Abstract
In the past two decades Old World and arthritogenic alphavirus have been responsible for epidemics of polyarthritis, causing high morbidity and becoming a major public health concern. The multifunctional arthritogenic alphavirus capsid protein is crucial for viral infection. Capsid protein has roles in genome encapsulation, budding and virion assembly. Its role in multiple infection processes makes capsid protein an attractive target to exploit in combating alphaviral infection. In this review, we summarize the function of arthritogenic alphavirus capsid protein, and describe studies that have used capsid protein to develop novel arthritogenic alphavirus therapeutic and diagnostic strategies.
1. Overview
Alphaviruses are positive single stranded RNA viruses, belonging to virus family Togaviridae [1]. They are vector borne viruses circulated by mosquitoes, typically of the genus Aedes, and are distributed globally [2]. Alphaviruses are split into two sub-groups: The New World (NW) alphaviruses and the Old World (OW) alphaviruses [3]. This classification is based on the historical geographic distribution of these viruses and the clinical outcomes of disease. NW alphaviruses typically cause disease with neurological implications and are thus referred to as encephalitic alphaviruses. OW alphaviruses typically cause rheumatic disease and are thus referred to as arthritogenic alphaviruses [4,5].
NW alphaviruses have evolved separately from the OW alphaviruses [1] and have not only modified their envelope glycoproteins and replicative machinery for replication in particular species of hosts and vectors but have also evolved different mechanisms of modifying the cellular environment and interfering with the development of an antiviral response [6,7]. Recently, probing techniques identified structural elements within OW and NW alphaviral genomes suggesting that these RNAs are highly divergent structurally despite similar genomic architecture and sequence conservation [8].
The OW category comprises polyarthritic alphaviruses endemic to Asia, Europe, Australia, and Africa [9]. Arthritogenic alphaviruses are now distributed globally [1]. Ross River virus (RRV) and Barmah Forest virus (BFV) are endemic to Australia and Islands of the Pacific [10,11], O’nyong’nyong virus (ONNV) is found in Africa [12] and Mayaro virus (MAYV) in South and Central America [13]. In the past two decades, OW alphaviruses such as Chikungunya virus (CHIKV), Sindbis virus (SINV), RRV, MAYV, BFV, and ONNV have been responsible for epidemics of public health concern and have caused high morbidity characterized by polyarthritis. Symptoms can progress to debilitating arthritis lasting months or years causing chronic pain [14]. CHIKV alone has emerged as a human pathogen of global concern over the past decade. CHIKV outbreaks have occurred in Southeast Asia, the Indian Ocean islands of Mauritius, La Réunion (270,000 cases in 2005–2006) and the Seychelles and India (3–4 million estimated cases 2005–2011) [15,16,17]. In 2013 CHIKV also spread to the Americas causing over 2 million cases of infection through the end of 2017 [18]. The major reasons behind the epidemic potential of CHIKV and other arthritogenic alphaviruses are the increasing range of Aedes mosquitoes, urbanization, vector adaptation, climate change and cross-country travel, making these viruses an issue of global health concern [19].
Alphavirus capsid protein is a versatile protein that actively participates in genome encapsulation, virus budding and virion assembly [1,20,21]. Capsid protein is a multifunctional protein. Capsid protein comprises two domains: the N-terminal domain and C-terminal domain. The N-terminal domain is highly disordered and contains a stretch of positively charged amino acid residues [22]. The N-terminus aids in the binding of capsid protein with viral genomic RNA, thus allowing RNA encapsidation and formation of nucleocapsid protein cores [23]. Amino acid residues in the N-terminal of capsid proteins are involved in capsomere interactions [24,25]. The C-terminal domain has a chymotrypsin-like serine protease fold containing a conserved hydrophobic pocket that is involved in interaction with the cytoplasmic domain of envelope protein 2 (E2) [21,26,27,28,29]. The C-terminal has autoproteolytic activity and cleaves itself from the N-terminus of the structural polyprotein, playing a critical role in processing of the structural polyprotein and the viral life cycle [30]. The multifunctional capsid protein is crucial for viral replication and the potential to inhibit its functions has attracted attention as a target for therapeutic treatment.
This review investigates the recent advancements in arthritogenic alphaviral capsid protein research. We examine the multifunctional nature of arthritogenic alphaviral capsid proteins and how this has aided the design and development of new strategies to combat debilitating alphaviral infections.
6. Use of Arthritogenic Alphavirus Capsid Protein in Development of Diagnostics
The clinical symptoms of arthritogenic alphavirus infection are often similar to one another. Additionally, there is significant overlap in the symptoms of arthritogenic alphavirus infection with other arbovirus infections, such as flaviviruses [91,92,93]. Flaviviruses and alphaviruses regularly share the same geographic distribution which can further hamper accurate clinical diagnosis [41]. Improved detection methods to identify arthritogenic alphaviral infection are required to improve treatment and clinical management.
CHIKV has been responsible for epidemics of debilitating arthritis [94,95,96,97,98]. Recent outbreaks (2004–2014) resulted in an estimated 1.4–6.5 million cases, with imported cases reported in nearly 40 countries [99]. The development of CHIKV specific diagnostics and research tools is highly desirable. A study from 2014 describes the development and evaluation of recombinant capsid protein based indirect IgM antibody capture micro plate enzyme linked immunosorbent assay (ELISA) for rapid and accurate diagnosis of CHIKV infection [100]. No cross-reactivity with dengue virus was observed. The findings clearly demonstrate the utility of a recombinant capsid protein based CHIKV IgM ELISA for reliable clinical diagnosis of CHIKV infection in humans [100].
A 2015 study described the generation and characterization of monoclonal antibodies (mAbs) specific to CHIKV capsid protein [101]. These antibodies were able to recognize the isolates representing the major genotypes of CHIKV, as well as several other arthritogenic alphaviruses and were reactive in a range of assays including ELISA, Western blot, immunofluorescence and immunohistochemistry (IHC) [101]. A further study describes the development of mAb-based IgM capture ELISA (MAC ELISA), which detects CHIKV-specific IgM antibodies. All of the subclones of mAbs derived from the IgG1 hybrid recognized the capsid protein of CHIKV [102].
A panel of eleven mAbs previously generated for detection of the capsid protein of CHIKV have been epitope mapped using N- and C-terminally truncated recombinant forms of CHIKV capsid protein [103]. These recombinant forms were used to recognize two putative binding regions. A smaller N-terminus truncated product of capsid protein was identified in this study which may represent an alternative translational product of the 26S sub genomic RNA. Although the functional significance of the truncated capsid protein during viral replication is unclear, anti-capsid mAbs will serve as valuable tools for further investigation of the structure and function of arthritogenic alphaviral capsid proteins [103].
Studies have successfully generated mouse anti-CHIKV mAbs targeting CHIKV E1 and capsid proteins that lack cross-reactivity towards SINV and flaviviruses like dengue and Zika virus. Two mAbs also lacked cross-reactivity with other related arthritogenic alphaviruses like ONNV, MAYV, RRV and NW alphaviruses like WEEV and VEEV. The capsid-envelope protein targeting mAbs generated by this study will be promising candidates for the development of antibody-based rapid diagnostic tests [104].
7. Conclusions
Arthritogenic alphaviruses are a re-emerging group of arthropod transmitted viruses that are globally widespread. Arthritogenic alphaviruses are increasing their impact on humankind with infections resulting in severe debilitating arthritis, arthralgia and myalgia. There is no licensed drug or vaccine to treat arthritogenic alphaviral infections. The alphavirus capsid is a multifunctional protein with roles in genome encapsulation, budding and virion assembly. Our increased understanding of capsid protein function throughout the infection process has led to its pivotal use in novel therapeutic strategies.
An increasing number of studies have attempted to exploit the importance of arthritogenic alphaviral capsid protein function as a target for drug and vaccine development. High throughput technologies, like (FRET)-based proteolytic assays, have helped identify lead compounds like PCA, BBC, mandelic acid and ethyl 3 aminobenzoate as potential capsid protein targeting antivirals, or scaffolds on which to further develop antiviral compounds. New vaccination strategies and biotechnological tools, such as VLPs, are being employed to produce promising vaccine candidates to prevent infection. Many capsid protein-based therapeutic strategies remain in preclinical development. Additional studies are required to confirm the effectiveness of these therapeutics. For example, given the importance of capsid protein to the protective immune response against alphaviral infection, further studies to examine the safety and immunogenicity of vaccine candidates that remove capsid protein are warranted.
Additional functions of arthritogenic alphaviral capsid protein remain undiscovered, including the role of nuclear and nucleolar host cell trafficking during infection. Detailed studies are required to fully understand the role of the multifaceted capsid protein during the infection process.
Author Contributions
Conceptualization, A.T.; Writing—Original Draft Preparation, A.T. and S.R.; Writing—Review and Editing, A.T. and S.R.; Supervision, A.T.; Project Administration, A.T.; Funding Acquisition, A.T. Both authors have read and agreed to the published version of the manuscript.
Funding
This research was funded by the National Health and Medical Research Council of Australian grant number 1122897.
Institutional Review Board Statement
Not applicable.
Informed Consent Statement
Not applicable.
Data Availability Statement
Not applicable.
Conflicts of Interest
The authors declare no conflict of interest.
References
- Strauss, J.H.; Strauss, E.G. The alphaviruses: Gene expression, replication, and evolution. Microbiol. Rev. 1994, 58, 491–562. [Google Scholar] [CrossRef]
- Conway, M.J.; Colpitts, T.M.; Fikrig, E. Role of the Vector in Arbovirus Transmission. Annu. Rev. Virol. 2014, 1, 71–88. [Google Scholar] [CrossRef] [PubMed]
- Lefkowitz, E.J.; Dempsey, D.M.; Hendrickson, R.C.; Orton, R.J.; Siddell, S.G.; Smith, D.B. Virus taxonomy: The database of the International Committee on Taxonomy of Viruses (ICTV). Nucleic Acids Res. 2018, 46, D708–D717. [Google Scholar] [CrossRef]
- Weaver, S.C.; Reisen, W.K. Present and future arboviral threats. Antivir. Res. 2010, 85, 328–345. [Google Scholar] [CrossRef] [PubMed]
- Schwartz, O.; Albert, M.L. Biology and pathogenesis of chikungunya virus. Nat. Rev. Genet. 2010, 8, 491–500. [Google Scholar] [CrossRef]
- Sen, G.C.; Sarkar, S.N. Transcriptional signaling by double-stranded RNA: Role of TLR3. Cytokine Growth Factor Rev. 2005, 16, 1–14. [Google Scholar] [CrossRef]
- Garmashova, N.; Gorchakov, R.; Volkova, E.; Paessler, S.; Frolova, E.; Frolov, I. The Old World and New World Alphaviruses Use Different Virus-Specific Proteins for Induction of Transcriptional Shutoff. J. Virol. 2006, 81, 2472–2484. [Google Scholar] [CrossRef]
- Kutchko, K.M.; Madden, E.A.; Morrison, C.; Plante, K.S.; Sanders, W.; Vincent, H.A.; Cruz Cisneros, M.C.; Long, K.M.; Moorman, N.J.; Heise, M.T.; et al. Structural divergence creates new functional features in alphavirus genomes. Nucleic Acids Res. 2018, 46, 3657–3670. [Google Scholar] [CrossRef]
- Wesula Olivia, L.; Obanda, V.; Bucht, G.; Mosomtai, G.; Otieno, V.; Ahlm, C.; Evander, M. Global emergence of Alphaviruses that cause arthritis in humans. Infect. Ecol. Epidemiol. 2015, 5, 29853. [Google Scholar]
- Lau, C.; Aubry, M.; Musso, D.; Teissier, A.; Paulous, S.; Desprès, P.; De-Lamballerie, X.; Pastorino, B.; Cao-Lormeau, V.-M.; Weinstein, P. New evidence for endemic circulation of Ross River virus in the Pacific Islands and the potential for emergence. Int. J. Infect. Dis. 2017, 57, 73–76. [Google Scholar] [CrossRef] [PubMed]
- Knope, K.E.; Doggett, S.L.; Kurucz, N.; Johansen, C.A.; Nicholson, J.; Feldman, R.; Sly, A.; Hobby, M.; El Saadi, D.; Muller, M.; et al. Arboviral diseases and malaria in Australia, 2011–2012: Annual report of the National Arbovirus and Malaria Advisory Committee. Commun. Dis. Intell. Q. Rep. 2014, 38, E122–E142. [Google Scholar]
- Bessaud, M.; Peyrefitte, C.N.; Pastorino, B.A.; Gravier, P.; Tock, F.; Boete, F.; Tolou, H.J.; Grandadam, M. O’nyong-nyong Virus, Chad. Emerg. Infect. Dis. 2006, 12, 1248–1250. [Google Scholar] [CrossRef]
- Coimbra, T.L.; Santos, C.L.; Suzuki, A.; Petrella, S.; Bisordi, I.; Nagamori, A.H.; Marti, A.T.; Santos, R.N.; Fialho, D.M.; Lavigne, S.; et al. Mayaro virus: Imported cases of human infection in São Paulo State, Brazil. Rev. Inst. Med. Trop. Sao Paulo 2007, 49, 221–224. [Google Scholar] [CrossRef] [PubMed]
- Gould, E.A.; Higgs, S. Impact of climate change and other factors on emerging arbovirus diseases. Trans. R. Soc. Trop. Med. Hyg. 2009, 103, 109–121. [Google Scholar] [CrossRef]
- Seyler, T.; Hutin, Y.; Ramanchandran, V.; Ramakrishnan, R.; Manickam, P.; Murhekar, M. Estimating the burden of disease and the economic cost attributable to chikungunya, Andhra Pradesh, India, 2005–2006. Trans. R. Soc. Trop. Med. Hyg. 2010, 104, 133–138. [Google Scholar] [CrossRef] [PubMed]
- Renault, P.; Solet, J.L.; Sissoko, D.; Balleydier, E.; Larrieu, S.; Filleul, L.; Lassalle, C.; Thiria, J.; Rachou, E.; de Valk, H.; et al. A Major Epidemic of Chikungunya Virus Infection on Réunion Island, France, 2005–2006. Am. J. Trop. Med. Hyg. 2007, 77, 727–731. [Google Scholar] [CrossRef] [PubMed]
- Beesoon, S.; Funkhouser, E.; Kotea, N.; Spielman, A.; Robich, R.M. Chikungunya fever, Mauritius, 2006. Emerg. Infect. Dis. 2008, 14, 337–338. [Google Scholar] [CrossRef]
- Van Bortel, W.; Dorleans, F.; Rosine, J.; Blateau, A.; Rousset, D.; Matheus, S.; Leparc-Goffart, I.; Flusin, O.; Prat, C.M.; Cesaire, R.; et al. Chikungunya outbreak in the Caribbean region, December 2013 to March 2014, and the significance for Europe. Eurosurveillance 2014, 19, 20759. [Google Scholar] [CrossRef]
- Randolph, S.E.; Rogers, D.J. The arrival, establishment and spread of exotic diseases: Patterns and predictions. Nat. Rev. Genet. 2010, 8, 361–371. [Google Scholar] [CrossRef]
- Owen, K.E.; Kuhn, R.J. Identification of a region in the sindbis virus nucleocapsid protein that is involved in specificity of RNA encapsidation. J. Virol. 1996, 70, 2757–2763. [Google Scholar] [CrossRef]
- Garoff, H.; Sjöberg, M.; Cheng, R.H. Budding of alphaviruses. Virus Res. 2004, 106, 103–116. [Google Scholar] [CrossRef]
- Lundberg, L.; Carey, B.; Kehn-Hall, K. Venezuelan Equine Encephalitis Virus Capsid—The Clever Caper. Viruses 2017, 9, 279. [Google Scholar] [CrossRef] [PubMed]
- Geigenmüller-Gnirke, U.; Nitschko, H.; Schlesinger, S. Deletion analysis of the capsid protein of Sindbis virus: Identification of the RNA binding region. J. Virol. 1993, 67, 1620–1626. [Google Scholar] [CrossRef]
- Cheng, R.H.; Kuhn, R.J.; Olson, N.H.; Rossmann, M.G.; Choi, H.K.; Smith, T.J.; Baker, T.S. Nucleocapsid and glycoprotein organization in an enveloped virus. Cell 1995, 80, 621–630. [Google Scholar] [CrossRef]
- Perera, R.; Owen, K.E.; Tellinghuisen, T.L.; Gorbalenya, A.E.; Kuhn, R.J. Alphavirus Nucleocapsid Protein Contains a Putative Coiled Coil α-Helix Important for Core Assembly. J. Virol. 2001, 75, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Owen, K.E.; Choi, H.K.; Lee, H.; Lu, G.; Wengler, G.; Brown, D.T.; Rossmann, M.G.; Kuhn, R.J. Identification of a protein binding site on the surface of the alphavirus nucleocapsid and its implication in virus assembly. Structure 1996, 4, 531–541. [Google Scholar] [CrossRef]
- Sharma, R.; Kesari, P.; Kumar, P.; Tomar, S. Structure-function insights into chikungunya virus capsid protein: Small molecules targeting capsid hydrophobic pocket. Virology 2018, 515, 223–234. [Google Scholar] [CrossRef]
- Tang, J.; Jose, J.; Chipman, P.; Zhang, W.; Kuhn, R.J.; Baker, T.S. Molecular Links between the E2 Envelope Glycoprotein and Nucleocapsid Core in Sindbis Virus. J. Mol. Biol. 2011, 414, 442–459. [Google Scholar] [CrossRef]
- Jose, J.; Przybyla, L.; Edwards, T.J.; Perera, R.; Burgner, J.W.; Kuhn, R.J. Interactions of the Cytoplasmic Domain of Sindbis Virus E2 with Nucleocapsid Cores Promote Alphavirus Budding. J. Virol. 2011, 86, 2585–2599. [Google Scholar] [CrossRef]
- Choi, H.-K.; Tong, L.; Minor, W.; Dumas, P.; Boege, U.; Rossmann, M.G.; Wengler, G. Structure of Sindbis virus core protein reveals a chymotrypsin-like serine proteinase and the organization of the virion. Nat. Cell Biol. 1991, 354, 37–43. [Google Scholar] [CrossRef]
- Paredes, A.M.; Simon, M.N.; Brown, D.T. The mass of the Sindbis virus nucleocapsid suggests it has T = 4 icosahedral symmetry. Virology 1992, 187, 329–332. [Google Scholar] [CrossRef]
- Strauss, E.G.; Rice, C.M.; Strauss, J.H. Complete nucleotide sequence of the genomic RNA of Sindbis virus. Virology 1984, 133, 92–110. [Google Scholar] [CrossRef]
- Garoff, H.; Simons, K.; Dobberstein, B. Assembly of the semliki forest virus membrane glycoproteins in the membrane of the endoplasmic reticulum in vitro. J. Mol. Biol. 1978, 124, 587–600. [Google Scholar] [CrossRef]
- Jose, J.; Snyder, J.E.; Kuhn, R.J. A structural and functional perspective of alphavirus replication and assembly. Future Microbiol. 2009, 4, 837–856. [Google Scholar] [CrossRef] [PubMed]
- Melancon, P.; Garoff, H. Processing of the Semliki Forest virus structural polyprotein: Role of the capsid protease. J. Virol. 1987, 61, 1301–1309. [Google Scholar] [CrossRef]
- Choi, H.-K.; Lee, S.; Zhang, Y.-P.; McKinney, B.R.; Wengler, G.; Rossmann, M.G.; Kuhn, R.J. Structural Analysis of Sindbis Virus Capsid Mutants Involving Assembly and Catalysis. J. Mol. Biol. 1996, 262, 151–167. [Google Scholar] [CrossRef]
- Choi, H.-K.; Lu, G.; Lee, S.; Wengler, G.; Rossmann, M.G. Structure of Semliki Forest virus core protein. Proteins Struct. Funct. Bioinform. 1997, 27, 345–359. [Google Scholar] [CrossRef]
- Mukhopadhyay, S.; Zhang, W.; Gabler, S.; Chipman, P.R.; Strauss, E.G.; Strauss, J.H.; Baker, T.S.; Kuhn, R.J.; Rossmann, M.G. Mapping the Structure and Function of the E1 and E2 Glycoproteins in Alphaviruses. Structure 2006, 14, 63–73. [Google Scholar] [CrossRef] [PubMed]
- Harrison, S.C.; Strong, R.K.; Schlesinger, S.; Schlesinger, M.J. Crystallization of Sindbis virus and its nucleocapsid. J. Mol. Biol. 1992, 226, 277–280. [Google Scholar] [CrossRef]
- Soonsawad, P.; Xing, L.; Milla, E.; Espinoza, J.M.; Kawano, M.; Marko, M.; Hsieh, C.; Furukawa, H.; Kawasaki, M.; Weerachatyanukul, W.; et al. Structural Evidence of Glycoprotein Assembly in Cellular Membrane Compartments prior to Alphavirus Budding. J. Virol. 2010, 84, 11145–11151. [Google Scholar] [CrossRef]
- Schmaljohn, A.L.; McClain, D. Alphaviruses (Togaviridae) and Flaviviruses (Flaviviridae). In Medical Microbiology; Baron, S., Ed.; University of Texas Medical Branch at Galveston Copyright © 2021; The University of Texas Medical Branch at Galveston: Galveston, TX, USA, 1996. [Google Scholar]
- Vasiljeva, L.; Merits, A.; Auvinen, P.; Kääriäinen, L. Identification of a novel function of the Alphavirus capping apparatus. RNA 5′-triphosphatase activity of Nsp2. J. Biol. Chem. 2000, 275, 17281–17287. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Hryc, C.F.; Cong, Y.; Liu, X.; Jakana, J.; Gorchakov, R.; Baker, M.L.; Weaver, S.C.; Chiu, W. 4.4 Å cryo-EM structure of an enveloped alphavirus Venezuelan equine encephalitis virus. EMBO J. 2011, 30, 3854–3863. [Google Scholar] [CrossRef]
- Pletnev, S.V.; Zhang, W.; Mukhopadhyay, S.; Fisher, B.R.; Hernandez, R.; Brown, D.T.; Baker, T.S.; Rossmann, M.G.; Kuhn, R.J. Locations of carbohydrate sites on alphavirus glycoproteins show that E1 forms an icosahedral scaffold. Cell 2001, 105, 127–136. [Google Scholar] [CrossRef]
- Kim, H.Y.; Patkar, C.; Warrier, R.; Kühn, R.; Cushman, M. Design, synthesis, and evaluation of dioxane-based antiviral agents targeted against the Sindbis virus capsid protein. Bioorg. Med. Chem. Lett. 2005, 15, 3207–3211. [Google Scholar] [CrossRef]
- Ou, J.H.; Rice, C.M.; Dalgarno, L.; Strauss, E.G.; Strauss, J.H. Sequence studies of several alphavirus genomic RNAs in the region containing the start of the subgenomic RNA. Proc. Natl. Acad. Sci. USA 1982, 79, 5235–5239. [Google Scholar] [CrossRef]
- Rice, C.M.; Strauss, J.H. Nucleotide sequence of the 26S mRNA of Sindbis virus and deduced sequence of the encoded virus structural proteins. Proc. Natl. Acad. Sci. USA 1981, 78, 2062–2066. [Google Scholar] [CrossRef] [PubMed]
- Kalkkinen, N.; Jörnvall, H.; Söderlund, H.; Kääriäinen, L. Analysis of Semliki-Forest-virus structural proteins to illustrate polyprotein processing of alpha viruses. Eur. J. Biochem. 1980, 108, 31–37. [Google Scholar] [CrossRef] [PubMed]
- Hahn, C.S.; Strauss, J.H. Site-directed mutagenesis of the proposed catalytic amino acids of the Sindbis virus capsid protein autoprotease. J. Virol. 1990, 64, 3069–3073. [Google Scholar] [CrossRef]
- Tong, L.; Wengler, G.; Rossmann, M.G. Refined structure of sindbis virus core protein and comparison with other chymotrypsin-like serine proteinase structures. J. Mol. Biol. 1993, 230, 228–247. [Google Scholar] [CrossRef]
- Aliperti, G.; Schlesinger, M.J. Evidence for an autoprotease activity of sindbis virus capsid protein. Virology 1978, 90, 366–369. [Google Scholar] [CrossRef]
- Thomas, S.; Rai, J.; John, L.; Günther, S.; Drosten, C.; Pützer, B.M.; Schaefer, S. Functional dissection of the alphavirus capsid protease: Sequence requirements for activity. Virol. J. 2010, 7, 327. [Google Scholar] [CrossRef]
- Mayne, J.T.; Rice, C.M.; Strauss, E.G.; Hunkapiller, M.W.; Strauss, J.H. Biochemical studies of the maturation of the small sindbis virus glycoprotein E3. Virology 1984, 134, 338–357. [Google Scholar] [CrossRef]
- Hahn, C.S.; Strauss, E.G.; Strauss, J.H. Sequence analysis of three Sindbis virus mutants temperature-sensitive in the capsid protein autoprotease. Proc. Natl. Acad. Sci. USA 1985, 82, 4648–4652. [Google Scholar] [CrossRef]
- Hong, E.M.; Perera, R.; Kuhn, R.J. Alphavirus Capsid Protein Helix I Controls a Checkpoint in Nucleocapsid Core Assembly. J. Virol. 2006, 80, 8848–8855. [Google Scholar] [CrossRef]
- Weiss, B.; Geigenmüller-Gnirke, U.; Schlesinger, S. Interactions between Sindbis virus RNAs and a 68 amino acid derivative of the viral capsid protein further defines the capsid binding site. Nucleic Acids Res. 1994, 22, 780–786. [Google Scholar] [CrossRef]
- Lulla, V.; Kim, D.Y.; Frolova, E.I.; Frolov, I. The Amino-Terminal Domain of Alphavirus Capsid Protein Is Dispensable for Viral Particle Assembly but Regulates RNA Encapsidation through Cooperative Functions of Its Subdomains. J. Virol. 2013, 87, 12003–12019. [Google Scholar] [CrossRef] [PubMed]
- Aggarwal, M.; Tapas, S.; Siwach, A.; Kumar, P.; Kuhn, R.J.; Tomar, S. Crystal Structure of Aura Virus Capsid Protease and Its Complex with Dioxane: New Insights into Capsid-Glycoprotein Molecular Contacts. PLoS ONE 2012, 7, e51288. [Google Scholar] [CrossRef] [PubMed]
- Hahn, C.S.; Lustig, S.; Strauss, E.G.; Strauss, J.H. Western equine encephalitis virus is a recombinant virus. Proc. Natl. Acad. Sci. USA 1988, 85, 5997–6001. [Google Scholar] [CrossRef] [PubMed]
- Sharma, R.; Fatma, B.; Saha, A.; Bajpai, S.; Sistla, S.; Dash, P.K.; Parida, M.; Kumar, P.; Tomar, S. Inhibition of chikungunya virus by picolinate that targets viral capsid protein. Virology 2016, 498, 265–276. [Google Scholar] [CrossRef] [PubMed]
- Favre, D.; Studer, E.; Michel, M.R. Two nucleolar targeting signals present in the N-terminal part of Semliki Forest virus capsid protein. Arch. Virol. 1994, 137, 149–155. [Google Scholar] [CrossRef]
- Michel, M.R.; Elgizoli, M.; Dai, Y.; Jakob, R.; Koblet, H.; Arrigo, A.P. Karyophilic properties of Semliki Forest virus nucleocapsid protein. J. Virol. 1990, 64, 5123–5131. [Google Scholar] [CrossRef] [PubMed]
- Thomas, S.; Rai, J.; John, L.; Schaefer, S.; Pützer, B.M.; Herchenröder, O. Chikungunya virus capsid protein contains nuclear import and export signals. Virol. J. 2013, 10, 269. [Google Scholar] [CrossRef]
- Vasu, S.K.; Forbes, D.J. Nuclear pores and nuclear assembly. Curr. Opin. Cell Biol. 2001, 13, 363–375. [Google Scholar] [CrossRef]
- Freitas, N.; Cunha, C. Mechanisms and signals for the nuclear import of proteins. Curr. Genom. 2009, 10, 550–557. [Google Scholar] [CrossRef]
- Jacobs, S.C.; Taylor, A.; Herrero, L.J.; Mahalingam, S.; Fazakerley, J.K. Mutation of a Conserved Nuclear Export Sequence in Chikungunya Virus Capsid Protein Disrupts Host Cell Nuclear Import. Viruses 2017, 9, 306. [Google Scholar] [CrossRef]
- Taylor, A.; Liu, X.; Zaid, A.; Goh, L.Y.H.; Hobson-Peters, J.; Hall, R.A.; Merits, A.; Mahalingam, S. Mutation of the N-Terminal Region of Chikungunya Virus Capsid Protein: Implications for Vaccine Design. mBio 2017, 8, e01970-16. [Google Scholar] [CrossRef]
- Jakob, R. Nucleolar accumulation of Semliki Forest virus nucleocapsid C protein: Influence of metabolic status, cytoskeleton and receptors. J. Med. Microbiol. 1994, 40, 389–392. [Google Scholar] [CrossRef] [PubMed]
- Kam, Y.-W.; Lee, W.W.L.; Simarmata, D.; Harjanto, S.; Teng, T.-S.; Tolou, H.; Chow, A.; Lin, R.T.P.; Leo, Y.-S.; Rénia, L.; et al. Longitudinal Analysis of the Human Antibody Response to Chikungunya Virus Infection: Implications for Serodiagnosis and Vaccine Development. J. Virol. 2012, 86, 13005–13015. [Google Scholar] [CrossRef]
- Harrison, V.R.; Eckels, K.H.; Bartelloni, P.J.; Hampton, C. Production and evaluation of a formalin-killed Chikungunya vaccine. J. Immunol. 1971, 107, 643–647. [Google Scholar] [PubMed]
- Tiwari, M.; Parida, M.; Santhosh, S.R.; Khan, M.; Dash, P.K.; Rao, P.V. Assessment of immunogenic potential of Vero adapted formalin inactivated vaccine derived from novel ECSA genotype of Chikungunya virus. Vaccine 2009, 27, 2513–2522. [Google Scholar] [CrossRef]
- Eckels, K.H.; Harrison, V.R.; Hetrick, F.M. Chikungunya Virus Vaccine Prepared by Tween-Ether Extraction. Appl. Microbiol. 1970, 19, 321. [Google Scholar] [CrossRef] [PubMed]
- Edelman, R.; Tacket, C.O.; Wasserman, S.S.; Bodison, S.A.; Perry, J.G.; Mangiafico, J.A. Phase II safety and immunogenicity study of live chikungunya virus vaccine TSI-GSD-218. Am. J. Trop. Med. Hyg. 2000, 62, 681–685. [Google Scholar] [CrossRef]
- Wang, E.; Volkova, E.; Adams, A.P.; Forrester, N.; Xiao, S.Y.; Frolov, I.; Weaver, S.C. Chimeric alphavirus vaccine candidates for chikungunya. Vaccine 2008, 26, 5030–5039. [Google Scholar] [CrossRef]
- Wang, D.; Suhrbier, A.; Penn-Nicholson, A.; Woraratanadharm, J.; Gardner, J.; Luo, M.; Le, T.T.; Anraku, I.; Sakalian, M.; Einfeld, D.; et al. A complex adenovirus vaccine against chikungunya virus provides complete protection against viraemia and arthritis. Vaccine 2011, 29, 2803–2809. [Google Scholar] [CrossRef] [PubMed]
- Muthumani, K.; Lankaraman, K.M.; Laddy, D.J.; Sundaram, S.G.; Chung, C.W.; Sako, E.; Wu, L.; Khan, A.; Sardesai, N.; Kim, J.J.; et al. Immunogenicity of novel consensus-based DNA vaccines against Chikungunya virus. Vaccine 2008, 26, 5128–5134. [Google Scholar] [CrossRef] [PubMed]
- Metz, S.W.; Geertsema, C.; Martina, B.E.; Andrade, P.; Heldens, J.G.; Van Oers, M.M.; Goldbach, R.W.; Vlak, J.M.; Pijlman, G.P. Functional processing and secretion of Chikungunya virus E1 and E2 glycoproteins in insect cells. Virol. J. 2011, 8, 353. [Google Scholar] [CrossRef]
- Akahata, W.; Yang, Z.-Y.; Andersen, H.; Sun, S.; Holdaway, H.A.; Kong, W.-P.; Lewis, M.G.; Higgs, S.; Rossmann, M.G.; Rao, S.; et al. A virus-like particle vaccine for epidemic Chikungunya virus protects nonhuman primates against infection. Nat. Med. 2010, 16, 334–338. [Google Scholar] [CrossRef]
- Abeyratne, E.; Tharmarajah, K.; Freitas, J.R.; Mostafavi, H.; Mahalingam, S.; Zaid, A.; Zaman, M.; Taylor, A. Liposomal Delivery of the RNA Genome of a Live-Attenuated Chikungunya Virus Vaccine Candidate Provides Local, But Not Systemic Protection after One Dose. Front. Immunol. 2020, 11, 304. [Google Scholar] [CrossRef]
- Zhang, Y.-N.; Deng, C.-L.; Li, J.-Q.; Li, N.; Zhang, Q.-Y.; Ye, H.-Q.; Yuan, Z.-M.; Zhang, B. Infectious Chikungunya Virus (CHIKV) with a Complete Capsid Deletion: A New Approach for a CHIKV Vaccine. J. Virol. 2019, 93. [Google Scholar] [CrossRef]
- Brandler, S.; Ruffié, C.; Combredet, C.; Brault, J.-B.; Najburg, V.; Prevost, M.-C.; Habel, A.; Tauber, E.; Desprès, P.; Tangy, F. A recombinant measles vaccine expressing chikungunya virus-like particles is strongly immunogenic and protects mice from lethal challenge with chikungunya virus. Vaccine 2013, 31, 3718–3725. [Google Scholar] [CrossRef]
- Mian, M.; Talada, J.; Klobas, A.; Torres, S.; Rasheed, Y.; Javed, H.; Lughmani, Z.; Forough, R. A customized program for the identification of conserved protein sequence motifs. BioTechniques 2020, 68, 45–47. [Google Scholar] [CrossRef] [PubMed]
- Kam, Y.-W.; Lee, W.W.L.; Simarmata, D.; Le Grand, R.; Tolou, H.; Merits, A.; Roques, P.; Ng, L.F.P. Unique Epitopes Recognized by Antibodies Induced in Chikungunya Virus-Infected Non-Human Primates: Implications for the Study of Immunopathology and Vaccine Development. PLoS ONE 2014, 9, e95647. [Google Scholar] [CrossRef]
- Hikke, M.C.; Geertsema, C.; Wu, V.; Metz, S.W.; Van Lent, J.W.; Vlak, J.M.; Pijlman, G.P. Alphavirus capsid proteins self-assemble into core-like particles in insect cells: A promising platform for nanoparticle vaccine development. Biotechnol. J. 2015, 11, 266–273. [Google Scholar] [CrossRef]
- Aggarwal, M.; Sharma, R.; Kumar, P.; Parida, M.; Tomar, S. Kinetic characterization of trans-proteolytic activity of Chikungunya virus capsid protease and development of a FRET-based HTS assay. Sci. Rep. 2015, 5, 14753. [Google Scholar] [CrossRef]
- Fatma, B.; Kumar, R.; Singh, V.A.; Nehul, S.; Sharma, R.; Kesari, P.; Kuhn, R.J.; Tomar, S. Alphavirus capsid protease inhibitors as potential antiviral agents for Chikungunya infection. Antivir. Res. 2020, 179, 104808. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Kielian, M. An alphavirus temperature-sensitive capsid mutant reveals stages of nucleocapsid assembly. Virology 2015, 484, 412–420. [Google Scholar] [CrossRef] [PubMed]
- Aggarwal, M.; Kaur, R.; Saha, A.; Mudgal, R.; Yadav, R.; Dash, P.K.; Parida, M.; Kumar, P.; Tomar, S. Evaluation of antiviral activity of piperazine against Chikungunya virus targeting hydrophobic pocket of alphavirus capsid protein. Antivir. Res. 2017, 146, 102–111. [Google Scholar] [CrossRef]
- Sokoloski, K.J.; Nease, L.M.; May, N.A.; Gebhart, N.N.; Jones, C.E.; Morrison, T.E.; Hardy, R.W. Identification of Interactions between Sindbis Virus Capsid Protein and Cytoplasmic vRNA as Novel Virulence Determinants. PLoS Pathog. 2017, 13, e1006473. [Google Scholar] [CrossRef]
- Wan, J.J.; Brown, R.S.; Kielian, M. Berberine Chloride is an Alphavirus Inhibitor That Targets Nucleocapsid Assembly. mBio 2020, 11. [Google Scholar] [CrossRef]
- Kam, Y.-W.; Pok, K.-Y.; Eng, K.E.; Tan, L.-K.; Kaur, S.; Lee, W.W.L.; Leo, Y.-S.; Ng, L.-C.; Ng, L.F.P. Sero-Prevalence and Cross-Reactivity of Chikungunya Virus Specific Anti-E2EP3 Antibodies in Arbovirus-Infected Patients. PLoS Negl. Trop. Dis. 2015, 9, e3445. [Google Scholar] [CrossRef]
- Henss, L.; Yue, C.; Kandler, J.; Faddy, H.M.; Simmons, G.; Panning, M.; Lewis-Ximenez, L.L.; Baylis, S.A.; Schnierle, B.S. Establishment of an Alphavirus-Specific Neutralization Assay to Distinguish Infections with Different Members of the Semliki Forest Complex. Viruses 2019, 11, 82. [Google Scholar] [CrossRef] [PubMed]
- Hassing, R.J.; Leparc-Goffart, I.; Tolou, H.; van Doornum, G.; van Genderen, P.J. Cross-reactivity of antibodies to viruses be-longing to the Semliki forest serocomplex. Eurosurveillance 2010, 15, 19588. [Google Scholar] [PubMed]
- Robinson, M.C. An epidemic of virus disease in Southern Province, Tanganyika territory, in 1952–1953. Trans. R. Soc. Trop. Med. Hyg. 1955, 49, 28–32. [Google Scholar] [CrossRef]
- Tesh, R.B. Arthritides Caused by Mosquito-Borne Viruses. Annu. Rev. Med. 1982, 33, 31–40. [Google Scholar] [CrossRef]
- Borgherini, G.; Poubeau, P.; Staikowsky, F.; Lory, M.; Le Moullec, N.; Becquart, J.P.; Wengling, C.; Michault, A.; Paganin, F. Outbreak of Chikungunya on Reunion Island: Early Clinical and Laboratory Features in 157 Adult Patients. Clin. Infect. Dis. 2007, 44, 1401–1407. [Google Scholar] [CrossRef] [PubMed]
- Staples, J.E.; Breiman, R.F.; Powers, A.M. Chikungunya Fever: An Epidemiological Review of a Re-Emerging Infectious Disease. Clin. Infect. Dis. 2009, 49, 942–948. [Google Scholar] [CrossRef]
- Suhrbier, A.; Jaffar-Bandjee, M.C.; Gasque, P. Arthritogenic alphaviruses—An overview. Nat. Rev. Rheumatol. 2012, 8, 420–429. [Google Scholar] [CrossRef] [PubMed]
- van Aalst, M.; Nelen, C.M.; Goorhuis, A.; Stijnis, C.; Grobusch, M.P. Long-term sequelae of chikungunya virus disease: A systematic review. Travel Med. Infect. Dis. 2017, 15, 8–22. [Google Scholar] [CrossRef]
- Priya, R.; Khan, M.; Rao, M.K.; Parida, M. Cloning, expression and evaluation of diagnostic potential of recombinant capsid protein based IgM ELISA for chikungunya virus. J. Virol. Methods 2014, 203, 15–22. [Google Scholar] [CrossRef]
- Goh, L.Y.H.; Hobson-Peters, J.; Prow, N.A.; Gardner, J.; Bielefeldt-Ohmann, H.; Suhrbier, A.; Hall, R.A. Monoclonal antibodies specific for the capsid protein of chikungunya virus suitable for multiple applications. J. Gen. Virol. 2015, 96, 507–512. [Google Scholar] [CrossRef]
- Damle, R.G.; Jayaram, N.; Kulkarni, S.M.; Nigade, K.; Khutwad, K.; Gosavi, S.; Parashar, D. Diagnostic potential of monoclonal antibodies against the capsid protein of chikungunya virus for detection of recent infection. Arch. Virol. 2016, 161, 1611–1622. [Google Scholar] [CrossRef]
- Goh, L.Y.; Hobson-Peters, J.; Prow, N.A.; Baker, K.; Piyasena, T.B.; Taylor, C.T.; Rana, A.; Hastie, M.L.; Gorman, J.J.; Hall, R.A. The Chikungunya Virus Capsid Protein Contains Linear B Cell Epitopes in the N- and C-Terminal Regions that are Dependent on an Intact C-Terminus for Antibody Recognition. Viruses 2015, 7, 2943–2964. [Google Scholar] [CrossRef]
- Tuekprakhon, A.; Puiprom, O.; Sasaki, T.; Michiels, J.; Bartholomeeusen, K.; Nakayama, E.E.; Meno, M.K.; Phadungsombat, J.; Huits, R.; Ariën, K.K.; et al. Broad-spectrum monoclonal antibodies against chikungunya virus structural proteins: Promising candidates for antibody-based rapid diagnostic test development. PLoS ONE 2018, 13, e0208851. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).