Elevation Mechanisms and Diagnostic Consideration of Cardiac Troponins under Conditions Not Associated with Myocardial Infarction. Part 2
Abstract
:1. Causes and Mechanisms of Elevated Cardiac Troponins in Diabetes Mellitus
2. Causes and Mechanisms of Elevated Cardiac Troponins in Arterial Hypertension
3. Causes and Mechanisms of Elevated Cardiac Troponins in Hereditary Cardiomyopathies
4. Causes and Mechanisms of Elevated Cardiac Troponins in Cardiac Arrhythmias
5. Diagnostic Value of Cardiac Troponins in Acute Aortic Dissection
6. Causes and Mechanisms of Elevated Cardiac Troponins in Diseases of the Central Nervous System (Strokes, Subarachnoidal Hemorrhages)
7. Causes and Mechanisms of Elevated Cardiac Troponins While Using Medications with Cardiotoxic Properties
8. False-Positive Causes of Elevated Cardiac Troponins
8.1. Heterophilic Antibodies
8.2. Autoantibodies
8.3. Alkaline Phosphatase
9. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- You, K.H.; Lau, K.K.; Zhao, C.T.; Chan, Y.H.; Chen, Y.; Zhen, Z.; Wong, A.; Lau, C.P.; Tse, H.F. Predictive value of high-sensitivity troponin-I for future adverse cardiovascular outcome in stable patients with type 2 diabetes mellitus. Cardiovasc. Diabetol. 2014, 13, 63. [Google Scholar] [CrossRef] [Green Version]
- Chaulin, A. Clinical and Diagnostic Value of High-Sensitive Cardiac Troponins in Arterial Hypertension. Vasc. Health Risk Manag. 2021, 17, 431–443. [Google Scholar] [CrossRef] [PubMed]
- Chaulin, A.M.; Grigorieva, Y.V.; Pavlova, T.V.; Duplyakov, D.V. Diagnostic significance of complete blood count in cardiovascular patients. Russ. J. Cardiol. 2020, 25, 3923. [Google Scholar] [CrossRef]
- Chaulin, A.M.; Duplyakov, D.V. Cardiac troponins: Current data on the diagnostic value and analytical characteristics of new determination methods. Cor Vasa 2021, 63, 486–493. [Google Scholar] [CrossRef]
- El-Saiedi, S.A.; Hafez, M.H.; Sedky, Y.M.; Sharaf, S.A.; Kamel, M.S.; AbdelMassih, A.F. Novel biomarkers for subtle myocardial involvement in type I diabetes mellitus. Cardiovasc. Endocrinol. Metab. 2020, 10, 175–181. [Google Scholar] [CrossRef]
- Gregg, E.W.; Li, Y.; Wang, J.; Burrows, N.R.; Ali, M.K.; Rolka, D.; Williams, D.E.; Geiss, L. Changes in diabetes-related complications in the United States, 1990–2010. N. Engl. J. Med. 2014, 370, 1514–1523. [Google Scholar] [CrossRef] [Green Version]
- Al-Mallah, M.; Zuberi, O.; Arida, M.; Kim, H.E. Positive troponin in diabetic ketoacidosis without evident acute coronary syndrome predicts adverse cardiac events. Clin. Cardiol. 2008, 31, 67–71. [Google Scholar] [CrossRef]
- Eubanks, A.; Raza, F.; Alkhouli, M.; Glenn, A.N.; Homko, C.; Kashem, A.; Bove, A. Clinical significance of troponin elevations in acute decompensated diabetes without clinical acute coronary syndrome. Cardiovasc. Diabetol. 2012, 11, 154. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tang, W.H.; Wu, Y.; Britt, E.B., Jr.; Iqbal, N.; Hazen, S.L. Detectable subclinical myocardial necrosis is associated with cardiovascular risk in stable patients with diabetes. Diabetes Care 2013, 36, 1126–1131. [Google Scholar] [CrossRef] [Green Version]
- Rubin, J.; Matsushita, K.; Ballantyne, C.M.; Hoogeveen, R.; Coresh, J.; Selvin, E. Chronic hyperglycemia and subclinical myocardial injury. J. Am. Coll. Cardiol. 2012, 59, 484–489. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- You, K.H.; Zhao, C.T.; Chen, Y.; Siu, C.W.; Chan, Y.H.; Lau, K.K.; Liu, S.; Lau, C.P.; Tse, H.F. Association of subclinical myocardial injury with arterial stiffness in patients with type 2 diabetes mellitus. Cardiovasc. Diabetol. 2013, 12, 94. [Google Scholar] [CrossRef] [Green Version]
- Jenkins, A.J.; Zhang, S.X.; Rowley, K.G.; Karschimkus, C.S.; Nelson, C.L.; Chung, J.S.; O’Neal, D.N.; Januszewski, A.S.; Croft, K.D.; Mori, T.A.; et al. Increased serum pigment epithelium-derived factor is associated with microvascular complications, vascular stiffness and inflammation in Type 1 diabetes. Diabet. Med. 2007, 24, 1345–1351. [Google Scholar] [CrossRef] [PubMed]
- Baumgartner-Parzer, S.M.; Wagner, L.; Pettermann, M.; Grillari, J.; Gessl, A.; Waldhäusl, W. High-glucose--triggered apoptosis in cultured endothelial cells. Diabetes 1995, 44, 1323–1327. [Google Scholar] [CrossRef] [PubMed]
- Bruno, R.M.; Penno, G.; Daniele, G.; Pucci, L.; Lucchesi, D.; Stea, F.; Landini, L.; Cartoni, G.; Taddei, S.; Ghiadoni, L.; et al. Type 2 diabetes mellitus worsens arterial stiffness in hypertensive patients through endothelial dysfunction. Diabetologia 2012, 55, 1847–1855. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yue, W.S.; Lau, K.K.; Siu, C.W.; Wang, M.; Yan, G.H.; You, K.H.; Tse, H.F. Impact of glycemic control on circulating endothelial progenitor cells and arterial stiffness in patients with type 2 diabetes mellitus. Cardiovasc. Diabetol. 2011, 10, 113. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Lemos, J.A.; Drazner, M.H.; Omland, T.; Ayers, C.R.; Khera, A.; Rohatgi, A.; Hashim, I.; Berry, J.D.; Das, S.R.; Morrow, D.A.; et al. Association of troponin T detected with a high-sensitive assay and cardiac structure and mortality risk in the general population. JAMA 2010, 304, 2503–2512. [Google Scholar] [CrossRef]
- Chaulin, A.M.; Karslyan, L.S.; Nurbaltaeva, D.A.; Grigoriyeva, E.V.; Duplyakov, D.V. Cardial troponins metabolism under normal and pathological conditions. Sib. Med. Rev. 2019, 6, 5–14. [Google Scholar] [CrossRef]
- Shah, A.S.; Griffiths, M.; Lee, K.K.; McAllister, D.A.; Hunter, A.L.; Ferry, A.V.; Cruikshank, A.; Reid, A.; Stoddart, M.; Strachan, F.; et al. High sensitivity cardiac troponin and the under-diagnosis of myocardial infarction in women: Prospective cohort study. BMJ 2015, 350, g7873. [Google Scholar] [CrossRef] [Green Version]
- Chaulin, A. Cardiac Troponins: Contemporary Biological Data and New Methods of Determination. Vasc. Health Risk Manag. 2021, 17, 299–316. [Google Scholar] [CrossRef]
- Gore, M.O.; Seliger, S.L.; Defilippi, C.R.; Nambi, V.; Christenson, R.H.; Hashim, I.A.; Hoogeveen, R.C.; Ayers, C.R.; Sun, W.; McGuire, D.K.; et al. Age- and sex-dependent upper reference limits for the high-sensitivity cardiac troponin T assay. J. Am. Coll. Cardiol. 2014, 63, 1441–1448. [Google Scholar] [CrossRef] [Green Version]
- Mattace-Raso, F.U.; van der Cammen, T.J.; Hofman, A.; van Popele, N.M.; Bos, M.L.; Schalekamp, M.A.; Asmar, R.; Reneman, R.S.; Hoeks, A.P.; Breteler, M.M.; et al. Arterial stiffness and risk of coronary heart disease and stroke: The Rotterdam Study. Circulation 2006, 113, 657–663. [Google Scholar] [CrossRef] [Green Version]
- Benetos, A.; Thomas, F.; Joly, L.; Blacher, J.; Pannier, B.; Labat, C.; Salvi, P.; Smulyan, H.; Safar, M.E. Pulse pressure amplification a mechanical biomarker of cardiovascular risk. J. Am. Coll. Cardiol. 2010, 55, 1032–1037. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Wang, H.L.; Liu, T.T.; Lan, H.Y. TGF-Beta as a Master Regulator of Diabetic Nephropathy. Int. J. Mol. Sci. 2021, 22, 7881. [Google Scholar] [CrossRef] [PubMed]
- Chesnaye, N.C.; Szummer, K.; Bárány, P.; Heimbürger, O.; Magin, H.; Almquist, T.; Uhlin, F.; Dekker, F.W.; Wanner, C.; Jager, K.J.; et al. Association Between Renal Function and Troponin T Over Time in Stable Chronic Kidney Disease Patients. J. Am. Heart Assoc. 2019, 8, e013091. [Google Scholar] [CrossRef]
- Dubin, R.F.; Li, Y.; He, J.; Jaar, B.G.; Kallem, R.; Lash, J.P.; Makos, G.; Rosas, S.E.; Soliman, E.Z.; Townsend, R.R.; et al. Predictors of high sensitivity cardiac troponin T in chronic kidney disease patients: A cross-sectional study in the chronic renal insufficiency cohort (CRIC). BMC Nephrol. 2013, 14, 229. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chaulin, A.M. Elevation Mechanisms and Diagnostic Consideration of Cardiac Troponins under Conditions Not Associated with Myocardial Infarction. Part 1. Life 2021, 11, 914. [Google Scholar] [CrossRef] [PubMed]
- Chaulin, A.M.; Duplyakova, P.D.; Bikbaeva, G.R.; Tukhbatova, A.A.; Grigorieva, E.V.; Duplyakov, D.V. Concentration of high-sensitivity cardiac troponin I in the oral fluid in patients with acute myocardial infarction: A pilot study. Russ. J. Cardiol. 2020, 25, 3814. [Google Scholar] [CrossRef]
- Mirzaii-Dizgah, I.; Riahi, E. Salivary high-sensitivity cardiac troponin T levels in patients with acute myocardial infarction. Oral Dis. 2013, 19, 180–184. [Google Scholar] [CrossRef]
- Chaulin, A.M.; Karslyan, L.S.; Bazyuk, E.V.; Nurbaltaeva, D.A.; Duplyakov, D.V. Clinical and Diagnostic Value of Cardiac Markers in Human Biological Fluids. Kardiologiia 2019, 59, 66–75. (In Russian) [Google Scholar] [CrossRef] [PubMed]
- Chaulin, A.M.; Abashina, O.E.; Duplyakov, D.V. High-sensitivity cardiac troponins: Detection and central analytical characteristics. Cardiovasc. Ther. Prev. 2021, 20, 2590. (In Russian) [Google Scholar] [CrossRef]
- Chen, J.Y.; Lee, S.Y.; Li, Y.H.; Lin, C.Y.; Shieh, M.D.; Ciou, D.S. Urine High-Sensitivity Troponin I Predict Incident Cardiovascular Events in Patients with Diabetes Mellitus. J. Clin. Med. 2020, 9, 3917. [Google Scholar] [CrossRef] [PubMed]
- Lawes, C.M.; Vander Hoorn, S.; Rodgers, A.; International Society of Hypertension. Global burden of blood-pressure-related disease, 2001. Lancet 2008, 371, 1513–1518. [Google Scholar] [CrossRef]
- Padwal, R.S.; Bienek, A.; McAlister, F.A.; Campbell, N.R. Outcomes Research Task Force of the Canadian Hypertension Education Program. Epidemiology of Hypertension in Canada: An Update. Can. J. Cardiol. 2016, 32, 687–694. [Google Scholar] [CrossRef]
- Martens, P.J.; Bartlett, J.G.; Prior, H.J.; Sanguins, J.; Burchill, C.A.; Burland, E.M.; Carter, S. What is the comparative health status and associated risk factors for the Métis? A population-based study in Manitoba, Canada. BMC Public Health 2011, 11, 814. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Riediger, N.D.; Lukianchuk, V.; Bruce, S.G. Incident diabetes, hypertension and dyslipidemia in a Manitoba First Nation. Int. J. Circumpolar. Health 2015, 74, 27712. [Google Scholar] [CrossRef] [PubMed]
- Caligiuri, S.P.; Austria, J.A.; Pierce, G.N. Alarming Prevalence of Emergency Hypertension Levels in the General Public Identified by a Hypertension Awareness Campaign. Am. J. Hypertens. 2017, 30, 236–239. [Google Scholar] [CrossRef] [Green Version]
- Go, A.S.; Mozaffarian, D.; Roger, V.L.; Benjamin, E.J.; Berry, J.D.; Blaha, M.J.; Dai, S.; Ford, E.S.; Fox, C.S.; Franco, S.; et al. American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Executive summary: Heart disease and stroke statistics—2014 update: A report from the American Heart Association. Circulation 2014, 129, 399–410. [Google Scholar] [CrossRef]
- Lindner, G.; Pfortmueller, C.A.; Braun, C.T.; Exadaktylos, A.K. Non-acute myocardial infarction-related causes of elevated high-sensitive troponin T in the emergency room: A cross-sectional analysis. Intern. Emerg. Med. 2014, 9, 335–339. [Google Scholar] [CrossRef]
- Chaulin, A.M.; Duplyakov, D.V. High-sensitivity cardiac troponins: Circadian rhythms. Cardiovasc. Ther. Prev. 2021, 20, 2639. (In Russian) [Google Scholar] [CrossRef]
- Harvell, B.; Henrie, N.; Ernst, A.A.; Weiss, S.J.; Oglesbee, S.; Sarangarm, D.; Hernandez, L. The meaning of elevated troponin I levels: Not always acute coronary syndromes. Am. J. Emerg. Med. 2016, 34, 145–148. [Google Scholar] [CrossRef]
- Afonso, L.; Bandaru, H.; Rathod, A.; Badheka, A.; Ali Kizilbash, M.; Zmily, H.; Jacobsen, G.; Chattahi, J.; Mohamad, T.; Koneru, J.; et al. Prevalence, determinants, and clinical significance of cardiac troponin-I elevation in individuals admitted for a hypertensive emergency. J. Clin. Hypertens. 2011, 13, 551–556. [Google Scholar] [CrossRef]
- Omondi, A.; Spinetto, P.V.; Kargoli, F.; Aleksandrovich, T.; Vlismas, P.; Uwamungu, J.C.; Teslova, T.; Sims, D. Prevalence and prognostic significance of cardiac troponin-T elevation in patients admitted with hypertensive crises. JACC 2017, 69, 1803. [Google Scholar] [CrossRef]
- Acosta, G.; Amro, A.; Aguilar, R.; Abusnina, W.; Bhardwaj, N.; Koromia, G.A.; Studeny, M.; Irfan, A. Clinical Determinants of Myocardial Injury, Detectable and Serial Troponin Levels among Patients with Hypertensive Crisis. Cureus 2020, 12, e6787. [Google Scholar] [CrossRef] [Green Version]
- Pattanshetty, D.J.; Bhat, P.K.; Aneja, A.; Pillai, D.P. Elevated troponin predicts long-term adverse cardiovascular outcomes in hypertensive crisis: A retrospective study. J. Hypertens. 2012, 30, 2410–2415. [Google Scholar] [CrossRef] [PubMed]
- McEvoy, J.W.; Chen, Y.; Nambi, V.; Ballantyne, C.M.; Sharrett, A.R.; Appel, L.J.; Post, W.S.; Blumenthal, R.S.; Matsushita, K.; Selvin, E. High-Sensitivity Cardiac Troponin T and Risk of Hypertension. Circulation 2015, 132, 825–833. [Google Scholar] [CrossRef] [Green Version]
- Pervan, P.; Svagusa, T.; Prkacin, I.; Savuk, A.; Bakos, M.; Perkov, S. Urine high sensitive Troponin I measuring in patients with hypertension. Signa Vitae 2017, 13, 62–64. [Google Scholar] [CrossRef] [Green Version]
- Weil, B.R.; Suzuki, G.; Young, R.F.; Iyer, V.; Canty, J.M., Jr. Troponin Release and Reversible Left Ventricular Dysfunction After Transient Pressure Overload. J. Am. Coll. Cardiol. 2018, 71, 2906–2916. [Google Scholar] [CrossRef]
- Cheng, W.; Li, B.; Kajstura, J.; Li, P.; Wolin, M.S.; Sonnenblick, E.H.; Hintze, T.H.; Olivetti, G.; Anversa, P. Stretch-induced programmed myocyte cell death. J. Clin. Investig. 1995, 96, 2247–2259. [Google Scholar] [CrossRef] [Green Version]
- Dalal, S.; Connelly, B.; Singh, M.; Singh, K. NF2 signaling pathway plays a pro-apoptotic role in β-adrenergic receptor stimulated cardiac myocyte apoptosis. PLoS ONE 2018, 13, e0196626. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, X.; Zhang, L.; Pacciulli, D.; Zhao, J.; Nan, C.; Shen, W.; Quan, J.; Tian, J.; Huang, X. Restrictive Cardiomyopathy Caused by Troponin Mutations: Application of Disease Animal Models in Translational Studies. Front. Physiol. 2016, 7, 629. [Google Scholar] [CrossRef] [Green Version]
- Matyushenko, A.M.; Shchepkin, D.V.; Kopylova, G.V.; Popruga, K.E.; Artemova, N.V.; Pivovarova, A.V.; Bershitsky, S.Y.; Levitsky, D.I. Structural and Functional Effects of Cardiomyopathy-Causing Mutations in the Troponin T-Binding Region of Cardiac Tropomyosin. Biochemistry 2017, 56, 250–259. [Google Scholar] [CrossRef] [PubMed]
- Duplyakov, D.V.; Chaulin, A.M. Mutations of heart troponines, associated with cardiomyopathies. Kardiologiya 2019, 7, 8–17. [Google Scholar] [CrossRef]
- Messer, A.E.; Bayliss, C.R.; El-Mezgueldi, M.; Redwood, C.S.; Ward, D.G.; Leung, M.C.; Papadaki, M.; Dos Remedios, C.; Marston, S.B. Mutations in troponin T associated with Hypertrophic Cardiomyopathy increase Ca(2+)-sensitivity and suppress the modulation of Ca(2+)-sensitivity by troponin I phosphorylation. Arch. Biochem. Biophys. 2016, 601, 113–120. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tadros, H.J.; Life, C.S.; Garcia, G.; Pirozzi, E.; Jones, E.G.; Datta, S.; Parvatiyar, M.S.; Chase, P.B.; Allen, H.D.; Kim, J.J.; et al. Meta-analysis of cardiomyopathy-associated variants in troponin genes identifies loci and intragenic hot spots that are associated with worse clinical outcomes. J. Mol. Cell. Cardiol. 2020, 142, 118–125. [Google Scholar] [CrossRef] [PubMed]
- Hamada, M.; Shigematsu, Y.; Ohtani, T.; Ikeda, S. Elevated Cardiac Enzymes in Hypertrophic Cardiomyopathy Patients with Heart Failure—A 20-Year Prospective Follow-up Study. Circ. J. 2016, 80, 218–226. [Google Scholar] [CrossRef] [Green Version]
- Kubo, T.; Kitaoka, H.; Yamanaka, S.; Hirota, T.; Baba, Y.; Hayashi, K.; Iiyama, T.; Kumagai, N.; Tanioka, K.; Yamasaki, N.; et al. Significance of high-sensitivity cardiac troponin T in hypertrophic cardiomyopathy. J. Am. Coll. Cardiol. 2013, 62, 1252–1259. [Google Scholar] [CrossRef] [Green Version]
- Frankenstein, L.; Remppis, A.; Giannitis, E.; Frankenstein, J.; Hess, G.; Zdunek, D.; Doesch, A.; Zugck, C.; Katus, H.A. Biological variation of high sensitive Troponin T in stable heart failure patients with ischemic or dilated cardiomyopathy. Clin. Res. Cardiol. 2011, 100, 633–640. [Google Scholar] [CrossRef] [PubMed]
- Hładij, R.; Rajtar-Salwa, R.; Dimitrow, P.P. Troponin as ischemic biomarker is related with all three echocardiographic risk factors for sudden death in hypertrophic cardiomyopathy (ESC Guidelines 2014). Cardiovasc. Ultrasound 2017, 15, 24. [Google Scholar] [CrossRef] [PubMed]
- Ho, J.E.; Shi, L.; Day, S.M.; Colan, S.D.; Russell, M.W.; Towbin, J.A.; Sherrid, M.; Canter, C.E.; Jefferies, J.L.; Murphy, A.; et al. Biomarkers of cardiovascular stress and fibrosis in preclinical hypertrophic cardiomyopathy. Open Heart 2017, 4, e000615. [Google Scholar] [CrossRef]
- Zellweger, M.J.; Schaer, B.A.; Cron, T.A.; Pfisterer, M.E.; Osswald, S. Elevated troponin levels in the absence of coronary artery disease after supraventricular tachycardia. Swiss Med. Wkly. 2003, 133, 439–441. [Google Scholar] [CrossRef] [PubMed]
- Chow, G.V.; Hirsch, G.A.; Spragg, D.D.; Cai, J.X.; Cheng, A.; Ziegelstein, R.C.; Marine, J.E. Prognostic significance of cardiac troponin I levels in hospitalized patients presenting with supraventricular tachycardia. Medicine 2010, 89, 141–148. [Google Scholar] [CrossRef] [PubMed]
- Xue, F.; Jiang, T.B.; Jiang, B.; Cheng, X.J.; He, Y.M.; Li, X.; Yang, X.J. Cardiac troponin I elevation with supraventricular tachycardia: Two case reports and review of the literature. BMC Res. Notes 2014, 7, 136. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- González-Del-Hoyo, M.; Cediel, G.; Carrasquer, A.; Bonet, G.; Vásquez-Nuñez, K.; Boqué, C.; Alí, S.; Bardají, A. Prognostic implications of troponin I elevation in emergency department patients with tachyarrhythmia. Clin. Cardiol. 2019, 42, 546–552. [Google Scholar] [CrossRef] [PubMed]
- Hijazi, Z.; Oldgren, J.; Andersson, U.; Connolly, S.J.; Ezekowitz, M.D.; Hohnloser, S.H.; Reilly, P.A.; Vinereanu, D.; Siegbahn, A.; Yusuf, S.; et al. Cardiac biomarkers are associated with an increased risk of stroke and death in patients with atrial fibrillation: A Randomized Evaluation of Long-term Anticoagulation Therapy (RE-LY) substudy. Circulation 2012, 125, 1605–1616. [Google Scholar] [CrossRef] [Green Version]
- Hijazi, Z.; Wallentin, L.; Siegbahn, A.; Andersson, U.; Alexander, J.H.; Atar, D.; Gersh, B.J.; Hanna, M.; Harjola, V.P.; Horowitz, J.D.; et al. High-sensitivity troponin T and risk stratification in patients with atrial fibrillation during treatment with apixaban or warfarin. J. Am. Coll. Cardiol. 2014, 63, 52–61. [Google Scholar] [CrossRef]
- Roldán, V.; Marín, F.; Díaz, J.; Gallego, P.; Jover, E.; Romera, M.; Manzano-Fernández, S.; Casas, T.; Valdés, M.; Vicente, V.; et al. High sensitivity cardiac troponin T and interleukin-6 predict adverse cardiovascular events and mortality in anticoagulated patients with atrial fibrillation. J. Thromb. Haemost. 2012, 10, 1500–1507. [Google Scholar] [CrossRef] [Green Version]
- Yedder, N.B.; Roux, J.F.; Paredes, F.A. Troponin elevation in supraventricular tachycardia: Primary dependence on heart rate. Can. J. Cardiol. 2011, 27, 105–109. [Google Scholar] [CrossRef]
- Chaulin, A.M.; Grigorieva, J.V.; Suvorova, G.N.; Duplyakov, D.V. Experimental Modeling of Hypothyroidism: Principles, Methods, Several Advanced Research Directions in Cardiology. Russ. Open Med. J. 2021, 10, e0311. [Google Scholar] [CrossRef]
- Ulimoen, S.R.; Enger, S.; Norseth, J.; Pripp, A.H.; Abdelnoor, M.; Arnesen, H.; Gjesdal, K.; Tveit, A. Improved rate control reduces cardiac troponin T levels in permanent atrial fibrillation. Clin. Cardiol. 2014, 37, 422–427. [Google Scholar] [CrossRef] [Green Version]
- Vrsalovic, M. Prognostic effect of cardiac troponin elevation in acute aortic dissection: A meta-analysis. Int. J. Cardiol. 2016, 214, 277–278. [Google Scholar] [CrossRef]
- Li, G.; Wu, X.W.; Lu, W.H.; Cheng, J.; Wu, X.Y.; Ai, R.; Zhou, Z.H.; Tang, Z.Z.; Liao, Y.H. High-sensitivity cardiac troponin T: A biomarker for the early risk stratification of type-A acute aortic dissection? Arch. Cardiovasc. Dis. 2016, 109, 163–170. [Google Scholar] [CrossRef]
- Pourafkari, L.; Tajlil, A.; Ghaffari, S.; Chavoshi, M.; Kolahdouzan, K.; Parvizi, R.; Parizad, R.; Nader, N.D. Electrocardiography changes in acute aortic dissection-association with troponin leak, coronary anatomy, and prognosis. Am. J. Emerg. Med. 2016, 34, 1431–1436. [Google Scholar] [CrossRef]
- Kerr, G.; Ray, G.; Wu, O.; Stott, D.J.; Langhorne, P. Elevated troponin after stroke: A systematic review. Cerebrovasc. Dis. 2009, 28, 220–226. [Google Scholar] [CrossRef]
- Dous, G.V.; Grigos, A.C.; Grodman, R. Elevated troponin in patients with acute stroke—Is it a true heart attack? Egypt Heart J. 2017, 69, 165–170. [Google Scholar] [CrossRef]
- Scheitz, J.F.; Nolte, C.H.; Laufs, U.; Endres, M. Application and interpretation of high-sensitivity cardiac troponin assays in patients with acute ischemic stroke. Stroke 2015, 46, 1132–1140. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cui, Y.X.; Ren, H.; Lee, C.Y.; Li, S.F.; Song, J.X.; Gao, X.G.; Chen, H. Characteristics of elevated cardiac troponin I in patients with acute ischemic stroke. J. Geriatr. Cardiol. 2017, 14, 401–406. [Google Scholar] [CrossRef] [PubMed]
- Ahn, S.H.; Lee, J.S.; Kim, Y.H.; Kim, B.J.; Kim, Y.J.; Kang, D.W.; Kim, J.S.; Kwon, S.U. Prognostic Significance of Troponin Elevation for Long-Term Mortality after Ischemic Stroke. J. Stroke 2017, 19, 312–322. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beaulieu-Boire, I.; Leblanc, N.; Berger, L.; Boulanger, J.M. Troponin elevation predicts atrial fibrillation in patients with stroke or transient ischemic attack. J. Stroke Cerebrovasc. Dis. 2013, 22, 978–983. [Google Scholar] [CrossRef]
- Rydén, L.; Roos, A.; Holzmann, M.J. Chronic Myocardial Injury and Risk for Stroke. Am. J. Med. 2019, 132, 833–839. [Google Scholar] [CrossRef]
- Vafaie, M.; Giannitsis, E.; Mueller-Hennessen, M.; Biener, M.; Makarenko, E.; Yueksel, B.; Katus, H.A.; Stoyanov, K.M. High-sensitivity cardiac troponin T as an independent predictor of stroke in patients admitted to an emergency department with atrial fibrillation. PLoS ONE 2019, 14, e0212278. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chaulin, A.M.; Abashina, O.E.; Duplyakov, D.V. Pathophysiological mechanisms of cardiotoxicity in chemotherapeutic agents. Russ. Open Med. J. 2020, 9, e0305. Available online: https://romj.org/2020-0305 (accessed on 30 October 2021). [CrossRef]
- Moudgil, R.; Yeh, E.T. Mechanisms of Cardiotoxicity of Cancer Chemotherapeutic Agents: Cardiomyopathy and Beyond. Can. J. Cardiol. 2016, 32, 863–870.e5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deidda, M.; Madonna, R.; Mango, R.; Pagliaro, P.; Bassareo, P.P.; Cugusi, L.; Romano, S.; Penco, M.; Romeo, F.; Mercuro, G. Novel insights in pathophysiology of antiblastic drugs-induced cardiotoxicity and cardioprotection. J. Cardiovasc. Med. 2016, 17 (Suppl. 1), e76–e83. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chaulin, A.M.; Duplyakov, D.V. Arrhythmogenic effects of doxorubicin. Complex Issues Cardiovasc. Dis. 2020, 9, 69–80. (In Russian) [Google Scholar] [CrossRef]
- Lancellotti, P.; Suter, T.M.; López-Fernández, T.; Galderisi, M.; Lyon, A.R.; Van der Meer, P.; Cohen Solal, A.; Zamorano, J.L.; Jerusalem, G.; Moonen, M.; et al. Cardio-Oncology Services: Rationale, organization, and implementation. Eur. Heart J. 2019, 40, 1756–1763. [Google Scholar] [CrossRef]
- Snipelisky, D.; Park, J.Y.; Lerman, A.; Mulvagh, S.; Lin, G.; Pereira, N.; Rodriguez-Porcel, M.; Villarraga, H.R.; Herrmann, J. How to Develop a Cardio-Oncology Clinic. Heart Fail. Clin. 2017, 13, 347–359. [Google Scholar] [CrossRef] [PubMed]
- Armenian, S.H.; Lacchetti, C.; Barac, A.; Carver, J.; Constine, L.S.; Denduluri, N.; Dent, S.; Douglas, P.S.; Durand, J.B.; Ewer, M.; et al. Prevention and Monitoring of Cardiac Dysfunction in Survivors of Adult Cancers: American Society of Clinical Oncology Clinical Practice Guideline. J. Clin. Oncol. 2017, 35, 893–911. [Google Scholar] [CrossRef]
- Suter, T.M.; Ewer, M.S. Cancer drugs and the heart: Importance and management. Eur. Heart J. 2013, 34, 1102–1111. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Curigliano, G.; Cardinale, D.; Suter, T.; Plataniotis, G.; de Azambuja, E.; Sandri, M.T.; Criscitiello, C.; Goldhirsch, A.; Cipolla, C.; Roila, F.; et al. Cardiovascular toxicity induced by chemotherapy, targeted agents and radiotherapy: ESMO Clinical Practice Guidelines. Ann. Oncol. 2012, 23 (Suppl. 7), vii155–vii66. [Google Scholar] [CrossRef]
- Sarzhevskii, V.O.; Kolesnikova, D.S.; Mel’nichenko, V.Y. Biochemical markers of cardiotoxicity of high-dose chemotherapy and autologous hematopoietic stem cell transplantation in patients with malignant lymphoproliferative disorders. Clin. Oncohematol. 2016, 9, 465–473. (In Russian) [Google Scholar] [CrossRef] [Green Version]
- Blaes, A.H.; Rehman, A.; Vock, D.M.; Luo, X.; Menge, M.; Yee, D.; Missov, E.; Duprez, D. Utility of high-sensitivity cardiac troponin T in patients receiving anthracycline chemotherapy. Vasc. Health Risk Manag. 2015, 11, 591–594. [Google Scholar] [CrossRef] [Green Version]
- Jones, M.; O’Gorman, P.; Kelly, C.; Mahon, N.; Fitzgibbon, M.C. High-sensitive cardiac troponin-I facilitates timely detection of subclinical anthracycline-mediated cardiac injury. Ann. Clin. Biochem. 2017, 54, 149–157. [Google Scholar] [CrossRef]
- Tzolos, E.; Adamson, P.D.; Hall, P.S.; Macpherson, I.R.; Oikonomidou, O.; MacLean, M.; Lewis, S.C.; McVicars, H.; Newby, D.E.; Mills, N.L.; et al. Dynamic Changes in High-Sensitivity Cardiac Troponin I in Response to Anthracycline-Based Chemotherapy. Clin. Oncol. R. Coll. Radiol. 2020, 32, 292–297. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hole, L.D.; Schjøtt, J. Myocardial injury in a 41-year-old male treated with methylphenidate: A case report. BMC Res. Notes 2014, 7, 480. [Google Scholar] [CrossRef] [Green Version]
- Ünlü, S.; Nurkoç, S.G.; Sezenöz, B.; Cingirt, M.; Gülbahar, Ö.; Abacı, A. Impact of statin use on high sensitive troponin T levels with moderate exercise. Acta Cardiol. 2019, 74, 380–385. [Google Scholar] [CrossRef]
- Godoy, J.C.; Niesman, I.R.; Busija, A.R.; Kassan, A.; Schilling, J.M.; Schwarz, A.; Alvarez, E.A.; Dalton, N.D.; Drummond, J.C.; Roth, D.M.; et al. Atorvastatin, but not pravastatin, inhibits cardiac Akt/mTOR signaling and disturbs mitochondrial ultrastructure in cardiac myocytes. FASEB J. 2019, 33, 1209–1225. [Google Scholar] [CrossRef]
- Chaulin, A.M.; Duplyakov, D.V. On the potential effect of circadian rhythms of cardiac troponins on the diagnosis of acute myocardial infarction. Signa Vitae 2021, 17, 79–84. [Google Scholar] [CrossRef]
- Bahadur, K.; Ijaz, A.; Salahuddin, M.; Alam, A. Determination of high sensitive cardiac troponin I 99th percentile upper reference limits in a healthy Pakistani population. Pak. J. Med. Sci. 2020, 36, 1303–1307. [Google Scholar] [CrossRef] [PubMed]
- Lippi, G.; Aloe, R.; Meschi, T.; Borghi, L.; Cervellin, G. Interference from heterophilic antibodies in troponin testing. Case report and systematic review of the literature. Clin. Chim. Acta 2013, 426, 79–84. [Google Scholar] [CrossRef] [PubMed]
- Zaidi, A.; Cowell, R. False positive cardiac troponin elevation due to heterophile antibodies: More common than we recognise? BMJ Case Rep. 2010, 2010, bcr1120092477. [Google Scholar] [CrossRef] [Green Version]
- Lahat, Y.; Shiloah, E.; Rapoport, M. Recurrent hospitalizations due to false positive troponin in a patient presenting with chest pain. Harefuah 2009, 148, 359–361. (In Hebrew) [Google Scholar] [PubMed]
- Lum, G.; Solarz, D.E.; Farney, L. False Positive Cardiac Troponin Results in Patients Without Acute Myocardial Infarction. Lab. Med. 2006, 37, 546–550. [Google Scholar] [CrossRef]
- Chaulin, A.M. Phosphorylation and Fragmentation of the Cardiac Troponin T: Mechanisms, Role in Pathophysiology and Laboratory Diagnosis. Int. J. Biomed. 2021, 11, 250–259. [Google Scholar] [CrossRef]
- Chaulin, A.M.; Duplyakova, P.D.; Duplyakov, D.V. Circadian rhythms of cardiac troponins: Mechanisms and clinical significance. Russ. J. Cardiol. 2020, 25, 4061. [Google Scholar] [CrossRef]
- Chaulin, A.M.; Duplyakov, D.V. Increased natriuretic peptides not associated with heart failure. Russ. J. Cardiol. 2020, 25, 4140. [Google Scholar] [CrossRef]
- Chaulin, A.M.; Duplyakov, D.V. Comorbidity in chronic obstructive pulmonary disease and cardiovascular disease. Cardiovasc. Ther. Prev. 2021, 20, 2539. (In Russian) [Google Scholar] [CrossRef]
- Manjunath, L.; Yeluru, A.; Rodriguez, F. 27-Year-Old Man with a Positive Troponin: A Case Report. Cardiol. Ther. 2018, 7, 197–204. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chaulin, A.M.; Duplyakov, D.V. Environmental factors and cardiovascular diseases. Hyg. Sanit. 2021, 100, 223–228. [Google Scholar] [CrossRef]
- Nguyen, J.; Thachil, R.; Vyas, N.; Marino, T. Falsely elevated troponin: Rare occurrence or future problem. J. Community Hosp. Intern. Med. Perspect. 2016, 6, 32952. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marks, V. False-positive immunoassay results: A multicenter survey of erroneous immunoassay results from assays of 74 analytes in 10 donors from 66 laboratories in seven countries. Clin. Chem. 2002, 48, 2008–2016. [Google Scholar] [CrossRef] [PubMed]
- Dasgupta, A.; Banerjee, S.K.; Datta, P. False-positive troponin I in the MEIA due to the presence of rheumatoid factors in serum. Elimination of this interference by using a polyclonal antisera against rheumatoid factors. Am. J. Clin. Pathol. 1999, 112, 753–756. [Google Scholar] [CrossRef]
- Kenny, P.R.; Finger, D.R. Falsely elevated cardiac troponin-I in patients with seropositive rheumatoid arthritis. J. Rheumatol. 2005, 32, 1258–1261. [Google Scholar] [PubMed]
- Al-Awadhi, A.M.; Olusi, S.; Hasan, E.A.; Abdullah, A. Serum concentrations of cardiac troponin-I in patients with rheumatoid arthritis, systemic lupus erythematosus, primary Sjogren’s syndrome and Graves’ disease. Singapore Med. J. 2007, 48, 847–849. [Google Scholar] [PubMed]
- Lavoinne, A.; Hue, G. Serum cardiac troponins I and T in early posttraumatic rhabdomyolysis. Clin. Chem. 1998, 44, 667–668. [Google Scholar] [CrossRef] [PubMed]
- Li, S.F.; Zapata, J.; Tillem, E. The prevalence of false-positive cardiac troponin I in ED patients with rhabdomyolysis. Am. J. Emerg. Med. 2005, 23, 860–863. [Google Scholar] [CrossRef]
- Chaulin, A.M. Cardiac Troponins Metabolism: From Biochemical Mechanisms to Clinical Practice (Literature Review). Int. J. Mol. Sci. 2021, 22, 10928. [Google Scholar] [CrossRef]
- Chaulin, A.M. Diagnostic value of highly sensitive cardiac troponins and mechanisms of their increase in serum and urine in arterial hypertension. Riv. Ital. Med. Lab. 2021, 17, 99–107. [Google Scholar] [CrossRef]
- Chaulin, A.M.; Duplyakov, D.V. Cardiac troponins: Analytical characteristics and diagnostic capabilities of modern (high-sensitive) determination methods. J. Clin. Diagn. Res. 2021, 15, BE01–BE06. [Google Scholar] [CrossRef]
- Chaulin, A.M.; Duplyakov, D.V. Microrna: The role in the pathophysiology of atrial fibrillation and potential use as a biomarker. Bull. Sib. Med. 2021, 20, 203–212. [Google Scholar] [CrossRef]
- Schmid, J.; Liesinger, L.; Birner-Gruenberger, R.; Stojakovic, T.; Scharnagl, H.; Dieplinger, B.; Asslaber, M.; Radl, R.; Beer, M.; Polacin, M.; et al. Elevated Cardiac Troponin T in Patients with Skeletal Myopathies. J. Am. Coll. Cardiol. 2018, 71, 1540–1549. [Google Scholar] [CrossRef]
- Chaulin, A.M. Updated information about methods of identification and diagnostic opportunities of cardiac troponins. Riv. Ital. Med. Lab. 2021, in press. Available online: https://www.minervamedica.it/en/journals/medicina-laboratorio/article.php?cod=R54Y9999N00A21100401 (accessed on 30 October 2021). [CrossRef]
- Butch, A.W.; Goodnow, T.T.; Brown, W.S.; McClellan, A.; Kessler, G.; Scott, M.G. Stratus automated creatine kinase-MB assay evaluated: Identification and elimination of falsely increased results associated with a high-molecular-mass form of alkaline phosphatase. Clin Chem. 1989, 35, 2048–2053. [Google Scholar] [CrossRef] [PubMed]
- Dasgupta, A.; Chow, L.; Wells, A.; Datta, P. Effect of elevated concentration of alkaline phosphatase on cardiac troponin I assays. J. Clin. Lab. Anal. 2001, 15, 175–177. [Google Scholar] [CrossRef]
- Marinheiro, R.; Amador, P.; Parreira, L.; Rato, Q.; Caria, R. False Positive Troponin I Rendering Two Admissions for “Recurrent Acute Myopericarditis”. Open Cardiovasc. Med. J. 2018, 12, 55–58. [Google Scholar] [CrossRef] [PubMed]
- Herman, D.S.; Ranjitkar, P.; Yamaguchi, D.; Grenache, D.G.; Greene, D.N. Endogenous alkaline phosphatase interference in cardiac troponin I and other sensitive chemiluminescence immunoassays that use alkaline phosphatase activity for signal amplification. Clin. Biochem. 2016, 49, 1118–1121. [Google Scholar] [CrossRef]
- Chaulin, A.M.; Karslyan, L.S.; Grigorieva, E.V.; Nurbaltaeva, D.A.; Duplyakov, D.V. Metabolism of cardiac troponins (literature review). Complex Issues Cardiovasc. Dis. 2019, 8, 103–115. (In Russian) [Google Scholar] [CrossRef] [Green Version]
- Chaulin, A.M.; Duplyakov, D.V. MicroRNAs in atrial fibrillation: Pathophysiological aspects and potential biomarkers. Int. J. Biomed. 2020, 10, 198–205. [Google Scholar] [CrossRef]
- Chaulin, A.M.; Duplyakov, D.V. Cardiac troponins in hypertension: Mechanisms of increase and diagnostic value. Arter. Hypertens. 2021, 27, 390–401. (In Russian) [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chaulin, A.M. Elevation Mechanisms and Diagnostic Consideration of Cardiac Troponins under Conditions Not Associated with Myocardial Infarction. Part 2. Life 2021, 11, 1175. https://doi.org/10.3390/life11111175
Chaulin AM. Elevation Mechanisms and Diagnostic Consideration of Cardiac Troponins under Conditions Not Associated with Myocardial Infarction. Part 2. Life. 2021; 11(11):1175. https://doi.org/10.3390/life11111175
Chicago/Turabian StyleChaulin, Aleksey M. 2021. "Elevation Mechanisms and Diagnostic Consideration of Cardiac Troponins under Conditions Not Associated with Myocardial Infarction. Part 2" Life 11, no. 11: 1175. https://doi.org/10.3390/life11111175
APA StyleChaulin, A. M. (2021). Elevation Mechanisms and Diagnostic Consideration of Cardiac Troponins under Conditions Not Associated with Myocardial Infarction. Part 2. Life, 11(11), 1175. https://doi.org/10.3390/life11111175