | 120,604 (48.38) |
Beta-blockers | 90,908 (36.47) |
Calcium channel blockers | 107,879 (43.27) |
Lipid-lowering agents | 60,152 (24.13) |
Comorbidities | |
Coronary heart disease (CHD) | 25,589 (10.26) |
Atrial fibrillation (AF) | 7564 (3.03) |
Heart failure (HF) | 10,900 (4.37) |
CHD-HF | 3586 (1.44) |
CHD-AF | 1677 (0.67) |
HF-CHD | 1919 (0.77) |
HF-AF | 967 (0.39) |
AF-CHD | 771 (0.31) |
AF-HF | 1809 (0.73) |
CHD-HF-AF | 170 (0.07) |
CHD-AF-HF | 480 (0.19) |
HF-CHD-AF | 192 (0.08) |
AF-CHD-HF | 126 (0.05) |
HF-AF-CHD | 134 (0.05) |
AF-HF-CHD | 164 (0.07) |
Renal diabetic complications | 3323 (1.33) |
Peripheral vascular disease | 341 (0.14) |
Neurological diabetic complications | 1144 (0.46) |
Ophthalmological diabetic complications | 3490 (1.40) |
Ischemic stroke and transient ischemic attack | 8733 (3.50) |
Intracranial hemorrhage | 3134 (1.26) |
Osteoporosis | 134 (0.05) |
Dementia | 2725 (1.09) |
Hypertension | 62,571 (25.10) |
Chronic obstructive pulmonary disease | 793 (0.32) |
Cancer | 11,442 (4.59) |
Parameter | Hazard Ratio (95% Confidence Interval) | p-Value |
---|---|---|
Demographic | ||
Age | 1.09 (1.09−1.09) | <0.001 |
Male | 1.13 (1.12−1.15) | <0.001 |
Medications | ||
Biguanide | 0.58 (0.57−0.58) | <0.001 |
Sulphonylurea | 1.28 (1.26−1.30) | <0.001 |
Insulin | 1.94 (1.91−1.97) | <0.001 |
Thiazolidinedione | 0.79 (0.74−0.83) | <0.001 |
Meglitinide | 1.48 (0.80−2.75) | <0.001 |
Dipeptidyl peptidase-4 inhibitors | 0.48 (0.37−0.62) | <0.001 |
Glucagon-like receptor peptide-1 agonists | 0.30 (0.07−1.19) | <0.001 |
Angiotensin converting enzyme inhibitors/angiotensin receptor blockers | 1.43 (1.41−1.45) | <0.001 |
Beta-blockers | 1.32 (1.31−1.34) | <0.001 |
Calcium channel blockers | 1.82 (1.80−1.85) | <0.001 |
Lipid-lowering agents | 1.30 (1.28−1.32) | <0.001 |
Comorbidities | ||
Coronary heart disease (CHD) | 2.17 (2.13−2.21) | <0.001 |
Atrial fibrillation (AF) | 3.42 (3.32−3.51) | <0.001 |
Heart failure (HF) | 4.61 (4.51−4.71) | <0.001 |
CHD-HF | 4.66 (4.49−4.83) | <0.001 |
CHD-AF | 4.00 (3.79−4.22) | <0.001 |
HF-CHD | 4.61 (4.39−4.84) | <0.001 |
HF-AF | 5.25 (4.91−5.62) | <0.001 |
AF-CHD | 4.05 (3.74−4.39) | <0.001 |
AF-HF | 4.58 (4.35−4.82) | <0.001 |
CHD-HF-AF | 6.42 (5.48−7.51) | <0.001 |
CHD-AF-HF | 5.34 (4.86−5.87) | <0.001 |
HF-CHD-AF | 5.87 (5.06−6.82) | <0.001 |
AF-CHD-HF | 5.24 (4.35−6.32) | <0.001 |
HF-AF-CHD | 5.55 (4.65−6.63) | <0.001 |
AF-HF-CHD | 5.51 (4.69−6.48) | <0.001 |
Renal diabetic complications | 3.54 (3.40−3.68) | <0.001 |
Peripheral vascular disease | 4.25 (3.79−4.78) | <0.001 |
Neurological diabetic complications | 2.95 (2.76−3.16) | <0.001 |
Ophthalmological diabetic complications | 2.62 (2.51−2.73) | <0.001 |
Ischemic stroke and transient ischemic attack | 2.74 (2.67−2.82) | <0.001 |
Intracranial hemorrhage | 2.60 (2.49−2.71) | <0.001 |
Osteoporosis | 2.77 (2.25−3.40) | <0.001 |
Dementia | 5.66 (5.43−5.89) | <0.001 |
Hypertension | 2.47 (2.43−2.50) | <0.001 |
Chronic obstructive pulmonary disease | 4.43 (4.10−4.79) | <0.001 |
Cancer | 2.39 (2.33−2.45) | <0.001 |
Parameter | Hazard Ratio (95% Confidence Interval) | p-Value |
---|---|---|
Medications | ||
Biguanide | 0.75 (0.74−0.77) | <0.001 |
Sulphonylurea | 1.18 (1.16−1.20) | <0.001 |
Insulin | 1.98 (1.95−2.02) | <0.001 |
Thiazolidinedione | 1.02 (0.96−1.08) | 0.53 |
Meglitinide | 0.92 (0.50−1.72) | 0.80 |
Dipeptidyl peptidase-4 inhibitors | 0.63 (0.49−0.82) | <0.001 |
Glucagon-like receptor peptide-1 agonists | 0.67 (0.17−2.67) | 0.57 |
Angiotensin converting enzyme inhibitors/angiotensin receptor blockers | 1.25 (1.23−1.26) | <0.001 |
Beta-blockers | 1.17 (1.15−1.19) | <0.001 |
Calcium channel blockers | 1.26 (1.24−1.27) | <0.001 |
Lipid-lowering agents | 1.22 (1.20−1.24) | <0.001 |
Comorbidities | ||
Coronary heart disease (CHD) | 1.49 (1.46−1.51) | <0.001 |
Atrial fibrillation (AF) | 2.03 (1.98−2.09) | <0.001 |
Heart failure (HF) | 2.42 (2.36−2.47) | <0.001 |
CHD-HF | 2.38 (2.29−2.47) | <0.001 |
CHD-AF | 2.18 (2.07−2.30) | <0.001 |
HF-CHD | 2.31 (2.20−2.43) | <0.001 |
HF-AF | 2.55 (2.39−2.73) | <0.001 |
AF-CHD | 2.03 (1.87−2.19) | <0.001 |
AF-HF | 2.44 (2.32−2.57) | <0.001 |
CHD-HF-AF | 2.65 (2.27−3.11) | <0.001 |
CHD-AF-HF | 2.80 (2.55−3.08) | <0.001 |
HF-CHD-AF | 2.77 (2.39−3.22) | <0.001 |
AF-CHD-HF | 2.10 (1.74−2.53) | <0.001 |
HF-AF-CHD | 2.03 (1.70−2.42) | <0.001 |
AF-HF-CHD | 2.81 (2.39−3.31) | <0.001 |
Peripheral vascular disease | 1.80 (1.59−2.02) | <0.001 |
Neurological diabetic complications | 1.42 (1.32−1.53) | <0.001 |
Ophthalmological diabetic complications | 1.93 (1.83−2.02) | <0.001 |
Ischemic stroke and transient ischemic attack | 1.72 (1.67−1.76) | <0.001 |
Intracranial hemorrhage | 1.35 (1.10−1.66) | <0.001 |
Osteoporosis | 2.41 (2.32−2.51) | <0.001 |
Dementia | 1.67 (1.64−1.69) | <0.001 |
Hypertension | 2.06 (1.91−2.23) | <0.001 |
Chronic obstructive pulmonary disease | 1.73 (1.69−1.77) | <0.001 |
Cancer | 1.35 (1.10−1.66) | <0.001 |
Comorbidities | Biguanide | Sulphonylurea | Insulin | ACEIs/ARBs | Beta-Blockers | CCBs | Lipid-Lowering Agents |
---|---|---|---|---|---|---|---|
CHD | 0.49 (0.47−0.51) | 1.01 (0.98−1.05) | 2.06 (1.98−2.13) | 1.63 (1.57−1.69) | 1.93 (1.86−2.00) | 1.06 (1.02−1.09) | 2.50 (2.42−2.59) |
AF | 0.48 (0.45−0.50) | 1.03 (0.97−1.09) | 1.45 (1.36−1.54) | 1.57 (1.49−1.66) | 1.36 (1.29−1.43) | 1.00 (0.95−1.05) | 1.31 (1.24−1.38) |
HF | 0.37 (0.35−0.38) | 0.89 (0.85−0.93) | 2.31 (2.21−2.41) | 2.19 (2.09−2.30) | 1.49 (1.43−1.56) | 0.95 (0.91−0.99) | 1.93 (1.85−2.01) |
CHD-HF | 0.30 (0.27−0.32) | 0.95 (0.88−1.03) | 2.47 (2.29−2.67) | 2.70 (2.48−2.94) | 2.21 (2.05−2.38) | 0.78 (0.73−0.84) | 3.89 (3.61−4.19) |
CHD-AF | 0.38 (0.34−0.42) | 1.02 (0.90−1.15) | 1.46 (1.28−1.66) | 2.30 (2.04−2.60) | 1.81 (1.62−2.01) | 0.86 (0.78−0.96) | 2.62 (2.35−2.91) |
HF-CHD | 0.39 (0.35−0.43) | 0.75 (0.67−0.83) | 3.84 (3.47−4.24) | 2.65 (2.36−2.99) | 2.24 (2.03−2.48) | 0.84 (0.76−0.92) | 3.81 (3.45−4.22) |
HF-AF | 0.44 (0.38−0.50) | 0.90 (0.78−1.05) | 2.45 (2.12−2.83) | 2.47 (2.11−2.89) | 1.44 (1.26−1.65) | 0.88 (0.77−1.01) | 1.46 (1.27−1.68) |
AF-CHD | 0.48 (0.41−0.56) | 0.79 (0.67−0.94) | 3.06 (2.60−3.61) | 2.19 (1.83−2.63) | 1.94 (1.65−2.28) | 1.05 (0.90−1.24) | 2.67 (2.28−3.13) |
AF-HF | 0.35 (0.32−0.39) | 1.02 (0.91−1.14) | 1.51 (1.34−1.70) | 2.48 (2.20−2.79) | 1.33 (1.21−1.47) | 0.85 (0.77−0.94) | 1.57 (1.41−1.74) |
CHD-HF-AF | 0.30 (0.22−0.41) | 1.09 (0.76−1.56) | 2.39 (1.70−3.36) | 3.12 (2.11−4.63) | 1.91 (1.39−2.63) | 0.76 (0.55−1.04) | 2.65 (1.94−3.64) |
CHD-AF-HF | 0.28 (0.23−0.34) | 1.16 (0.93−1.44) | 1.24 (0.98−1.58) | 2.89 (2.29−3.64) | 1.61 (1.33−1.94) | 0.74 (0.61−0.89) | 2.61 (2.16−3.16) |
HF-CHD-AF | 0.37 (0.27−0.50) | 0.72 (0.52−0.98) | 3.03 (2.23−4.13) | 2.19 (1.56−3.08) | 1.86 (1.37−2.52) | 0.86 (0.64−1.16) | 2.24 (1.66−3.02) |
AF-CHD-HF | 0.36 (0.25−0.52) | 0.94 (0.64−1.40) | 4.63 (3.24−6.63) | 2.40 (1.58−3.64) | 2.32 (1.60−3.36) | 0.85 (0.60−1.22) | 3.22 (2.24−4.61) |
HF-AF-CHD | 0.46 (0.31−0.66) | 0.74 (0.50−1.10) | 3.13 (2.13−4.60) | 4.29 (2.56−7.19) | 1.28 (0.88−1.86) | 1.01 (0.69−1.46) | 2.49 (1.71−3.62) |
AF-HF-CHD | 0.42 (0.30−0.58) | 0.80 (0.56−1.13) | 3.18 (2.27−4.44) | 2.68 (1.82−3.95) | 1.78 (1.28−2.46) | 1.10 (0.79−1.53) | 3.71 (2.66−5.16) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, S.; Huang, H.; Lee, T.T.L.; Chung, C.T.; Chou, O.H.I.; Leung, K.S.K.; Wai, A.K.C.; Wong, W.T.; Liu, T.; Chang, C.; et al. The Impact of Cardiac Comorbidity Sequence at Baseline and Mortality Risk in Type 2 Diabetes Mellitus: A Retrospective Population-Based Cohort Study. Life 2022, 12, 1956. https://doi.org/10.3390/life12121956
Lee S, Huang H, Lee TTL, Chung CT, Chou OHI, Leung KSK, Wai AKC, Wong WT, Liu T, Chang C, et al. The Impact of Cardiac Comorbidity Sequence at Baseline and Mortality Risk in Type 2 Diabetes Mellitus: A Retrospective Population-Based Cohort Study. Life. 2022; 12(12):1956. https://doi.org/10.3390/life12121956
Chicago/Turabian StyleLee, Sharen, Helen Huang, Teddy Tai Loy Lee, Cheuk To Chung, Oscar Hou In Chou, Keith Sai Kit Leung, Abraham Ka Chung Wai, Wing Tak Wong, Tong Liu, Carlin Chang, and et al. 2022. "The Impact of Cardiac Comorbidity Sequence at Baseline and Mortality Risk in Type 2 Diabetes Mellitus: A Retrospective Population-Based Cohort Study" Life 12, no. 12: 1956. https://doi.org/10.3390/life12121956