Agricultural Parameters and Essential Oil Content Composition Prediction of Aniseed, Based on Growing Year, Locality and Fertilization Type—An Artificial Neural Network Approach
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Experiment Design
2.2. ANN Modelling
2.3. Global Sensitivity Analysis
2.4. Error Analysis
2.5. Multi-Objective Optimization
3. Results and Discussion
3.1. ANN Model
3.2. Global Sensitivity Analysis—Yoon’s Interpretation Method
3.3. Multi-Objective Optimization of the Outputs of the ANN
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Elshafie, H.S.; Camele, I. An overview of the biological effects of some mediterranean essential oils on human health. BioMed Res. Int. 2017, 9268468. [Google Scholar] [CrossRef]
- Liang, Z.; Zhang, P.; Zeng, X.A.; Fang, Z. The art of flavored wine: Tradition and future. Trends Food Sci. Technol. 2021, 116, 130–145. [Google Scholar] [CrossRef]
- Chahande, S.J.; Jachak, R.; Chahande, R.; Pantawane, P. Herbal spices and nanotechnology for the benefit of human health. Biog. Sustain. Nanotechnol. 2022, 107–129. [Google Scholar] [CrossRef]
- Aćimović, M.; Tešević, V.; Mara, D.; Stanković, J.; Cvetković, M.; Djuragić, O. Influence of fertilization in total polyphenol content in aniseed postdistillation waste material. Arab. J. Med. Aromat. Plants 2017, 3, 57. Available online: https://revues.imist.ma/index.php/AJMAP/article/view/7990/4509 (accessed on 1 October 2021).
- Broers, V.J.V.; Van den Broucke, S.; Taverne, C.; Luminet, O. Default-name and tasting nudges increase salsify soup choice without increasing overall soup choice. Appetite 2019, 138, 204–214. [Google Scholar] [CrossRef] [PubMed]
- Raza, Q.S.; Saleemi, M.K.; Gul, S.; Irshad, H.; Fayyaz, A.; Zaheer, I.; Tahir, M.W.; Fatima, Z.; Chohan, T.Z.; Imran, M.; et al. Role of essential oils/volatile oils in poultry production—A review on present, past and future contemplations. Agrobiol. Rec. 2022, 7, 40–56. [Google Scholar] [CrossRef]
- Shukla, F.C.; Vaid, J. Studies on the storage stability of oil-based paneer pickle. Int. J. Dairy Technol. 2004, 57, 15–18. [Google Scholar] [CrossRef]
- Takahashi, J.A.; Rezende, F.A.G.G.; Moura, M.A.F.; Dominguete, L.C.B.; Sande, D. Edible flowers: Bioactive profile and its potential to be used in food development. Food Res. Int. 2020, 129, 108868. [Google Scholar] [CrossRef]
- Jurado, J.M.; Ballesteros, O.; Alcazar, A.; Pablos, F.; Martín, M.J.; Vilchez, J.L.; Navalon, A. Characterization of aniseed-flavoured spirit drinks by headspace solid-phase microextraction gas chromatography–mass spectrometry and chemometrics. Talanta 2007, 72, 506–511. [Google Scholar] [CrossRef]
- Mohamed, K.; Koriem, M. Approach to pharmacological and clinical applications of Anisi aetheroleum. Asian Pac. J. Trop. Biomed. 2015, 5, 60–67. [Google Scholar] [CrossRef] [Green Version]
- Sontia, B.; Mooney, J.; Gaudet, L.; Touyz, R.M. Pseudohyperaldosteronism, Liquorice, and Hypertension. J. Clin. Hypertens. 2008, 10, 7470. [Google Scholar] [CrossRef] [PubMed]
- Balkhyour, M.A.; Hassan, A.H.; Halawani, R.F.; Summan, A.S.; AbdElgawad, H. Effect of Elevated CO2 on Seed Yield, Essential Oil Metabolism, Nutritive Value, and Biological Activity of Pimpinella anisum L. Accessions at Different Seed Maturity Stages. Biology 2021, 10, 979. [Google Scholar] [CrossRef] [PubMed]
- Oluwole, O.B.; Ademuyiwa, O. Antioxidants in Spices: A Review of the Antioxidant Components and Properties of Some Common African Spices and Their Role in Human Nutrition and Plant–Microbe Interactions. In Antioxidants in Plant-Microbe Interaction; Singh, H.B., Vaishnav, A., Sayyed, R., Eds.; Springer: Singapore, 2021; pp. 251–289. [Google Scholar] [CrossRef]
- Nasır, A.; Yabalak, E. Investigation of antioxidant, antibacterial, antiviral, chemical composition, and traditional medicinal properties of the extracts and essential oils of the Pimpinella species from a broad perspective: A review. J. Essent. Oil Res. 2021, 33, 411–426. [Google Scholar] [CrossRef]
- Sun, W.; Shahrajabian, M.H.; Cheng, Q. Anise (Pimpinella anisum L.), a dominant spice and traditional medicinal herb for both food and medicinal purposes. Cogent Biol. 2019, 5, 1673688. [Google Scholar] [CrossRef]
- Bistgani, Z.E.; Siadat, S.A.; Bakhshandeh, A.; Pirbalouti, A.G.; Hashemi, M.; Maggi, F.; Morshedloo, M.R. Application of combined fertilizers improves biomass, essential oil yield, aroma profile, and antioxidant properties of Thymus daenensis Celak. Ind. Crops Prod. 2018, 121, 434–440. [Google Scholar] [CrossRef]
- Aćimović, M.; Lončar, B.; Pezo, M.; Stanković Jeremić, J.; Cvetković, M.; Rat, M.; Pezo, L. Volatile compounds of Nepeta nuda L. from Rtanj Mountain (Serbia). Horticulturae 2022, 8, 85. [Google Scholar] [CrossRef]
- Voća, N.; Pezo, L.; Peter, A.; Šuput, D.; Lončar, B.; Krička, T. Modelling of corn kernel pre-treatment, drying and processing for ethanol production using artificial neural networks. Ind. Crops Prod. 2021, 162, 113293. [Google Scholar] [CrossRef]
- Zhang, C.; Di, L.; Hao, P.; Yang, Z.; Lin, L.; Zhao, H.; Guo, L. Rapid in-season mapping of corn and soybeans using machine-learned trusted pixels from Cropland Data Layer. Int. J. Appl. Earth Obs. Geoinf. 2021, 102, 102374. [Google Scholar] [CrossRef]
- Javanmardi, S.; Ashtiani, S.H.; Verbeek, F.J.; Martynenko, A. Computer-vision classification of corn seed varieties using deep convolutional neural network. J. Stored Prod. Res. 2021, 92, 101800. [Google Scholar] [CrossRef]
- Zhang, J.J.; Ma, Q.; Cui, X.; Guo, H.; Wang, K.; Zhu, D.H. High-throughput corn ear screening method based on two-pathway convolutional neural network. Comput. Electron. Agric. 2020, 175, 105525. [Google Scholar] [CrossRef]
- Chouaibi, M.; Daoued, K.B.; Riguane, K.; Rouissi, T.; Ferrari, G. Production of bioethanol from pumpkin peel wastes: Comparison between response surface methodology (RSM) and artificial neural networks (ANN). Ind. Crops Pro. 2020, 155, 112822. [Google Scholar] [CrossRef]
- Etminan, A.; Pour-Aboughadareh, A.; Mohammadi, R.; Shooshtari, L.; Yousefiazarkhanian, M.; Moradkhani, H. Determining the best drought tolerance indices using artificial neural network (ANN): Insight into application of intelligent agriculture in agronomy and plant breeding. Cereal Res. Commun. 2019, 47, 170–181. [Google Scholar] [CrossRef]
- Silitonga, A.S.; Masjuki, H.H.; Ong, H.C.; Sebayang, A.H.; Dharma, S.; Kusumo, F.; Siswantoro, J.; Milano, J.; Daud, K.; Mahlia, T.M.I.; et al. Evaluation of the engine performance and exhaust emissions of biodiesel-bioethanol-diesel blends using kernel-based extreme learning machine. Energy 2018, 159, 1075–1087. [Google Scholar] [CrossRef]
- Lorencin, I.; Anđelić, N.; Mrzljak, V.; Car, Z. Genetic algorithm approach to design of multi-layer perceptron for combined cycle power plant electrical power output estimation. Energies 2019, 12, 4352. [Google Scholar] [CrossRef] [Green Version]
- Stajčić, S.; Lato, P.; Čanadanović-Brunet, J.; Ćetković, G.; Mandić, A.; Tumbas Šaponjac, V.; Vulić, J.; Šeregelj, V.; Petrović, J. Encapsulation of bioactive compounds extracted from Cucurbita moschata pumpkin waste: The multi-objective optimisation study. J. Microencapsul. 2022, 39, 380–393. [Google Scholar] [CrossRef] [PubMed]
- Bakhshipour, A.; Zare, D. A generalized artificial neural network model for deep-bed drying of paddy. Agric. Eng. 2017, 20. [Google Scholar] [CrossRef]
- Hosseinizand, H.; Sokhansanj, S.; Lim, C.J. Studying the drying mechanism of microalgae Chlorella vulgaris and the optimum drying temperature to preserve quality characteristics. Dry. Technol. 2018, 36, 1049–1060. [Google Scholar] [CrossRef]
- Oliveira, S.M.; Brandão, T.R.S.; Silva, C.L.M. Influence of Drying Processes and Pretreatments on Nutritional and Bioactive Characteristics of Dried Vegetables: A Review. Food Eng. Rev. 2016, 8, 134–163. [Google Scholar] [CrossRef]
- Gao, X.; Yang, S.; Sun, W. A global pathway selection algorithm for the reduction of detailed chemical kinetic mechanisms. Combust. Flame 2016, 167, 238–247. [Google Scholar] [CrossRef]
- Helgadóttir, Á.; Suter, M.; Gylfadóttir, T.Ó.; Kristjánsdóttir, T.A.; Lüscher, A. Grass-legume mixtures sustain strong yield advantage over monocultures under cool maritime growing conditions over a period of 5 years. Ann. Bot. 2018, 122, 337–348. [Google Scholar] [CrossRef]
- Anwar, Z.; Gulfraz, M.; Irshad, M. Agro-industrial lignocellulosic biomass a key to unlock the future bio-energy: A brief review. J. Radiat. Res. Appl. Sci. 2014, 7, 163–173. [Google Scholar] [CrossRef]
- Dakanalis, A.; Carrà, G.; Calogero, R.; Fida, R.; Clerici, M.; Zanetti, M.A.; Riva, G. The developmental effects of media-ideal internalization and self-objectification processes on adolescents’ negative body-feelings, dietary restraint, and binge eating. Eur. Child Adolesc. Psychiatry 2015, 24, 997–1010. [Google Scholar] [CrossRef] [PubMed]
- Pezo, L.; Ćurčić, B.; Filipović, V.; Nićetin, M.; Koprivica, G.; Mišljenović, N.; Lević, L. Artificial neural network model of pork meat cubes osmotic dehydration. Hem. Ind. 2013, 67, 465–475. [Google Scholar] [CrossRef]
- Adiredjo, A.L.; Navaud, O.; Muños, S.; Langlade, N.B.; Lamaze, T.; Grieu, P. Genetic control of water use efficiency and leaf carbon isotope discrimination in sunflower (Helianthus annuus L.) subjected to two drought scenarios. PLoS ONE 2014, 9, e101218. [Google Scholar] [CrossRef] [Green Version]
- Kollo, T.; Von Rosen, D. (Eds.) Advanced Multivariate Statistics with Matrices; Springer: Dordrecht, The Netherlands, 2005. [Google Scholar]
- Pavlić, B.; Pezo, L.; Marić, B.; Tukuljac, L.P.; Zeković, Z.; Solarov, M.B.; Teslić, N. Supercritical fluid extraction of raspberry seed oil: Experiments and modelling. J. Supercrit. Fluids. 2020, 157, 104687. [Google Scholar] [CrossRef]
- Mohieddin, J.; Yinyin, W.; Ali, A.; Jing, T. Unsupervised Learning and Multipartite Network Models: A Promising Approach for Understanding Traditional Medicine. Front. Pharmacol. 2020, 11, 1319. [Google Scholar] [CrossRef]
- Huang, Y. Advances in artificial neural networks–methodological development and application. Algorithms 2009, 2, 973–1007. [Google Scholar] [CrossRef] [Green Version]
- Yoon, Y.; Swales, G.; Margavio, T.M. A comparison of discriminant analysis versus artificial neural networks. J. Oper. Res. Soc. 2017, 44, 51–60. [Google Scholar] [CrossRef]
- Dragojlović, D.; Pezo, L.; Čolović, D.; Vidosavljević, S.; Pezo, M.L.; Čolović, R.; Kokić, B.; Đuragić, O. Application of soybean oil and glycerol in animal feed production, ANN model. Acta Period. Technol. 2019, 50, 51–58. [Google Scholar] [CrossRef] [Green Version]
- Goldberg, D.E. Genetic Algorithms in Search, Optimization and Machine Learning, 1st ed.; Addison-Wesley Longman Publishing Co., Inc.: Boston, MA, USA, 1989. [Google Scholar]
- Kantardzic, M. Data Mining: Concepts, Models, Methods, and Algorithms; John Wiley & Sons: Hoboken, NJ, USA, 2011. [Google Scholar]
- Khoshnevisan, B.; Rafiee, S.; Omid, M.; Mousazadeh, H. Development of an intelligent system based on ANFIS for predicting wheat grain yield on the basis of energy inputs. Inf. Process. Agric. 2014, 1, 14–22. [Google Scholar] [CrossRef]
- Krulj, J.; Markov, S.; Bočarov-Stančić, A.; Pezo, L.; Kojić, J.; Ćurčić, N.; Janić-Hajnal, E.; Bodroža-Solarov, M. The effect of storage temperature and water activity on aflatoxin B1 accumulation in hull-less and hulled spelt grains. J. Sci. Food Agric. 2019, 99, 3703–3710. [Google Scholar] [CrossRef] [PubMed]
- Rupp, D.E.; Schmidt, J.; Woods, R.A.; Bidwell, V.J. Analytical assessment and parameter estimation of a low-dimensional groundwater model. J. Hydrol. 2009, 377, 143–154. [Google Scholar] [CrossRef]
- Šovljanski, O.; Tomić, A.; Pezo, L.; Ranitović, A.; Markov, S. Prediction of denitrification capacity of alkalotolerant bacterial isolates from soil—An artificial neural network model. J. Serb. Chem. Soc. 2020, 85, 1417–1427. [Google Scholar] [CrossRef]
- Najafi, Z.; Zare, K.; Mahmoudi, M.R.; Shokri, S.; Mosavi, A. Inference and Local Influence Assessment in a Multifactor Skew-Normal Linear Mixed Model. Mathematics 2022, 10, 2820. [Google Scholar] [CrossRef]
Location | Ostojićevo | Veliki Radinci | Mošorin |
---|---|---|---|
District | Banat | Srem | Bačka |
GSM coordinates | 45°54′ N, 20°09′ E | 45°02′ N, 19°40′ E | 45°18′ N, 20°09′ E |
Elevation | 88 m | 111 m | 111 m |
Soil pH (in KCl) | 7.3 | 7.1 | 7.3 |
CaCO3 content in the soil (%) | 8.8 | 2.0 | 8.4 |
Soil humus (%) | 2.2 | 2.5 | 2.7 |
Soil total nitrogen (%) | 0.14 | 0.16 | 0.18 |
Soil P2O5 (mg/100 g) | 17.6 | 22.4 | 81.6 |
Soil K2O (mg/100 g) | 30.3 | 21.7 | 71.5 |
Vegetation period (1st year) | 145 days | 135 days | 133 days |
Vegetation period (2nd year) | 112 days | 118 days | 118 days |
GDD (1st year) | 2752 °C | 2413 °C | 2350 °C |
GDD (2nd year) | 2324 °C | 2276 °C | 2234 °C |
Precipitation (1st year) | 193 mm | 244 mm | 191 mm |
Precipitation (2nd year) | 166 mm | 217 mm | 183 mm |
Insolation (1st year) | 1326 h | 1041 h | 1068 h |
Insolation (2nd year) | 1115 h | 1031 h | 1076 h |
Slavol | BactoFil B-10 | Royal Ofert | Vermicompost | NPK | |
---|---|---|---|---|---|
Producer | Agrounik, Serbia | BioFil KFT, Hungary | Altamed, Serbia | PG Ivić, Serbia | Elixir Zorka, Serbia |
Type | Microbiological | Biohumus | Chemical | ||
Formulation | Azotobacter chroococcum, A. vinelandi, Derxia sp. Bacillus megaterium, B. lichenformis, B. subtilis | A. vınelandı, Azospırıllum brasılense, A. lıpoferum, B. megaterıum, B. suptılıs, B. cırkulans, B. polymıxa, Pseudomonas fluorescens + natural vitamins and growth stimulator | Made from organic waste from poultry and pig farms inoculated with domestic fly larvae | modified cattle manure with Lumbricus terrestris | 15:15:15 |
Application | Watering twice during vegetation | incorporated in the 5 cm layer of soil before the sowing of anise seeds | |||
Dose | 7 L/ha | 1.5 L/ha | 3 t/ha | 5 t/ha | 400 kg/ha |
Net. Name | Performance | Error | Training Algorithm | Error Function | Hidden Activation | Output Activation | ||||
---|---|---|---|---|---|---|---|---|---|---|
Train | Test | Valid | Train | Test | Valid | |||||
MLP 10-10-30 | 0.936 | 0.931 | 0.925 | 1141.034 | 1140.748 | 1134.330 | BFGS 930 | SOS | Exp. | Exp. |
χ2 | RMSE | MBE | MPE | r2 | Skew | Kurt | Mean | StDev | Var | |
---|---|---|---|---|---|---|---|---|---|---|
Plant height | 11.968 | 1.412 | 0.090 | 2.472 | 0.918 | 0.645 | 0.055 | 0.090 | 1.429 | 2.043 |
Umbel diameter | 0.333 | 0.236 | −0.028 | 3.021 | 0.581 | −0.179 | −0.257 | −0.028 | 0.237 | 0.056 |
No. of umbels | 2.151 | 0.599 | 0.046 | 3.029 | 0.893 | −0.031 | −0.883 | 0.046 | 0.605 | 0.367 |
No. of seeds | 89.605 | 3.864 | 0.341 | 2.754 | 0.860 | 0.394 | −0.164 | 0.341 | 3.904 | 15.241 |
1.000-seed weight | 0.250 | 0.204 | 0.027 | 4.215 | 0.760 | −0.210 | −0.636 | 0.027 | 0.205 | 0.042 |
Yield per plant | 1.326 | 0.470 | 0.087 | 4.657 | 0.828 | 0.741 | 0.974 | 0.087 | 0.469 | 0.220 |
Plant weight | 4.466 | 0.863 | 0.190 | 3.883 | 0.839 | 0.300 | 0.038 | 0.190 | 0.853 | 0.728 |
Harvest index | 10.922 | 1.349 | 0.044 | 2.213 | 0.699 | −0.114 | 0.551 | 0.044 | 1.368 | 1.870 |
Yield per ha | 52,955.718 | 93.947 | 14.012 | 4.709 | 0.826 | 0.653 | 0.841 | 14.012 | 94.213 | 8876.179 |
EO yield | 99.916 | 4.081 | −0.691 | 6.097 | 0.884 | 0.363 | 0.406 | −0.691 | 4.079 | 16.638 |
Germination energy | 84.885 | 3.761 | 0.443 | 3.764 | 0.849 | 0.456 | 0.338 | 0.443 | 3.788 | 14.350 |
Total germination | 58.400 | 3.120 | −0.025 | 2.961 | 0.861 | 0.420 | 0.081 | −0.025 | 3.164 | 10.011 |
EO content | 0.368 | 0.247 | −0.051 | 4.744 | 0.555 | −1.543 | 3.841 | −0.051 | 0.246 | 0.060 |
χ2 | RMSE | MBE | MPE | r2 | Skew | Kurt | Mean | StDev | Var | |
---|---|---|---|---|---|---|---|---|---|---|
Limonene | 0.004 | 0.024 | −0.011 | 0.120 | 0.807 | −3.692 | 16.648 | −0.011 | 0.022 | 0.000 |
cis-dihydro carvone | 0.014 | 0.048 | −0.015 | 10.138 | 0.908 | 0.526 | 2.739 | −0.015 | 0.046 | 0.002 |
Methyl chavicol | 0.204 | 0.184 | −0.014 | 22.759 | 0.763 | −2.592 | 11.549 | −0.014 | 0.186 | 0.035 |
Carvone | 0.001 | 0.015 | −0.007 | 0.240 | 0.803 | −3.878 | 18.412 | −0.007 | 0.014 | 0.000 |
trans-anethole | 0.006 | 0.031 | 0.001 | 26.468 | 0.578 | −0.930 | 1.448 | 0.001 | 0.031 | 0.001 |
cis-anethole | 3.342 | 0.746 | −0.085 | 0.624 | 0.836 | 0.377 | 0.286 | −0.085 | 0.752 | 0.565 |
β-elemene | 0.005 | 0.029 | −0.003 | 15.886 | 0.575 | 0.715 | 0.989 | −0.003 | 0.029 | 0.001 |
α-himachalene | 0.007 | 0.033 | −0.004 | 16.579 | 0.893 | −0.843 | 1.094 | −0.004 | 0.034 | 0.001 |
trans-β-farnesene | 0.002 | 0.019 | −0.003 | 16.497 | 0.414 | −1.291 | 5.865 | −0.003 | 0.019 | 0.000 |
γ-himachalene | 0.566 | 0.307 | 0.007 | 12.203 | 0.803 | −1.033 | 1.905 | 0.007 | 0.311 | 0.097 |
trans-muurola-4(14),5-diene | 0.151 | 0.159 | −0.023 | 38.353 | 0.665 | −0.889 | 3.621 | −0.023 | 0.159 | 0.025 |
NI | 0.004 | 0.024 | −0.003 | 15.739 | 0.901 | −0.683 | 0.538 | −0.003 | 0.025 | 0.001 |
α-zingiberene | 0.023 | 0.062 | 0.006 | 24.433 | 0.864 | 0.362 | 2.336 | 0.006 | 0.063 | 0.004 |
β-himachalene | 0.006 | 0.033 | 0.004 | 22.162 | 0.631 | 0.864 | 0.829 | 0.004 | 0.033 | 0.001 |
β-bisabolene | 0.018 | 0.055 | −0.010 | 13.424 | 0.794 | −3.474 | 15.879 | −0.010 | 0.055 | 0.003 |
trans-pseudoisoeugenyl 2-methylbutyrate | 0.944 | 0.397 | 0.020 | 64.825 | 0.379 | 0.954 | 2.962 | 0.020 | 0.402 | 0.161 |
Epoxy-pseudoisoeugenyl 2-methylbutyrate | 0.004 | 0.026 | −0.006 | 31.708 | 0.893 | −1.586 | 4.722 | −0.006 | 0.026 | 0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pezo, L.; Lončar, B.; Šovljanski, O.; Tomić, A.; Travičić, V.; Pezo, M.; Aćimović, M. Agricultural Parameters and Essential Oil Content Composition Prediction of Aniseed, Based on Growing Year, Locality and Fertilization Type—An Artificial Neural Network Approach. Life 2022, 12, 1722. https://doi.org/10.3390/life12111722
Pezo L, Lončar B, Šovljanski O, Tomić A, Travičić V, Pezo M, Aćimović M. Agricultural Parameters and Essential Oil Content Composition Prediction of Aniseed, Based on Growing Year, Locality and Fertilization Type—An Artificial Neural Network Approach. Life. 2022; 12(11):1722. https://doi.org/10.3390/life12111722
Chicago/Turabian StylePezo, Lato, Biljana Lončar, Olja Šovljanski, Ana Tomić, Vanja Travičić, Milada Pezo, and Milica Aćimović. 2022. "Agricultural Parameters and Essential Oil Content Composition Prediction of Aniseed, Based on Growing Year, Locality and Fertilization Type—An Artificial Neural Network Approach" Life 12, no. 11: 1722. https://doi.org/10.3390/life12111722
APA StylePezo, L., Lončar, B., Šovljanski, O., Tomić, A., Travičić, V., Pezo, M., & Aćimović, M. (2022). Agricultural Parameters and Essential Oil Content Composition Prediction of Aniseed, Based on Growing Year, Locality and Fertilization Type—An Artificial Neural Network Approach. Life, 12(11), 1722. https://doi.org/10.3390/life12111722