Aerobic Exercise Decreases Negative Affect by Modulating Orbitofrontal-Amygdala Connectivity in Adolescents
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Behavioral Measures
2.3. Heart Rate Monitoring
2.4. Experimental Procedure
2.5. Exercise Intervention
2.6. fMRI Scans
2.7. Imaging Processing
2.8. Statistical Analysis
3. Results
3.1. The Effects of the Acute Exercise on Emotional States
3.2. The Effects of Acute Exercise on Functional Connectivity
3.3. Correlation between Functional Connectivity and Negative Emotions
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Forbes, E.E.; Phillips, M.L.; Silk, J.S.; Ryan, N.D.; Dahl, R.E. Neural systems of threat processing in adolescents: Role of pubertal maturation and relation to measures of negative affect. Dev. Neuropsychol. 2011, 36, 429–452. [Google Scholar] [CrossRef] [PubMed]
- Patton, G.C.; Viner, R. Adolescent health 1—Pubertal transitions in health. Lancet 2007, 369, 1130–1139. [Google Scholar] [CrossRef]
- Jacobson, C.M.; Gould, M. The epidemiology and phenomenology of non-suicidal self-injurious behavior among adolescents: A critical review of the literature. Arch. Suicide Res. 2007, 11, 129–147. [Google Scholar] [CrossRef] [PubMed]
- Fu, X.; Zhang, K.; Chen, X.; Chen, Z. Report on National Mental Health Development in China (2019–2020); Social Sciences Academic Press: Beijing, China, 2021. [Google Scholar]
- Beauchamp, M.R.; Puterman, E.; Lubans, D.R. Physical inactivity and mental health in late adolescence. JAMA Psychiatry 2018, 75, 543–544. [Google Scholar] [CrossRef] [PubMed]
- Berger, B.G.; Motl, R.W. Exercise and mood: A selective review and synthesis of research employing the profile of mood states. J. Appl. Sport Psychol. 2000, 12, 69–92. [Google Scholar] [CrossRef]
- Lofrano-Prado, M.C.; Hill, J.O.; Gomes Silva, H.J.; Menezes Freitas, C.R.; Lopes-de-Souza, S.; Lins, T.A.; do Prado, W.L. Acute effects of aerobic exercise on mood and hunger feelings in male obese adolescents: A crossover study. Int. J. Behav. Nutr. Phys. Act. 2012, 9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tate, A.K.; Petruzzello, S.J. Varying the intensity of acute exercise: Implications for changes in affect. J. Sports Med. Phys. Fit. 1995, 35, 295–302. [Google Scholar]
- Ligeza, T.S.; Maciejczyk, M.; Wyczesany, M.; Wagner, H.; Roesmann, K.; Junghofer, M. Acute aerobic exercise enhances pleasant compared to unpleasant visual scene processing. Brain Cogn. 2020, 143, 105595. [Google Scholar] [CrossRef]
- Swanson, L.W.; Petrovich, G.D. What is the amygdala? Trends Neurosci. 1998, 21, 323–331. [Google Scholar] [CrossRef]
- LeDoux, J. The emotional brain, fear, and the amygdala. Cell. Mol. Neurobiol. 2003, 23, 727–738. [Google Scholar] [CrossRef]
- Milham, M.P.; Nugent, A.C.; Drevets, W.C.; Dickstein, D.P.; Leibenluft, E.; Ernst, M.; Charney, D.; Pine, D.S. Selective reduction in amygdala volume in pediatric anxiety disorders: A voxel-based morphometry investigation. Biol. Psychiatry 2005, 57, 961–966. [Google Scholar] [CrossRef]
- Yang, J.; Yin, Y.; Svob, C.; Long, J.; He, X.; Zhang, Y.; Xu, Z.; Li, L.; Liu, J.; Dong, J.; et al. Amygdala atrophy and its functional disconnection with the cortico-striatal-pallidal-thalamic circuit in major depressive disorder in females. PLoS ONE 2017, 12, e0168239. [Google Scholar] [CrossRef] [Green Version]
- Veer, I.M.; Beckmann, C.F.; van Tol, M.J.; Ferrarini, L.; Milles, J.; Veltman, D.J.; Aleman, A.; van Buchem, M.A.; van der Wee, N.J.; Rombouts, S.A. Whole brain resting-state analysis reveals decreased functional connectivity in major depression. Front. Syst. Neurosci. 2010, 4, 41. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roy, A.K.; Fudge, J.L.; Kelly, C.; Perry, J.S.A.; Daniele, T.; Carlisi, C.; Benson, B.; Castellanos, F.X.; Milham, M.P.; Pine, D.S.; et al. Intrinsic functional connectivity of amygdala-based networks in adolescent generalized anxiety disorder. J. Am. Acad. Child Adolesc. Psychiatry 2013, 52, 290–299. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anand, A.; Li, Y.; Wang, Y.; Wu, J.W.; Gao, S.J.; Bukhari, L.; Mathews, V.P.; Kalnin, A.; Lowe, M.J. Antidepressant effect on connectivity of the mood-regulating circuit: An fMRI study. Neuropsychopharmacology 2005, 30, 1334–1344. [Google Scholar] [CrossRef] [PubMed]
- Silvers, J.A.; Insel, C.; Powers, A.; Franz, P.; Helion, C.; Martin, R.; Weber, J.; Mischel, W.; Casey, B.J.; Ochsner, K.N. The transition from childhood to adolescence is marked by a general decrease in amygdala reactivity and an affect-specific ventral-to-dorsal shift in medial prefrontal recruitment. Dev. Cogn. Neurosci. 2017, 25, 128–137. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ligeza, T.S.; Nowak, I.; Maciejczyk, M.; Szygula, Z.; Wyczesany, M. Acute aerobic exercise enhances cortical connectivity between structures involved in shaping mood and improves self-reported mood: An EEG effective-connectivity study in young male adults. Int. J. Psychophysiol. 2021, 162, 22–33. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.-C.; Chen, C.; Martinez, R.M.; Etnier, J.L.; Cheng, Y. Habitual physical activity mediates the acute exercise-induced modulation of anxiety-related amygdala functional connectivity. Sci. Rep. 2019, 9. [Google Scholar] [CrossRef] [PubMed]
- Tempest, G.D.; Parfitt, G. Prefrontal oxygenation and the acoustic startle eyeblink response during exercise: A test of the dual-mode model. Psychophysiology 2017, 54, 1070–1080. [Google Scholar] [CrossRef]
- Watson, D.; Clark, L.A.; Tellegen, A. development and validation of brief measures of positive and negative affect-the panas scales. J. Personal. Soc. Psychol. 1988, 54, 1063–1070. [Google Scholar] [CrossRef]
- Grove, J.R.; Prapavessis, H. Preliminary evidence for the reliability and validity of an abbreviated Profile of Mood States. Int. J. Sport Psychol. 1992, 23, 93–109. [Google Scholar]
- Xu, T.; Yang, Z.; Jiang, L.; Xing, X.-X.; Zuo, X.-N. A connectome computation system for discovery science of brain. Sci. Bull. 2015, 60, 86–95. [Google Scholar] [CrossRef] [Green Version]
- Greve, D.N.; Fischl, B. Accurate and robust brain image alignment using boundary-based registration. Neuroimage 2009, 48, 63–72. [Google Scholar] [CrossRef] [Green Version]
- Power, J.D.; Barnes, K.A.; Snyder, A.Z.; Schlaggar, B.L.; Petersen, S.E. Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion. Neuroimage 2012, 59, 2142–2154. [Google Scholar] [CrossRef] [Green Version]
- Bernstein, E.E.; McNally, R.J. Acute aerobic exercise helps overcome emotion regulation deficits. Cogn. Emot. 2017, 31, 834–843. [Google Scholar] [CrossRef]
- Crush, E.A.; Frith, E.; Loprinzi, P.D. Experimental effects of acute exercise duration and exercise recovery on mood state. J. Affect. Disord. 2018, 229, 282–287. [Google Scholar] [CrossRef]
- Mikkelsen, K.; Stojanovska, L.; Polenakovic, M.; Bosevski, M.; Apostolopoulos, V. Exercise and mental health. Maturitas 2017, 106, 48–56. [Google Scholar] [CrossRef]
- Bernstein, E.E.; McNally, R.J. Acute aerobic exercise hastens emotional recovery from a subsequent stressor. Health Psychol. 2017, 36, 560–567. [Google Scholar] [CrossRef] [PubMed]
- Kwan, B.M.; Bryan, A.D. Affective response to exercise as a component of exercise motivation: Attitudes, norms, self-efficacy, and temporal stability of intentions. Psychol. Sport Exerc. 2010, 11, 71–79. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rudolph, D.L.; Butki, B.D. Self-efficacy and affective responses to short bouts of exercise. J. Appl. Sport Psychol. 1998, 10, 268–280. [Google Scholar] [CrossRef]
- Silvers, J.A.; Wager, T.D.; Weber, J.; Ochsner, K.N. The neural bases of uninstructed negative emotion modulation. Soc. Cogn. Affect. Neurosci. 2015, 10, 10–18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Banks, S.J.; Eddy, K.T.; Angstadt, M.; Nathan, P.J.; Phan, K.L. Amygdala-frontal connectivity during emotion regulation. Soc. Cogn. Affect. Neurosci. 2007, 2, 303–312. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghashghaei, H.T.; Barbas, H. Pathways for emotion: Interactions of prefrontal and anterior temporal pathways in the amygdala of the rhesus monkey. Neuroscience 2002, 115, 1261–1279. [Google Scholar] [CrossRef]
- Zhang, Y.; Shi, W.; Wang, H.; Liu, M.; Tang, D. The impact of acute exercise on implicit cognitive reappraisal in association with left dorsolateral prefronta activation: A fNIRS study. Behav. Brain Res. 2021, 406, 113233. [Google Scholar] [CrossRef]
- Carballedo, A.; Scheuerecker, J.; Meisenzahl, E.; Schoepf, V.; Bokde, A.; Moeller, H.-J.; Doyle, M.; Wiesmann, M.; Frodl, T. Functional connectivity of emotional processing in depression. J. Affect. Disord. 2011, 134, 272–279. [Google Scholar] [CrossRef] [PubMed]
- Zheng, K.-Z.; Wang, H.-N.; Liu, J.; Xi, Y.-B.; Li, L.; Zhang, X.; Li, J.-M.; Yin, H.; Tan, Q.-R.; Lu, H.-B.; et al. Incapacity to control emotion in major depression may arise from disrupted white matter integrity and OFC-amygdala inhibition. CNS Neurosci. Ther. 2018, 24, 1053–1062. [Google Scholar] [CrossRef] [Green Version]
- Blumenthal, J.A.; Babyak, M.A.; Doraiswamy, P.M.; Watkins, L.; Hoffman, B.M.; Barbour, K.A.; Herman, S.; Craighead, W.E.; Brosse, A.L.; Waugh, R.; et al. Exercise and pharmacotherapy in the treatment of major depressive disorder. Psychosom. Med. 2007, 69, 587–596. [Google Scholar] [CrossRef] [Green Version]
- Blumenthal, J.A.; Babyak, M.A.; Moore, K.A.; Craighead, E.; Herman, S.; Khatri, P.; Waugh, R.; Napolitano, M.A.; Forman, L.M.; Appelbaum, M.; et al. Effects of exercise training on older patients with major depression. Arch. Intern. Med. 1999, 159, 2349–2356. [Google Scholar] [CrossRef]
- Repple, J.; Opel, N. Sport and physical exercise in unipolar depression: Prevention, therapy, and neurobiological mechanisms of action. Der Nervenarzt 2021, 92, 507–514. [Google Scholar] [CrossRef]
- Lee, H.; Heller, A.S.; van Reekum, C.M.; Nelson, B.; Davidson, R.J. Amygdala-prefrontal coupling underlies individual differences in emotion regulation. Neuroimage 2012, 62, 1575–1581. [Google Scholar] [CrossRef] [Green Version]
- Golkar, A.; Lonsdorf, T.B.; Olsson, A.; Lindstrom, K.M.; Berrebi, J.; Fransson, P.; Schalling, M.; Ingvar, M.; Ohman, A. Distinct contributions of the dorsolateral prefrontal and orbitofrontal cortex during emotion regulation. PLoS ONE 2012, 7, e48107. [Google Scholar] [CrossRef] [Green Version]
- Ochsner, K.N.; Silvers, J.A.; Buhle, J.T. Functional imaging studies of emotion regulation: A synthetic review and evolving model of the cognitive control of emotion. Ann. N. Y. Acad. Sci. 2012, 1251, E1–E24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schmitt, A.; Upadhyay, N.; Martin, J.A.; Vega, S.R.; Strueder, H.K.; Boecker, H. Affective modulation after high-intensity exercise is associated with prolonged amygdalar-insular functional connectivity increase. Neural Plast. 2020, 2020, 7905387. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cho, H.B.; Bueler, C.E.; DiMuzio, J.; Hicks-Little, C.; McGlade, E.; Lyoo, I.K.; Yurgelun-Todd, D. Negative mood states correlate with laterobasal amygdala in collegiate football players. Biomed Res. Int. 2018, 2018, 8142631. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Canbeyli, R. Sensorimotor modulation of mood and depression: In search of an optimal mode of stimulation. Front. Hum. Neurosci. 2013, 7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oweis, P.; Spinks, W. Biopsychological, affective and cognitive responses to acute physical activity. J. Sports Med. Phys. Fit. 2001, 41, 528–538. [Google Scholar]
- Qin, S.; Young, C.B.; Duan, X.; Chen, T.; Supekar, K.; Menon, V. Amygdala subregional structure and intrinsic functional connectivity predicts individual differences in anxiety during early childhood. Biol. Psychiatry 2014, 75, 892–900. [Google Scholar] [CrossRef] [Green Version]
Variables | AG (n = 12) | CG (n = 11) | p-Value |
---|---|---|---|
Age (y) | 18.18 ± 0.39 | 18.45 ± 0.52 | 0.74 |
BMI (kg/m2) | 21.6 ± 3.41 | 21.3 ± 2.65 | 0.79 |
Baseline-HR (rpm) | 66.81 ± 9.52 | 69.70 ± 9.10 | 0.49 |
Exercise-HR (rpm) | 122.58 ± 2.96 | -- | |
Tension | 4.00 ± 2.17 | 6.18 ± 4.71 | 0.18 |
Anger | 2.00 ± 1.48 | 3.73 ± 4.47 | 0.25 |
Fatigue | 4.33 ± 2.42 | 6.27 ± 5.69 | 0.34 |
Depression | 2.00 ± 2.34 | 3.27 ± 4.94 | 0.43 |
Vigor | 15.92 ± 2.81 | 15.36 ± 4.82 | 0.74 |
Confusion | 4.58 ± 2.68 | 6.18 ± 5.10 | 0.35 |
Esteem | 11.42 ± 2.84 | 11.36 ± 3.04 | 0.97 |
TMD | 89.58 ± 6.36 | 98.91 ± 25.17 | 0.26 |
PA | 32.83 ± 4.69 | 33.91 ± 5.49 | 0.62 |
NA | 18.00 ± 3.52 | 19.91 ± 5.97 | 0.36 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ge, L.-K.; Hu, Z.; Wang, W.; Siu, P.M.; Wei, G.-X. Aerobic Exercise Decreases Negative Affect by Modulating Orbitofrontal-Amygdala Connectivity in Adolescents. Life 2021, 11, 577. https://doi.org/10.3390/life11060577
Ge L-K, Hu Z, Wang W, Siu PM, Wei G-X. Aerobic Exercise Decreases Negative Affect by Modulating Orbitofrontal-Amygdala Connectivity in Adolescents. Life. 2021; 11(6):577. https://doi.org/10.3390/life11060577
Chicago/Turabian StyleGe, Li-Kun, Zhuoer Hu, Weiwen Wang, Parco M. Siu, and Gao-Xia Wei. 2021. "Aerobic Exercise Decreases Negative Affect by Modulating Orbitofrontal-Amygdala Connectivity in Adolescents" Life 11, no. 6: 577. https://doi.org/10.3390/life11060577