Housekeeping in the Hydrosphere: Microbial Cooking, Cleaning, and Control under Stress
Abstract
:1. Foreword: New Approach to an Old Paradigm
2. Ecology: Study of the House
3. Remodeling the Big House
4. Sunny Side Up: Fusion-Style Cooking with Supplements and Mixotrophy
5. When the Cook Is Out: TV Dinners and Raiding the Pantry
6. Cleaning: Waste Busting and Recycling
7. Remote Control: Who Has Got It?
8. One Household under Multiple Stressors
9. Interactive Effects of Multiple Stressors
10. Interrelationships among Biodiversity, Productivity, Stability, and Resiliency
11. Evolving Household
12. Shifting Microbiome (Communities and Their Genetic Content)
13. Sentinels of Change: Microbes as First Responders
14. Unseen Strands in the Food Web: Their Housework Is Never Done
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Dedication
Conflicts of Interest
References
- Pomeroy, L.R. The Ocean’s Food Web, A Changing Paradigm. BioScience 1974, 24, 499–504. [Google Scholar] [CrossRef] [Green Version]
- Sherr, E.; Sherr, B. Understanding the roles of microbes in marine food webs: A brief history. In Microbial Ecology of the Oceans, 2nd ed.; Wiley-Blackwell: Hoboken, NJ, USA, 2008; pp. 27–44. [Google Scholar]
- Sand-Jensen, K. How to write consistently boring scientific literature. Oikos 2007, 116, 723–727. [Google Scholar] [CrossRef]
- Clery, D. Darkness made visible. Science 2019, 366, 1434–1443. [Google Scholar] [CrossRef] [PubMed]
- Simek, K.; Sirova, D. Fluorescently labeled bacteria used as a tracer can reveal novel pathways of organic carbon flow in aquatic ecosystems. J. Vis. Exp. 2019, 151, e59903. [Google Scholar] [CrossRef]
- Cornwall, W. In hot water. Science 2019, 363, 442–445. [Google Scholar] [CrossRef] [Green Version]
- Marlow, J.; Braackman, R. Team Players: Microbial Partnerships. Sci. Am. 2018, 319, 32–39. [Google Scholar] [CrossRef]
- Najjar, D. Microbial Dark Matter. Sci. Am. 2019, 320, 14. [Google Scholar] [CrossRef]
- Nuwer, R. What If All Viruses Disappeared? Why the World Needs Viruses to Function. BBC Future. Available online: https://www.bbc.com/future/article/20200617-what-if-all-viruses-disappeared (accessed on 20 July 2020).
- BBC Studios. Blue Planet II, Narrated by Attenborough, D. BBC Studios, and Open University. 2017.
- Herbert, M.; Mann, M. The Tantrum That Saved the World: Carbon Neutral Kid’s Book; World Saving Books: Amsterdam, The Netherlands, 2018; p. 64. [Google Scholar]
- The Economist. A Warming World: The Climate Issue. The Economist, 21 September 2019. Available online: https://www.economist.com/leaders/2019/09/19/the-climate-issue (accessed on 11 March 2020).
- Haeckel, E. Generelle Morphologie der Organismen. Berlin: Reimer 1866, 2, 286–287. [Google Scholar] [CrossRef]
- Odum, E.P. Basic Ecology; Holt-Saunders International: Philadelphia, PA, USA, 1983; p. 613. ISBN 9780030584145. [Google Scholar]
- Falkowski, P.G.; Fenchel, T.; DeLong, E.F. The microbial engines that drive Earth’s biogeochemical cycles. Science 2008, 320, 1034–1039. [Google Scholar] [CrossRef] [Green Version]
- Bar-On, Y.M.; Philips, R.; Milo, R. The biomass distribution on Earth. Proc. Natl. Acad. Sci. USA 2018, 115, 6506–6511. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Worm, B.; Barbier, E.B.; Beaumont, N.; Duffy, J.E.; Folke, C.; Halpern, B.S.; Jackson, J.B.C.; Lotze, H.K.; Micheli, F.; Palumbi, S.R.; et al. Impacts of biodiversity loss on ocean ecosystem services. Science 2006, 314, 787–790. [Google Scholar] [CrossRef] [Green Version]
- Ducklow, H. Microbial services: Challenges for microbial ecologists in a changing world. Aquat. Microb. Ecol. 2008, 53, 13–19. [Google Scholar] [CrossRef]
- O’Reilly, C.M.; Sharma, S.; Gray, D.K.; Hampton, S.E.; Read, J.S.; Rowley, R.J.; Schneider, P.; Lenters, J.D.; McIntyre, P.B.; Kraemer, B.M.; et al. Rapid and highly variable warming of lake surface waters around the globe. Geophys. Res. Lett. 2015, 42, 10773–10781. [Google Scholar] [CrossRef] [Green Version]
- Cavicchioli, R.; Ripple, W.; Timmis, K.; Azam, F.; Bakken, L.R.; Baylis, M.; Behrenfeld, M.J.; Boetius, A.; Boyd, P.W.; Classen, A.T.; et al. Scientist’s warning to humanity: Microorganisms and climate change. Nat. Rev. Microbiol. 2019, 17, 569–586. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheng, L.; Abraham, J.; Hausfather, Z.; Trenberth, K.E. How fast are the oceans warming? Science 2019, 363, 128–129. [Google Scholar] [CrossRef] [PubMed]
- Aufdenkampe, A.K.; Mayorga, E.; Raymond, P.A.; Melack, J.M.; Doney, S.C.; Alin, S.R.; Aalto, R.; Yoo, K. Riverine coupling of biogeochemical cycles between land, oceans, and atmosphere. Front. Ecol. Environ. 2011, 9, 53–60. [Google Scholar] [CrossRef] [Green Version]
- Biddanda, B.A. Global significance of the changing freshwater carbon cycle. Eos 2017, 98, 15–17. [Google Scholar] [CrossRef]
- Pomeroy, L.R.; Williams, P.J.l.; Azam, F.; Hobbie, J.E. The microbial loop. Oceanography 2007, 20, 28–33. [Google Scholar] [CrossRef]
- Field, C.B.; Behrenfeld, M.J.; Randerson, J.T.; Falkowski, P. Primary production of the biosphere: Integrating terrestrial and oceanic components. Science 1998, 281, 237–240. [Google Scholar] [CrossRef] [Green Version]
- Behrenfeld, M.J.; O’Malley, R.T.; Siegel, D.A.; McClain, C.R.; Sarmiento, J.L.; Feldman, G.C.; Milligan, A.J.; Falkowski, P.G.; Letelier, R.M.; Boss, E. Climate-driven trends in contemporary ocean productivity. Nature 2006, 444, 752–755. [Google Scholar] [CrossRef]
- Karl, D.M.; Proctor, L.M. Foundations of Microbial Oceanography. Oceanography 2007, 20, 16–27. [Google Scholar] [CrossRef] [Green Version]
- Paerl, H.W. Optimization of carbon dioxide and nitrogen fixation by the blue-green alga Anabaena in freshwater blooms. Oecologia 1979, 38, 275–290. [Google Scholar] [CrossRef]
- Karl, D.M.; Letelier, R.; Tupas, L.; Dore, J.; Christians, J.; Hebel, D. The role of nitrogen fixation in biogeochemical cycling in the subtropical North Pacific Ocean. Nature 1997, 388, 533–538. [Google Scholar] [CrossRef]
- Zehr, J.P.; Capone, D. Changing perspectives in marine nitrogen fixation. Science 2020, 368, 729–737. [Google Scholar] [CrossRef] [PubMed]
- IPCC. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013. [Google Scholar]
- Castellano-Hinojosa, A.; Correa-Galeote, D.; Carrillo, P.; Bedmar, E.J.; Medina-Sánchez, J.M. Denitrification and biodiversity of denitrifiers in a high-mountain Mediterranean lake. Front. Microbiol. 2017, 8, 1911. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Breitburg, D.L.; Levin, L.A.; Oschlies, A.; Grégoire, M.; Chavez, F.P.; Conley, D.J.; Garçon, V.; Gilbert, D.; Gutiérrez, D.; Isensee, K.; et al. Declining oxygen in the global ocean and coastal waters. Science 2018, 359, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burkholder, J.M.; Glibert, P.M.; Skelton, H.M. Mixotrophy, a major mode of nutrition for harmful algal species in eutrophic waters. Harmful Algae 2008, 8, 77–93. [Google Scholar] [CrossRef]
- Stoecker, D.K.; Hansen, P.J.; Caron, D.A.; Mitra, A. Mixotrophy in the marine plankton. Annu. Rev. Mar. Sci. 2017, 9, 311–335. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duhamel, S.; Sprung, B.; Anderson, O.R. Small pigmented eukaryotes play a major role in carbon cycling in the P-depleted western subtropical North Atlantic, which may be supported by mixotrophy. Limnol. Oceanogr. 2019, 64, 2424–2440. [Google Scholar] [CrossRef] [Green Version]
- Medina-Sánchez, J.M.; Villar-Argaiz, M.; Carrillo, P. Neither with nor without you: A complex algal control on bacterioplankton in a high mountain lake. Limnol. Oceanogr. 2004, 49, 1722–1733. [Google Scholar] [CrossRef]
- Medina-Sánchez, J.M.; Felip, M.; Casamayor, E.O. Casamayor. Catalyzed reported deposition-fluorescence in situ hybridization protocol to evaluate phagotrophy in mixotrophic protists. Appl. Environ. Microbiol. 2005, 71, 7321–7326. [Google Scholar] [CrossRef] [Green Version]
- Cabrerizo, M.J.; González-Olalla, J.M.; Hinojosa-López, V.J.; Peralta-Cornejo, F.J.; Carrillo, P. A shifting balance: Responses of mixotrophic marine algae to cooling and warming under UVR. New Phytol. 2019, 221, 1317–1327. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chust, G.; Allen, J.I.; Bopp, L.; Schrum, C.; Holt, J.; Tsiaras, K.; Zavatarellie, M.; Chifflet, M.; Cannaby, H.; Dadou, I.; et al. Biomass changes and trophic amplification of plankton in a warmer ocean. Glob. Chang. Biol. 2014, 20, 2124–2139. [Google Scholar] [CrossRef] [PubMed]
- Faithfull, C.; Goetze, E. Copepod nauplii use phosphorus from bacteria, creating a short circuit in the microbial loop. Ecol. Lett. 2019, 22, 1462–1471. [Google Scholar] [CrossRef] [PubMed]
- Levinton, J.S. Marine Biology: Function, Biodiversity, Ecology, 5th ed.; Oxford University Press: Oxford, UK, 2018. [Google Scholar]
- Biddanda, B.A.; Nold, S.C.; Dick, G.J.; Kendall, S.T.; Vail, J.H.; Ruberg, S.A.; Green, C.M. Rock, water, microbes: Underwater sinkholes in Lake Huron are habitats for ancient microbial life. Nat. Educ. Knowl. 2012, 3, 5. [Google Scholar]
- Andersen, D.T.; Sumner, D.Y.; Hawes, I.; Webster-Brown, J.; McKay, C.P. Discovery of large conical stromatolites in Lake Untersee, Antarctica. Geobiology 2011, 9, 280–293. [Google Scholar] [CrossRef] [PubMed]
- Vuillemin, A.; Wankel, S.; Coskun, O.; Magritsch, T.; Vargas, S.; Estes, E.R.; Spivack, A.J.; Smith, D.C.; Pockalny, R.A.; Murray, R.W.; et al. Achaea dominate oxic subseafloor communities over multimillion-year time scales. Sci. Adv. 2019, 5, eaaw4108. [Google Scholar] [CrossRef] [Green Version]
- Cook, J.M.; Edwards, A.; Takeuchi, N.; Irvine-Fynn, T. Cryoconite: The dark biological secret of the cryosphere. Prog. Phys. Geogr. 2016, 40, 66–111. [Google Scholar] [CrossRef]
- Young, E.B.; Sielicki, J.R.; Grothjan, J.J. Regulation of hydrolytic enzyme activity of hydrolytic enzyme activity in aquatic microbial communities hosted by carnivorous pitcher plants. Microb. Ecol. 2018, 76, 885–898. [Google Scholar] [CrossRef]
- Orcutt, B.N.; LaRowe, D.E.; Biddle, J.F.; Colwell, F.S.; Glazer, B.T.; Reese, B.K.; Kirkpatrick, J.B.; Lapham, L.; Mills, H.J.; Sylvan, J.B.; et al. Microbial activity in the marine deep biosphere: Progress and prospects. Front. Microbiol. 2013, 4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scoles, S. SHAMU dreams of Europa: The microscope that could look for life on Jupiter’s moon. Pop. Sci. 2018, fall, 70–125. [Google Scholar]
- Atamna-Ismaeel, N.; Sabehi, G.; Sharon, I.; Witzel, K.-P.; Labrenz, M.; Jürgens, K.; Barkay, T.; Stomp, M.; Huisman, J.; Béjà, O. Widespread distribution of proteorhodopsins in freshwater and brackish ecosystems. ISME 2008, 2, 656–662. [Google Scholar] [CrossRef]
- Cotner, J.B.; Biddanda, B.A. Small players, large role: Microbial influence on biogeochemical processes in pelagic aquatic ecosystems. Ecosystems 2002, 5, 105–121. [Google Scholar] [CrossRef]
- Medina-Sánchez, J.M.; Carrillo, P.; Delgado-Molina, J.A.; Bullejos, F.J.; Villar-Argaiz, M. Patterns of resource limitation of bacterial on a trophic gradient in Mediterranean inland waters. FEMS Microbiol. Ecol. 2010, 74, 554–565. [Google Scholar] [CrossRef] [Green Version]
- Dorado-García, I.; Medina-Sánchez, J.M.; Herrera, G.; Cabrerizo, M.J.; Carrillo, P. Quantification of carbon and phosphorous co-limitation in bacterioplankton: New insights on an old topic. PloS ONE 2014, 9, e99288. [Google Scholar] [CrossRef]
- Azam, F.; Long, R.A. Sea snow microcosms. Nature 2001, 414, 495–498. [Google Scholar] [CrossRef] [PubMed]
- Biddanda, B.A.; Pomeroy, L.R. Microbial aggregation and degradation of phytoplankton-derived detritus in sea water. 1. Microbial succession. Mar. Ecol. Prog. Ser. 1988, 42, 79–88. [Google Scholar] [CrossRef]
- Briggs, N.; Dall’Olmo, G.; Claustre, H. Major role of particle fragmentation in regulating biological sequestration of CO2 by the oceans. Science 2020, 367, 791–793. [Google Scholar] [CrossRef] [PubMed]
- Azam, F.; Fenchel, T.; Field, J.G.; Gray, J.S.; Meyerreil, L.A.; Thingstad, F. The ecological role of water-column microbes in the sea. Mar. Ecol. Prog. Ser. 1983, 10, 257–263. [Google Scholar] [CrossRef]
- Chiura, H.X. Generalized gene transfer by virus-like particles from marine bacteria. Aquat. Microb. Ecol. 1997, 13, 75–83. [Google Scholar] [CrossRef] [Green Version]
- Sigee, D. Freshwater Microbiology; Wiley: Chester, UK, 2005. [Google Scholar]
- Ochman, H.; Lawrence, J.G.; Groisman, E. A Lateral gene transfer and the nature of bacterial innovation. Nature 2000, 405, 299–304. [Google Scholar] [CrossRef] [PubMed]
- Roossnick, M.J. Move over, Bacteria! Viruses make their mark as mutualistic microbial symbionts. J. Virol. 2015, 89, 6532–6535. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thingstad, T.F. Elements of a theory for the mechanisms controlling abundance, diversity, and biogeochemical role of lytic bacterial viruses in aquatic systems. Limnol. Oceanogr. 2000, 45, 1320–1328. [Google Scholar] [CrossRef]
- Simis, S.G.H.; Tidjens, M.; Hoogveld, H.L.; Gons, H.J. Optical changes associated with cyanobacterial bloom termination by viral lysis. J. Plankton. Res. 2005, 27, 937–949. [Google Scholar] [CrossRef] [Green Version]
- Suttle, C.A. Viruses: Unlocking the greatest biodiversity on Earth. Genome 2013, 56, 542–544. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tijdens, M.; Van de Waal, D.B.; Slovackova, H.; Hoogveld, H.L.; Gons, H.J. Estimates of bacterial and phytoplankton mortality caused by viral lysis and microzooplankton grazing in a shallow eutrophic lake. Freshw. Biol. 2008, 53, 1126–1141. [Google Scholar] [CrossRef]
- Holmfeldt, K.; Middleboe, M.; Nybroe, O.; Riemann, L. Large variabilities in host strain susceptibility and phage host-range govern interactions between lytic marine phages and their Flavobacterium hosts. Appl. Environ. Microbiol. 2007, 73, 6730–6739. [Google Scholar] [CrossRef] [Green Version]
- Thingstad, F.A.; Bratbak, G. Viral strategies at sea. News & Views. Microb. Oceanogr. 2016, 531, 454–455. [Google Scholar] [CrossRef] [Green Version]
- Knowles, B.; Silviera, C.; Bailey, B.; Barott, K.L.; Cantu, V.; Cobián-Güemes, S.; Coutinho, F.H.; Dinsdale, E.A.; Felts, B.; Furby, K.A.; et al. Lytic to temperate switching of viral communities. Nature 2016, 531, 466–470. [Google Scholar] [CrossRef]
- Jiao, N.; Herndl, G.; Hansell, D. Microbial production of recalcitrant dissolved organic matter: Long-term carbon storage in the global ocean. Nat. Rev. Microbiol. 2010, 8, 593–599. [Google Scholar] [CrossRef] [Green Version]
- Frenken, T.; Brussaard, C.P.D.; Velthuis, M.; Aben, R.; Kazanjian, G.; Hilt, S.; Kosten, S.; Peeters, E.T.H.M.; de Senerpont Domis, L.N.; Stephan, S.; et al. Warming advances virus population dynamics in a temperate freshwater plankton community. Limnol. Oceanogr. Lett. 2020, 5, 295–304. [Google Scholar] [CrossRef]
- Boyd, P.W.; Hutchins, D.A. Understanding the responses of ocean biota to a complex matrix of cumulative anthropogenic change. Mar. Ecol. Prog. Ser. 2012, 470, 125–135. [Google Scholar] [CrossRef] [Green Version]
- Duarte, C.M. Global change and the future ocean: A grand challenge for marine sciences. Front. Mar. Sci. 2014, 1, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Doney, S.C. Plankton in a warmer world. Nature 2006, 444, 695–697. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gregory, A.C.; Zayed, A.A.; Conceiçáo-Neto, N.; Temperton, B.; Bolduc, B.; Alberti, A.; Ardyna, M.; Arkhipova, K.; Carmichael, M.; Cruaud, C.; et al. Marine DNA Viral Macro- and Microdiversity from pole to pole. Cell 2019, 177, 1109–1123. [Google Scholar] [CrossRef] [Green Version]
- Righetti, D.; Vogt, M.; Gruber, N.; Psomas, A.; Zimmerman, N.E. Global pattern of phytoplankton diversity driven by temperature and environmental variability. Sci. Adv. 2019, 5, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Manning, P. Piling on the pressures to ecosystems. Science 2019, 366, 801. [Google Scholar] [CrossRef]
- Coelho, F.J.R.C.; Santos, A.L.; Coimbra, J.; Almeida, A.; Cunha, A.; Cleary, D.F.R.; Calado, R.; Gomes, N.C.M. Interactive effects of global climate change and pollution on marine microbes: The way ahead. Ecol. Evol. 2013, 3, 1808–1818. [Google Scholar] [CrossRef] [PubMed]
- Häder, D.; Gao, K. Interactions of anthropogenic stress factors on marine phytoplankton. Front. Environ. Sci. 2015, 3, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Villar-Argaiz, M.; Medina-Sánchez, J.M.; Biddanda, B.A.; Carrillo, P. Predominant non-additive effects of multiple stressors on autotroph C:N:P ratios propagate in freshwater and marine food webs. Front. Microbiol. 2018, 9, 1–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yvon-Durocher, G.; Jones, J.I.; Trimmer, M.; Woodward, G.; Montoya, J.M. Warming alters the metabolic balance of ecosystems. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2010, 365, 2117–2126. [Google Scholar] [CrossRef] [Green Version]
- Winder, M.; Sommer, U. Phytoplankton response to a changing climate. Hydrobiologia 2012, 698, 5–16. [Google Scholar] [CrossRef]
- Chivers, W.J.; Walne, A.W.; Hays, G.C. Mismatch between marine plankton range movements and the velocity of climate change. Nat. Commun. 2016, 8, 1–8. [Google Scholar] [CrossRef]
- Heneghan, R.F.; Hatton, I.A.; Galbraith, E.D. Climate change impacts on marine ecosystems through the lens of the size spectrum. Emerg. Top. Life. Sci. 2019, 3, 233–243. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carrillo, P.; Medina-Sánchez, J.M.; Duran, C.; Herrera, G.; Villafañe, V.E.; Helbling, W.E. Synergistic effects of UVR and simulated stratification on commensalistic algal-bacterial relationship in two optically contrasting oligotrophic Mediterranean lakes. Biogeosciences 2015, 12, 697–712. [Google Scholar] [CrossRef] [Green Version]
- Sigman, D.M.; Hain, M.P. The biological productivity of the ocean. Nat. Educ. 2012, 3, 1–16. [Google Scholar]
- Medina-Sánchez, J.M.; Villar-Argaiz, M.; Carrillo, P. Solar radiation-nutrient interaction enhances the resource and predation algal control on bacterioplankton: A short-term experimental study. Limnol. Oceanogr. 2006, 51, 913–924. [Google Scholar] [CrossRef] [Green Version]
- Durán, C.; Medina-Sánchez, J.M.; Herrera, G.; Carrillo, P. Changes in the phytoplankton-bacteria coupling triggered by joint action of UVR, nutrients, and warming in Mediterranean high-mountain lakes. Limnol. Oceanogr. 2016, 61, 413–429. [Google Scholar] [CrossRef] [Green Version]
- Carrillo, P.; Villar-Argaiz, M.; Medina-Sánchez, J.M. Does microorganism stoichiometry predict microbial food web interactions after a phosphorus pulse? Microb. Ecol. 2008, 56, 350–363. [Google Scholar] [CrossRef]
- Medina-Sánchez, J.M.; Delgado-Molina, J.A.; Bratbak, G.; Bullejos, F.J.; Villar-Argaiz, M.; Carrillo, P. Maximum in the middle: Nonlinear response of microbial plankton to ultraviolet radiation and phosphorus. PloS ONE 2013, 8, e60223. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cabrerizo, M.J.; Medina-Sánchez, J.M.; Dorado, I.; Villar-Argaiz, M.; Carrillo, P. Rising frequency of resource pulses under solar UVR strengthen microbial interactions. Sci. Rep. 2017, 7, 43615. [Google Scholar] [CrossRef] [Green Version]
- Carrillo, P.; Delgado-Molina, J.A.; Medina-Sánchez, J.M.; Bullejos, F.J.; Villar-Argaiz, M. Phosphorus inputs unmask negative effects of UV Radiation on algae in a high mountain lake. Glob. Chang. Biol. 2008, 14, 423–439. [Google Scholar] [CrossRef]
- Delgado-Molina, J.A.; Carrillo, P.; Medina-Sánchez, J.M.; Villar-Argaiz, M.; Bullejos, F.J. Interactive effects of phosphorus loads and ambient ultraviolet radiation on the algal community in a high-mountain lake. J. Plankton Res. 2009, 31, 619–634. [Google Scholar] [CrossRef] [Green Version]
- González-Olalla, J.M.; Medina-Sánchez, J.M.; Lozano, I.L.; Villar-Argaiz, M.; Carrillo, P. Climate-driven shifts in algal-bacterial interaction of high-mountain lakes in two years spanning a decade. Sci. Rep. 2018, 8, 10278. [Google Scholar] [CrossRef] [PubMed]
- Elton, C.S. Animal Ecology; Macmillan: New York, NY, USA, 1927. [Google Scholar]
- Frank, D.A.; McNaughton, S.J. Stability increases with diversity in plant communities: Empirical evidence the 1988 Yellowstone drought. Oikos 1991, 62, 360–362. [Google Scholar] [CrossRef]
- Naeem, S. Gini in a bottle. Nature 2009, 458, 579–580. [Google Scholar] [CrossRef] [PubMed]
- Tilman, D.; Downing, J.A. Biodiversity and stability in grasslands. Nature 1994, 367, 363–365. [Google Scholar] [CrossRef]
- Wittebolle, L.; Marzorati, M.; Clement, L.; Balloi, A.; Daffonchio, D.; Heylen, K.; De Vos, P.; Verstraete, W.; Boon, N. Initial community evenness favors functionality under selective stress. Nature 2009, 458, 623–626. [Google Scholar] [CrossRef] [PubMed]
- McCann, K.S. The diversity-stability debate. Nature 2000, 405, 228–233. [Google Scholar] [CrossRef] [PubMed]
- Cabrerizo, M.J.; Medina-Sánchez, J.M.; Dorado, I.; Villar-Argaiz, M.; Carrillo, P. Interplay between resistance and resilience governs the stability of a freshwater microbial food web under multiple stressors. Sci. Total Environ. 2019, 691, 908–918. [Google Scholar] [CrossRef]
- Schmidt, M.L.; Biddanda, B.A.; Weinke, A.D.; Chiang, E.; Januska, F.; Props, R.; Denef, V.J. Microhabitats are associated with diversity-productivity relationships in freshwater bacterial communities. FEMS Microbiol. Ecol. 2020, 96. [Google Scholar] [CrossRef]
- Folke, C.; Carpenter, S.; Walker, B.; Scheffer, M.; Elmqvist, T.; Gunderson, L.; Holling, C.S. Regime shifts, resilience, and biodiversity in ecosystem management. Annu. Rev. Ecol. Evol. Syst. 2004, 35, 557–581. [Google Scholar] [CrossRef] [Green Version]
- Hays, G.C.; Richardson, A.J.; Robinson, C. Climate change and marine plankton. Trends Ecol. Evol. 2005, 20, 337–343. [Google Scholar] [CrossRef]
- Zehr, J.P.; Robidart, J.; Scholin, C. Marine microorganisms, biogeochemical cycles, and global climate change. Microbe 2011, 6, 169–175. [Google Scholar] [CrossRef] [Green Version]
- Lande, R.; Arnold, S. The Measurement of Selection on Correlated Characters. Evolution 1983, 37, 1210–1226. [Google Scholar] [CrossRef] [PubMed]
- Tenaillon, O. The Utility of Fisher’s Geometric Model in Evolutionary Genetics. Annu. Rev. Ecol. Evol. Syst. 2014, 45, 179–201. [Google Scholar] [CrossRef] [Green Version]
- Good, B.H.; McDonald, M.J.; Barrick, J.E.; Lenski, R.E.; Desai, M.M. The Dynamics of Molecular Evolution over 60,000 Generations. Nature 2017, 551, 45–50. [Google Scholar] [CrossRef] [PubMed]
- Moran, M.A. The global ocean microbiome. Science 2015, 350, 1330. [Google Scholar] [CrossRef] [Green Version]
- Baker, B.J.; Dick, G.J. Omic approaches in microbial ecology: Charting the unknown. Microbe 2013, 8, 353–360. [Google Scholar] [CrossRef] [Green Version]
- Pennisi, E. No microbiome is an island, survey reveals. Science 2019, 365, 851. [Google Scholar] [CrossRef] [PubMed]
- Battin, T.J.; Besemer, K.; Bengtsson, M.M.; Romani, M.M.; Packman, A.I. The ecology and biogeochemistry of stream biofilms. Nat. Rev. Microbiol. 2016, 14, 251–263. [Google Scholar] [CrossRef] [Green Version]
- Gross, L. Untapped bounty: Sampling the seas to survey microbial biodiversity. PLoS Biol. 2007, 5, e85. [Google Scholar] [CrossRef] [PubMed]
- Llorens-Marès, T.; Yooseph, S.; Goll, J.; Hoffman, J.; Vila-Costa, M.; Borrego, C.M.; Dupont, C.L.; Casamayor, E.O. Connecting biodiversity and potential functional role in modern euxinic environments by microbial metagenomics. ISME 2015, 9, 1648–1661. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roux, S.; Brum, J.R.; Dutilh, B.E.; Sunagawa, S.; Duhaime, M.B.; Loy, A.; Pouls, B.T.; Solonenko, N.; Lara, E.; Poulain, J.; et al. Ecogenomics and potential biogeochemical impacts of globally abundant ocean viruses. Nature 2016, 537, 689–693. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- DeLong, E.F. The microbial ocean from genomes to biomes. Nature 2009, 459, 200–206. [Google Scholar] [CrossRef]
- Kirchman, D.L. Editorial: Metagenomics in Limnology and Oceanography. Limnol. Oceanogr. 2020, 65, S1. [Google Scholar] [CrossRef]
- Imachi, H.; Nobu, M.K.; Nakahara, N.; Morono, Y.; Ogawara, M.; Takaki, Y.; Takano, Y.; Uematsu, K.; Ikuta, T.; Ito, M.; et al. Isolation of an archaeon at the prokaryote-eukaryote interface. Nature 2020, 577, 519–525. [Google Scholar] [CrossRef] [Green Version]
- Sun, M.Y.; Dafforn, K.A.; Brown, M.V.; Johnston, E.L. Bacterial communities are sensitive indicators of contaminant stress. Mar. Pollut. Bull. 2012, 64, 1029–1038. [Google Scholar] [CrossRef]
- Miloslavich, P.; Bax, N.J.; Simmons, S.E.; Klein, E.; Appeltans, W.; Aburto-Oropeza, O.; Garcia, M.A.; Batten, S.D.; Benedetti-Cecchi, L.; Checkley, D.M.; et al. Essential ocean variables for global sustained observations of biodiversity and ecosystem changes. Glob. Chang. Biol. 2018, 24, 2416–2433. [Google Scholar] [CrossRef]
- Joye, S.B.; Teske, A.P.; Kostka, J.E. Microbial dynamics following the Macondo oil well blowout across Gulf of Mexico environments. BioScience 2014, 64, 766–777. [Google Scholar] [CrossRef] [Green Version]
- Kimes, N.E.; Callaghan, A.V.; Suflita, J.M.; Morris, P.J. Microbial transformation of the Deepwater Horizon oil spill – past, present, and future perspectives. Front. Microbiol. 2014, 5, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Kostka, J.E.; Joye, S.B.; Colwell, R.A. Deepwater horizon and the rise of the omics. Eos 2020, 101. [Google Scholar] [CrossRef]
- Nogales, B.; Lanfranconi, M.P.; Piña-Villalonga, J.M.; Bosch, R. Anthropogenic perturbations in marine microbial communities. FEMS Microbiol. Rev. 2011, 3, 275–298. [Google Scholar] [CrossRef] [Green Version]
- Allan, J.D.; McIntyre, P.B.; Smith, S.D.P.; Halpern, B.S.; Boyer, G.L.; Buchsbaum, A.; Burton, G.A., Jr.; Campbell, L.M.; Chadderton, W.L.; Ciborowski, J.J.H.; et al. Joint analysis of stressors and ecosystem services to enhance restoration effectiveness. Proc. Natl. Acad. Sci. USA 2013, 110, 372–377. [Google Scholar] [CrossRef] [Green Version]
- Steffen, W.; Richardson, K.; Rockström, J.; Cornell, S.E.; Fetzer, I.; Bennett, E.M.; Biggs, R.; Carpenter, S.R.; de Vries, E.; de Wit, C.A.; et al. Planetary boundaries: Guiding human development on a changing planet. Science 2015, 347, 736. [Google Scholar] [CrossRef] [Green Version]
- Lovejoy, T.E. Eden no more. Sci. Adv. 2019, 5, 1–2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pinsky, M.L.; Eikeset, A.M.; McCauley, D.J.; Payne, J.L.; Sunday, J.M. Greater vulnerability to warming of marine versus terrestrial ectotherms. Nature 2019, 569, 108–111. [Google Scholar] [CrossRef]
- Tollefson, J. One million species face extinction. Nature 2019, 569, 171. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trisos, C.H.; Merow, C.; Pigot, A.L. The projected timing of abrupt ecological disruption from climate change. Nature 2020, 580, 496–501. [Google Scholar] [CrossRef] [PubMed]
- Smetacek, V. Microbial Food Webs: The Ocean’s Veil. Nature 2002, 419, 565. [Google Scholar] [CrossRef]
- Locey, K.J.; Lennon, J.T. Scaling laws predict global microbial diversity. Proc. Natl. Acad. Sci. USA 2016, 113, 5970–5975. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gilbert, J.A.; Blaser, M.J.; Caporaso, J.G.; Jansson, J.K.; Lynch, S.V.; Knight, R. Current understanding of the human microbiome. Nat. Med. 2018, 24, 392–400. [Google Scholar] [CrossRef]
- Microbes and Climate Change. In Proceedings of the American Academy of Microbiology and American Geophysical Union Colloquium, Washington, DC, USA, March 2016; American Academy of Microbiology: Washington, DC, USA, 2017. Available online: https://www.researchgate.net/publication/328126950_Microbes_and_Climate_Change (accessed on 10 February 2021).
- McCauley, D.J.; Pinsky, M.L.; Palumbi, S.R.; Estes, J.A.; Joyce, F.H.; Warner, R.R. Marine defaunation: Animal loss in the global ocean. Science 2015, 347, 1255641. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burkepile, D.E.; Thurber, R.V. The long arm of species loss: How will defaunation disrupt ecosystems down to the microbial scale? BioScience 2019, 69, 443–454. [Google Scholar] [CrossRef]
- Jonkers, L.; Hillebrand, H.; Kucera, M. Global Change drives modern plankton communities away from the pre-industrial state. Nature 2019, 570, 372–375. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Biddanda, B.; Dila, D.; Weinke, A.; Mancuso, J.; Villar-Argaiz, M.; Medina-Sánchez, J.M.; González-Olalla, J.M.; Carrillo, P. Housekeeping in the Hydrosphere: Microbial Cooking, Cleaning, and Control under Stress. Life 2021, 11, 152. https://doi.org/10.3390/life11020152
Biddanda B, Dila D, Weinke A, Mancuso J, Villar-Argaiz M, Medina-Sánchez JM, González-Olalla JM, Carrillo P. Housekeeping in the Hydrosphere: Microbial Cooking, Cleaning, and Control under Stress. Life. 2021; 11(2):152. https://doi.org/10.3390/life11020152
Chicago/Turabian StyleBiddanda, Bopaiah, Deborah Dila, Anthony Weinke, Jasmine Mancuso, Manuel Villar-Argaiz, Juan Manuel Medina-Sánchez, Juan Manuel González-Olalla, and Presentación Carrillo. 2021. "Housekeeping in the Hydrosphere: Microbial Cooking, Cleaning, and Control under Stress" Life 11, no. 2: 152. https://doi.org/10.3390/life11020152
APA StyleBiddanda, B., Dila, D., Weinke, A., Mancuso, J., Villar-Argaiz, M., Medina-Sánchez, J. M., González-Olalla, J. M., & Carrillo, P. (2021). Housekeeping in the Hydrosphere: Microbial Cooking, Cleaning, and Control under Stress. Life, 11(2), 152. https://doi.org/10.3390/life11020152