Finding the Best Programmable PWM Pattern for Three-Level Active Front-Ends at 18-Pulse Connection
Abstract
:1. Introduction
- recovering electricity to the grid when braking;
- maintaining zero shift of the fundamental current harmonic with respect to the input voltage;
- compensating for the reactive power at the grid connection point;
- using programmed PWMs in order to comply with the low and medium-frequency voltage and current quality standards [5].
- using multipulse connection to the grid based on multiwinding phase-shift transformers [8];
- use of programmed PWM voltage waveforms to eliminate or mitigate selected harmonics, i.e., Selective Harmonic Elimination PWM and Selective Harmonic Mitigation PWM [9];
- use of passive L and LCL filters to filter out higher harmonics on the AFE AC side [10];
- connecting MV regenerative ASD to a separate substation.
2. Statement of Problem, Goals and Objectives
3. Object of Research
3.1. Specifications of the Object
3.2. 18-Pulse Connection
3.3. Three-Level Active Front-End
3.4. Programmed Pulse-Width Modulation (PWM)
- 5, 7, 17, and 19 in Pattern 1 (250 Hz);
- 17 and 19 in Pattern 2 (150 Hz);
- 17, 19, 35, and 37 in Pattern 3 (250 Hz);
- 5, 7, 17, 19, 35, and 37 in Pattern 4 (350 Hz).
4. Control System
5. Simulation Results and Discussion
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Abu-Rub, H.; Bayhan, S.; Moinoddin, S.; Malinowski, M.; Guzinski, J. Medium-Voltage Drives: Challenges and existing technology. IEEE Power Electron. Mag. 2016, 3, 29–41. [Google Scholar] [CrossRef]
- Jing, T.; Maklakov, A.S. A Review of Voltage Source Converters for Energy Applications. In Proceedings of the Ural Conference on Green Energy (UralCon) 2018 International, Chelyabinsk, Russia, 4–6 October 2018; pp. 275–281. [Google Scholar]
- Franquelo, L.G.; Rodriguez, J.; Leon, J.I.; Kouro, S.; Portillo, R.; Prats, M.A.M. The age of multilevel converters arrives. IEEE Ind. Electron. Mag. 2008, 2, 28–39. [Google Scholar] [CrossRef] [Green Version]
- Kouro, S.; Rodriguez, J.; Wu, B.; Bernet, S.; Perez, M. Powering the Future of Industry: High-Power Adjustable Speed Drive Topologies. IEEE Ind. Appl. Mag. 2012, 18, 26–39. [Google Scholar] [CrossRef]
- Leon, J.I.; Vazquez, S.; Franquelo, L.G. Multilevel Converters: Control and Modulation Techniques for Their Operation and Industrial Applications. Proc. IEEE 2017, 105, 2066–2081. [Google Scholar] [CrossRef]
- Perez, M.A.; Bernet, S.; Rodriguez, J.; Kouro, S.; Lizana, R. Circuit Topologies Modeling Control Schemes and Applications of Modular Multilevel Converters. Power Electron. IEEE Trans. 2015, 30, 4–17. [Google Scholar] [CrossRef]
- De Caro, S.; Foti, S.; Scimone, T.; Testa, A.; Cacciato, M.; Scarcella, G.; Scelba, G. THD and efficiency improvement in multi-level inverters through an open end winding configuration. In Proceedings of the Energy Conversion Congress and Exposition (ECCE), Milwaukee, WI, USA, 18–22 September 2016; pp. 1–7. [Google Scholar]
- Nikolaev, A.A.; Bulanov, M.V.; Shakhbieva, K.A. Development of Improved PWM Algorithm of Active Rectifier with Function of Resonant Phenomena Adaptation in Electrical Networks of Medium Voltage. In Proceedings of the 2020 International Conference on Industrial Engineering, Applications and Manufacturing (ICIEAM), Sochi, Russia, 18–22 May 2020; pp. 1–6. [Google Scholar]
- Marquez Alcaide, A.; Leon, J.I.; Laguna, M.; Gonzalez-Rodriguez, F.; Portillo, R.; Zafra-Ratia, E.; Vazquez, S.; Franquelo, L.G.; Bayhan, S.; Abu-Rub, H. Real-Time Selective Harmonic Mitigation Technique for Power Converters Based on the Exchange Market Algorithm. Energies 2020, 13, 1659. [Google Scholar] [CrossRef] [Green Version]
- Saleem, M.; Choi, K.-Y.; Kim, R.-Y. Resonance damping for an LCL filter type grid-connected inverter with active disturbance rejection control under grid impedance uncertainty. Int. J. Electr. Power Energy Syst. 2019, 109, 444–454. [Google Scholar]
- Paice, D.A. Multipulse Methods and Transformers. In Power Electronics Converter Harmonics: Multipulse Methods for Clean Power; Wiley-IEEE Press: Hoboken, NJ, USA, 1996; pp. 25–37. [Google Scholar]
- Kornilov, G.P.; Nikolaev, A.A.; Khramshin, T.R. Mathematical Modeling of the Metallurgical Plants’ Electrotechnical Complexes; Nosov Magnitogorck State Technical University: Magnitogorsk, Russia, 2012. [Google Scholar]
- Hoevenaars, A.; Farbis, M.; McGraw, M. Active Harmonic Mitigation: What the Manufacturers Don’t Tell You. IEEE Ind. Appl. Mag. 2020, 26, 41–51. [Google Scholar] [CrossRef]
- Kouro, S.; Malinowski, M.; Gopakumar, K.; Pou, J.; Franquelo, L.G.; Wu, B.; Rodriguez, J.; Pérez, M.A.; Leon, J.I. Recent Advances and Industrial Applications of Multilevel Converters. Ind. Electron. IEEE Trans. 2010, 57, 2553–2580. [Google Scholar] [CrossRef]
- Nabae, A.; Takahashi, I.; Akagi, H. New neutral-point-clamped PWM inverter. IEEE Trans. Ind. Appl. 1981, IA-17, 518–523. [Google Scholar] [CrossRef]
- Yan, Q.; Wu, X.; Yuan, X.; Geng, Y. An Improved Grid-Voltage Feedforward Strategy for High-Power Three-Phase Grid-Connected Inverters Based on the Simplified Repetitive Predictor. IEEE Trans. Power Electron. 2016, 31, 3880–3897. [Google Scholar] [CrossRef] [Green Version]
- Napoles, J.; Leon, J.I.; Portillo, R.; Franquelo, L.G.; Aguirre, M.A. Selective Harmonic Mitigation Technique for High-Power Converters. IEEE Trans. Ind. Electron. 2010, 57, 2315–2323. [Google Scholar] [CrossRef]
- Pérez-Basante, A.; Ceballos, S.; Konstantinou, G.; Pou, J.; Kortabarria, I.; de Alegría, I.M. A Universal Formulation for Multilevel Selective-Harmonic-Eliminated PWMWith Half-Wave Symmetry. IEEE Trans. Power Electron. 2019, 34, 943–957. [Google Scholar] [CrossRef]
- Al-Hitmi, M.; Ahmad, S.; Iqbal, A.; Padmanaban, S.; Ashraf, I. Selective Harmonic Elimination in a Wide Modulation Range Using Modified Newton–Raphson and Pattern Generation Methods for a Multilevel Inverter. Energies 2018, 11, 458. [Google Scholar] [CrossRef] [Green Version]
- Aguilera, R.P.; Lezana, P.; Konstantinou, G.; Acuna, P.; Wu, B.; Bernet, S.; Agelidis, V.G. Closed-loop SHE-PWM technique for power converters through Model Predictive Control. In Proceedings of the Industrial Electronics Society IECON), Yokohama, Japan, 9–12 November 2015; pp. 5261–5266. [Google Scholar]
- Leon, J.I.; Kouro, S.; Franquelo, L.G.; Rodriguez, J.; Wu, B. The Essential Role and the Continuous Evolution of Modulation Techniques for Voltage-Source Inverters in the Past Present and Future Power Electronics. Ind. Electron. IEEE Trans. 2016, 63, 2688–2701. [Google Scholar] [CrossRef]
- Zhang, Y.; Hu, C.; Wang, Q.; Zhou, Y.; Sun, Y. Neutral-Point Potential Balancing Control Strategy for Three-Level ANPC Converter Using SHEPWM Scheme. Energies 2019, 12, 4328. [Google Scholar] [CrossRef] [Green Version]
- Cheng, J.; Chen, D.; Chen, G. Modeling and Compensation for Dead-Time Effect in High Power IGBT/IGCT Converters with SHE-PWM Modulation. Energies 2020, 13, 4348. [Google Scholar] [CrossRef]
- Steczek, M.; Jefimowski, W.; Szeląg, A. Application of Grasshopper Optimization Algorithm for Selective Harmonics Elimination in Low-Frequency Voltage Source Inverter. Energies 2020, 13, 6426. [Google Scholar] [CrossRef]
- Maklakov, A.S.; Radionov, A.A.; Gasiyarov, V.R. Power factor correction and minimization THD in industrial grid via reversible medium voltage AC drives based on 3L-NPC AFE rectifiers. In Proceedings of the IECON Proceedings (Industrial Electronics Conference), Florence, Italy, 23–26 October 2016; pp. 2551–2556. [Google Scholar]
- Zhang, W.; Li, X.; Qiao, J.; Liu, X. Research on DC Voltage Utilization Ratio of Inverter SHEPWM Control Method Based on Immune Algorithm. In Proceedings of the 2019 22nd International Conference on Electrical Machines and Systems (ICEMS), Harbin, China, 11–14 August 2019; pp. 1–5. [Google Scholar]
- Siddique, M.D.; Mekhilef, S.; Shah, N.M.; Momon, M.A.; Mustafa, A. SHEPWM Based New Hybrid Multilevel Inverter Topology with Reduced Switch Count. In Proceedings of the 2019 21st European Conference on Power Electronics and Applications (EPE ‘19 ECCE Europe), Genova, Italy, 3–5 September 2019; pp. 1–9. [Google Scholar]
- Wu, W.; Liu, W.; Wang, J.; Zhou, X. Inner Relationship between SHEPWM and SVPWM in Tri-level Converter. In Proceedings of the 2019 14th IEEE Conference on Industrial Electronics and Applications (ICIEA), Xi’an, China, 19–21 June 2019; pp. 793–798. [Google Scholar]
- Liu, C.; Wang, Y.; Wang, J.; Yu, X.; Zhou, L.; Xu, J. A hybrid PWM strategy based on SVPWM and SHEPWM for high-power drive system. In Proceedings of the 2021 6th Asia Conference on Power and Electrical Engineering (ACPEE), Chongqing, China, 8–11 April 2021; pp. 1413–1417. [Google Scholar]
- Yang, Y.; Tang, Y.; Li, Y. Dead-Time Elimination Method of High Frequency Inverter with SHEPWM. In Proceedings of the 2019 14th IEEE Conference on Industrial Electronics and Applications (ICIEA), Xi’an, China, 19–21 June 2019; pp. 457–461. [Google Scholar]
- Shahmi Bin Bimazlim, M.A.; Ismail, B.; Aihsan, M.Z.; Khodijah Mazalan, S.; Muhammad Azhar Walter, M.S.; Khairul Hafizi Rohani, M.N. Comparative Study of Optimization Algorithms for SHEPWM Five-Phase Multilevel Inverter. In Proceedings of the 2020 IEEE International Conference on Power and Energy (PECon), Penang, Malaysia, 7–8 December 2020; pp. 95–100. [Google Scholar]
- Steczek, M.; Chudzik, P.; Szeląg, A. Application of a Non-carrier-Based Modulation for Current Harmonics Spectrum Control during Regenerative Braking of the Electric Vehicle. Energies 2020, 13, 6686. [Google Scholar] [CrossRef]
Ur, V | Ir, А | fr, Hz | Pr, MW | cos(φ) | Rl, mOhm | Ll, mH |
---|---|---|---|---|---|---|
3300 | 2460 | 10 | 12 | 1 | 9.54 | 32.15 |
Ur, V | Ir, А | Udcr, V | fsw, Hz | Pr, MW | Efficiencyr, % | Cdc, µF |
---|---|---|---|---|---|---|
3300 | 800 | 5020 | 350 | 8.4 | 97 | 6341.54 |
Sr, kVAR | U1r, V | U2r, V | I1r, А | I2r, А | Usc, % | ∆Psc, kW | ∆Pnl, kW |
---|---|---|---|---|---|---|---|
5700 | 10,000 | 3300 | 329.1 | 997.2 | 16 | 55 | 4.9 |
Kpdc | Kidc | Kpi | Kii |
---|---|---|---|
0.5 | 20 | 1.5 | 25 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maklakov, A.S.; Jing, T.; Radionov, A.A.; Gasiyarov, V.R.; Lisovskaya, T.A. Finding the Best Programmable PWM Pattern for Three-Level Active Front-Ends at 18-Pulse Connection. Machines 2021, 9, 127. https://doi.org/10.3390/machines9070127
Maklakov AS, Jing T, Radionov AA, Gasiyarov VR, Lisovskaya TA. Finding the Best Programmable PWM Pattern for Three-Level Active Front-Ends at 18-Pulse Connection. Machines. 2021; 9(7):127. https://doi.org/10.3390/machines9070127
Chicago/Turabian StyleMaklakov, Alexander S., Tao Jing, Andrey A. Radionov, Vadim R. Gasiyarov, and Tatyana A. Lisovskaya. 2021. "Finding the Best Programmable PWM Pattern for Three-Level Active Front-Ends at 18-Pulse Connection" Machines 9, no. 7: 127. https://doi.org/10.3390/machines9070127
APA StyleMaklakov, A. S., Jing, T., Radionov, A. A., Gasiyarov, V. R., & Lisovskaya, T. A. (2021). Finding the Best Programmable PWM Pattern for Three-Level Active Front-Ends at 18-Pulse Connection. Machines, 9(7), 127. https://doi.org/10.3390/machines9070127