Estimating Real-Time qPCR Amplification Efficiency from Single-Reaction Data
Abstract
:1. Introduction
2. Mathematical Background
2.1. The Logistic Model with Asymmetry
2.2. Recursion Models
2.3. Baseline Functions
2.4. Least-Squares Fitting
3. Results and Discussion
3.1. The 3 × 5 Data
3.2. Other Datasets
4. Conclusions
Supplementary Materials
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Higuchi, R.; Fockler, C.; Dollinger, G.; Watson, R. Kinetic PCR analysis: Realtime monitoring of DNA amplification reactions. Biotechnology 1993, 11, 1026–1030. [Google Scholar] [CrossRef]
- Bustin, S.A. Absolute quantification of mRNA using real-time reverse transcription polymerase chain reaction assays. J. Mol. Endocrinol. 2000, 25, 169–193. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rutledge, R.G.; Cote, C. Mathematics of quantitative kinetic PCR and the application of standard curves. Nucleic Acids Res. 2003, 31, e93. [Google Scholar] [CrossRef]
- Clinical and Laboratory Standards Institute. CLSI Document EP06-A: Evaluation of the Linearity of Quantitative Measurement Procedures; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2003. [Google Scholar]
- Clinical and Laboratory Standards Institute. CLSI Document EP05-A3: Evaluation of Precision Performance of Quantitative Measurement Methods, 2nd ed.; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2014. [Google Scholar]
- Svec, D.; Tichopad, A.; Novosadova, V.; Pfaffl, M.W.; Kubista, M. How good is a PCR efficiency estimate: Recommendations for precise and robust qPCR efficiency estimates. Biomol. Detect. Quantif. 2015, 3, 9–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, W.; Saint, D.A. A new quantitative method of real time reverse transcription polymerase chain reaction assay based on simulation of polymerase chain reaction kinetics. Anal. Biochem. 2002, 302, 52–59. [Google Scholar] [CrossRef] [Green Version]
- Tichopad, A.; Dilger, M.; Schwarz, G.; Pfaffl, M.W. Standardized determination of real-time PCR efficiency from a single reaction set-up. Nucleic Acids Res. 2003, 31, e122. [Google Scholar] [CrossRef] [PubMed]
- Rutledge, R.G. Sigmoidal curve-fitting redefines quantitative real-time PCR with the prospective of developing automated high-throughput applications. Nucleic Acids Res. 2004, 32, e178. [Google Scholar] [CrossRef] [Green Version]
- Rutledge, R.; Stewart, D. Assessing the Performance Capabilities of LRE-Based Assays for Absolute Quantitative Real-Time PCR. PLoS ONE 2010, 5, e9731. [Google Scholar] [CrossRef] [Green Version]
- Ruijter, J.M.; Pfaffl, M.W.; Zhao, S.; Spiess, A.N.; Boggy, G.; Blom, J.; Rutledge, R.G.; Sisti, D.; Lievens, A.; de Preter, K.; et al. Evaluation of qPCR curve analysis methods for reliable biomarker discovery: Bias, resolution, precision, and implications. Methods 2013, 59, 32–46. [Google Scholar] [CrossRef] [PubMed]
- Tellinghuisen, J.; Spiess, A.-N. Comparing real-time quantitative polymerase chain reaction analysis methods for precision, linearity, and accuracy of estimating amplification efficiency. Anal. Biochem. 2014, 449, 76–82. [Google Scholar] [CrossRef] [PubMed]
- Tellinghuisen, J.; Spiess, A.-N. Statistical uncertainty and its propagation in the analysis of quantitative polymerase chain reaction data: Comparison of methods. Anal. Biochem. 2014, 464, 94–102. [Google Scholar] [CrossRef]
- Tellinghuisen, J.; Spiess, A.-N. Bias and imprecision in analysis of real-time quantitative polymerase chain reaction data. Anal. Chem. 2015, 87, 8925–8931. [Google Scholar] [CrossRef]
- Tellinghuisen, J.; Spiess, A.-N. qPCR data analysis: Better results through iconoclasm. Biomol. Detect. Quantif. 2019, 17, 100084. [Google Scholar] [CrossRef]
- Karlen, Y.; McNair, A.; Perseguers, S.; Mazza, C.; Mermod, N. Statistical significance of quantitative PCR. BMC Bioinform. 2007, 8, 131. [Google Scholar] [CrossRef] [Green Version]
- Guescini, M.; Sisti, D.; Rocchi, M.B.; Stocchi, L.; Stocchi, V. A new real-time PCR method to overcome significant quantitative inaccuracy due to slight amplification inhibition. BMC Bioinform. 2008, 9, 326. [Google Scholar] [CrossRef] [Green Version]
- Rutledge, R.; Stewart, D. Critical evaluation of methods used to determine amplification efficiency refutes the exponential character of real-time PCR. BMC Mol. Biol. 2008, 9, 96. [Google Scholar] [CrossRef] [Green Version]
- Lievens, A.; van Aelst, S.; van den Bulcke, M.; Goetghebeur, E. Enhanced analysis of real-time PCR data by using a variable efficiency model: FPK-PCR. Nucleic Acids Res. 2012, 40, e10. [Google Scholar] [CrossRef]
- Zhao, S.; Fernald, R.D. Comprehensive algorithm for quantitative real-time polymerase chain reaction. J. Comput. Biol. 2005, 12, 1047–1064. [Google Scholar] [CrossRef]
- Rutledge, R.; Stewart, D. A kinetic-based sigmoidal model for the polymerase chain reaction and its application to high-capacity quantitative real-time PCR. BMC Biotechnol. 2008, 8, 47. [Google Scholar] [CrossRef] [Green Version]
- Carr, A.C.; Moore, S.D. Robust quantification of polymerase chain reactions using global fitting. PLoS ONE 2012, 7, e37640. [Google Scholar] [CrossRef]
- Boggy, G.J.; Woolf, P.J. A mechanistic model of PCR for accurate quantification of quantitative PCR data. PLoS ONE 2010, 5, e12355. [Google Scholar] [CrossRef] [PubMed]
- Chervoneva, I.; Li, Y.Y.; Iglewicz, B.; Waldman, S.; Hyslop, T. Relative quantification based on logistic models for individual polymerase chain reactions. Stat. Med. 2007, 26, 5596–5611. [Google Scholar] [CrossRef] [PubMed]
- Spiess, A.N.; Feig, C.; Ritz, C. Highly accurate sigmoidal fitting of real-time PCR data by introducing a parameter for asymmetry. BMC Bioinform. 2008, 9, 221. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bevington, P.R. Data Reduction and Error Analysis for the Physical Sciences; McGraw-Hill: New York, NY, USA, 1969. [Google Scholar]
- Tellinghuisen, J. Can you trust the parametric standard errors in nonlinear least squares? Yes, with provisos. Biochim. Biophys. Acta Gen. Subj. 2018, 1862, 886–894. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tellinghuisen, J. Estimating Real-Time qPCR Amplification Efficiency from Single-Reaction Data. Life 2021, 11, 693. https://doi.org/10.3390/life11070693
Tellinghuisen J. Estimating Real-Time qPCR Amplification Efficiency from Single-Reaction Data. Life. 2021; 11(7):693. https://doi.org/10.3390/life11070693
Chicago/Turabian StyleTellinghuisen, Joel. 2021. "Estimating Real-Time qPCR Amplification Efficiency from Single-Reaction Data" Life 11, no. 7: 693. https://doi.org/10.3390/life11070693