Electrical Discharge Machining with SiC Powder-Mixed Dielectric: An Effective Application in the Machining Process of Hardened 90CrSi Steel
Abstract
:1. Introduction
2. Experimental Design
3. Results and Discussions
4. Conclusions
- ✓
- The pulse-off-time has the strongest impact on the roughness followed by the powder concentration. They account for 26.63% and 21.17% to the total effect, respectively. Other parameters have a smaller impact on roughness. The server voltage, the pulse current, and pulse-on-time have effects of 15.26%, 12.47%, and 7.11% of the total effect, respectively.
- ✓
- The optimal parameters of PMEDM for lower roughness are a powder concentration of 4 g/L, a pulse-on-time of 6 µs, a pulse-off-time of 21 µs, a pulse current of 8 A, and a server voltage of 4 V.
- ✓
- The predicted average surface roughness is presented with an 8.25% deviation from the verification test.
- ✓
- The outstanding effectiveness in reducing the roughness of the PMEDM process has been demonstrated when compared to conventional EDM. The roughness obtained with the optimum powder concentration of 4 g/L was reduced by 30.02% compared to that when processed by conventional EDM (powder concentration of 0 g/L).
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Markopoulos, A.P.; Papazoglou, E.-L.; Karmiris-Obratański, P. Experimental Study on the Influence of Machining Conditions on the Quality of Electrical Discharge Machined Surfaces of aluminum alloy Al5052. Machines 2020, 8, 12. [Google Scholar] [CrossRef] [Green Version]
- Razeghiyadaki, A.; Molardi, C.; Talamona, D.; Perveen, A. Modeling of Material Removal Rate and Surface Roughness Generated during Electro-Discharge Machining. Machines 2019, 7, 47. [Google Scholar] [CrossRef] [Green Version]
- Kumar, A.; Maheshwari, S.; Sharma, C.; Beri, N. Research Developments in Additives Mixed Electrical Discharge Machining (AEDM): A State of Art Review. Mater. Manuf. Process. 2010, 25, 1166–1180. [Google Scholar] [CrossRef]
- Ho, K.; Newman, S. State of the art electrical discharge machining (EDM). Int. J. Mach. Tools Manuf. 2003, 43, 1287–1300. [Google Scholar] [CrossRef]
- Ekmekci, B.; Ulusöz, F.; Ekmekci, N.; Yaşar, H. Suspended SiC particle deposition on plastic mold steel surfaces in powder-mixed electrical discharge machining. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 2014, 229, 475–486. [Google Scholar] [CrossRef]
- Jawahar, M.; Reddy, C.S.; Srinivas, C. A review of performance optimization and current research in PMEDM. Mater. Today Proc. 2019, 19, 742–747. [Google Scholar] [CrossRef]
- Wong, Y.; Lim, L.; Rahuman, I.; Tee, W. Near-mirror-finish phenomenon in EDM using powder-mixed dielectric. J. Mater. Process. Technol. 1998, 79, 30–40. [Google Scholar] [CrossRef]
- Tzeng, Y.-F.; Lee, C.-Y. Effects of Powder Characteristics on Electrodischarge Machining Efficiency. Int. J. Adv. Manuf. Technol. 2001, 17, 586–592. [Google Scholar] [CrossRef]
- Uno, Y.; Okada, A.; Kamekawa, I. Surface Generation Mechanism in Electrical Discharge Machining with Silicon Powder Mixed Fluid. J. Jpn. Soc. Electr. Mach. Eng. 1995, 29, 9–17. [Google Scholar] [CrossRef] [Green Version]
- Mohri, N.; Saito, N.; Higashi, M.; Kinoshita, N. A New Process of Finish Machining on Free Surface by EDM Methods. CIRP Ann. 1991, 40, 207–210. [Google Scholar] [CrossRef]
- Kansal, H.; Singh, S.; Kumar, P. Parametric optimization of powder mixed electrical discharge machining by response surface methodology. J. Mater. Process. Technol. 2005, 169, 427–436. [Google Scholar] [CrossRef]
- Zhao, W.; Meng, Q.; Wang, Z. The application of research on powder mixed EDM in rough machining. J. Mater. Process. Technol. 2002, 129, 30–33. [Google Scholar] [CrossRef]
- Öpöz, T.T.; Yaşar, H.; Ekmekci, N.; Ekmekci, B. Particle migration and surface modification on Ti6Al4V in SiC powder mixed electrical discharge machining. J. Manuf. Process. 2018, 31, 744–758. [Google Scholar] [CrossRef]
- Kansal, H.; Singh, S.; Kumar, P. Performance parameters optimization (multi-characteristics) of powder mixed electric discharge machining (PMEDM) through Taguchi’s method and utility concept. IJEMS 2006, 13. Available online: http://nopr.niscair.res.in/handle/123456789/7550 (accessed on 30 June 2020).
- Erden, A.; Bilgin, S. Role of Impurities in Electric Discharge Machining. In Proceedings of the Proceedings of the Twenty-First International Machine Tool Design and Research Conference, Swansea, UK, 8–12 September 1980; Springer: Berlin/Heidelberg, Germany, 1981; pp. 345–350. [Google Scholar]
- Long, B.T.; Phan, N.H.; Cuong, N.; Jatti, V.S. Optimization of PMEDM process parameter for maximizing material removal rate by Taguchi’s method. Int. J. Adv. Manuf. Technol. 2016, 87, 1929–1939. [Google Scholar] [CrossRef]
- Singh, P. Influence of electrical parameters in powder mixed electric discharge machining (PMEDM) of hastelloy. J. Eng. Res. Stud. 2010, 1, 93–105. [Google Scholar]
- Kansal, H.; Singh, S.; Kumar, P. Application of Taguchi method for optimisation of powder mixed electrical discharge machining. Int. J. Manuf. Technol. Manag. 2005, 7, 329. [Google Scholar] [CrossRef]
- Kobayashi, K. The present and future developments of electrical discharge machining. In Proceedings of the 2nd International Conference on Die and Mould Technology, Singapore, 2 September 1992. [Google Scholar]
- Kuriachen, B.; Mathew, J. Effect of powder mixed dielectric on material removal and surface modification in microelectric discharge machining of Ti-6Al-4V. Mater. Manuf. Process. 2016, 31, 439–446. [Google Scholar] [CrossRef]
- Razak, M.A.; Abdul-Rani, A.M.; Nanimina, A.M. Improving EDM Efficiency with Silicon Carbide Powder-Mixed Dielectric Fluid. Int. J. Mater. Mech. Manuf. 2015, 3, 40–43. [Google Scholar] [CrossRef]
- Al-Khazraji, A.; Amin, S.A.; Ali, S.M. The effect of SiC powder mixing electrical discharge machining on white layer thickness, heat flux and fatigue life of AISI D2 die steel. Eng. Sci. Technol. Int. J. 2016, 19, 1400–1415. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Yi, S.; Easton, M.; Ding, S. Active gap capacitance electrical discharge machining of polycrystalline diamond. J. Mater. Process. Technol. 2020, 280, 116598. [Google Scholar] [CrossRef]
- Phadke, M.S. Quality Engineering using Design of Experiments; Springer: Berlin/Heidelberg, Germany, 1989; pp. 31–50. [Google Scholar]
- Do, T.-V.; Hsu, Q.-C. Optimization of Minimum Quantity Lubricant Conditions and Cutting Parameters in Hard Milling of AISI H13 Steel. Appl. Sci. 2016, 6, 83. [Google Scholar] [CrossRef]
- Nguyen, H.T.; Hsu, Q.-C. Surface Roughness Analysis in the Hard Milling of JIS SKD61 Alloy Steel. Appl. Sci. 2016, 6, 172. [Google Scholar] [CrossRef] [Green Version]
- Pi, V.N. Multi-objective optimization of PMEDM process parameters for processing cylindrical shaped parts using Taguchi method and Grey relational analysis. Int. J. Mech. Prod. Eng. Res. Dev. 2020, 10, 669–678. [Google Scholar]
Element | C | Si | Mn | Ni | S | P | Cr | Mo | W | V | Ti | Cu |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Weight (%) | 0.85–0.95 | 1.20–1.60 | 0.30–0.60 | Max 0.40 | Max 0.03 | Max 0.03 | 0.95–1.25 | Max 0.20 | Max 0.20 | Max 0.15 | Max 0.03 | Max 0.3 |
Parameters | Levels | |||||
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | |
Powder concentration Cp (g/L) | 0 | 2.0 | 2.5 | 3.5 | 4.0 | 4.5 |
Pulse-on-time Ton (µs) | 6 | 10 | 14 | - | - | - |
Pulse-off-time Toff (µs) | 14 | 21 | 30 | - | - | - |
Pulse current IP (A) | 4 | 8 | 12 | - | - | - |
Server voltage SV (V) | 3 | 4 | 5 | - | - | - |
Items | Description |
---|---|
EDM machine | Sodick A30 |
Electrode | Copper |
Workpiece | 90CrSi alloy steel; 58–62 HRC hardness |
Work-piece dimensions | 60 mm × 35 mm × 25 mm |
Dielectric fluid | Diel MS 7000 oil |
Surf-test instrument | SV3100 |
Nanopowder | SiC 500 nm |
Run | Cp | Ton | Toff | IP | SV | Ra [µm] | ||||
---|---|---|---|---|---|---|---|---|---|---|
Trial 1 | Trial 2 | Trial 3 | Average | S/N | ||||||
1 | 0 | 6 | 14 | 4 | 3 | 2.960 | 2.930 | 2.928 | 2.939 | −9.3651 |
2 | 0 | 10 | 21 | 8 | 4 | 2.239 | 2.161 | 2.383 | 2.261 | −7.0932 |
3 | 0 | 14 | 30 | 12 | 5 | 5.066 | 5.117 | 5.125 | 5.102 | −14.1561 |
4 | 2 | 6 | 14 | 8 | 4 | 2.411 | 2.434 | 2.482 | 2.442 | −7.7567 |
5 | 2 | 10 | 21 | 12 | 5 | 2.749 | 2.839 | 2.601 | 2.729 | −8.7278 |
6 | 2 | 14 | 30 | 4 | 3 | 4.942 | 5.200 | 5.174 | 5.105 | −14.1627 |
7 | 2.5 | 6 | 21 | 4 | 5 | 2.158 | 2.232 | 2.196 | 2.195 | −6.8308 |
8 | 2.5 | 10 | 30 | 8 | 3 | 3.895 | 3.882 | 3.868 | 3.881 | −11.7804 |
9 | 2.5 | 14 | 14 | 12 | 4 | 3.840 | 3.733 | 3.790 | 3.787 | −11.5680 |
10 | 3.5 | 6 | 30 | 12 | 4 | 2.791 | 2.620 | 2.528 | 2.646 | −8.4602 |
11 | 3.5 | 10 | 14 | 4 | 5 | 3.421 | 3.559 | 3.490 | 3.490 | −10.8576 |
12 | 3.5 | 14 | 21 | 8 | 3 | 2.685 | 3.068 | 2.906 | 2.886 | −9.2198 |
13 | 4 | 10 | 30 | 4 | 4 | 2.959 | 2.795 | 2.763 | 2.839 | −9.0673 |
14 | 4 | 14 | 14 | 8 | 5 | 2.646 | 2.670 | 2.785 | 2.700 | −8.6305 |
15 | 4 | 6 | 30 | 8 | 5 | 1.614 | 1.655 | 1.741 | 1.670 | −4.4587 |
16 | 4.5 | 10 | 14 | 12 | 3 | 3.752 | 3.613 | 3.926 | 3.763 | −11.5172 |
17 | 4.5 | 14 | 21 | 4 | 4 | 4.404 | 4.298 | 4.491 | 4.397 | −12.8658 |
18 | 4.5 | 14 | 30 | 8 | 3 | 2.864 | 2.732 | 2.795 | 2.797 | −8.9355 |
Source | DF | Seq SS | Adj SS | Adj MS | F | P | %C |
---|---|---|---|---|---|---|---|
Cp | 5 | 24.018 | 24.018 | 4.804 | 0.98 | 0.524 | 21.17 |
Ton | 2 | 8.067 | 8.067 | 4.033 | 0.82 | 0.503 | 7.11 |
Toff | 2 | 30.207 | 30.207 | 15.103 | 3.07 | 0.156 | 26.63 |
IP | 2 | 14.147 | 14.147 | 7.074 | 1.44 | 0.339 | 12.47 |
SV | 2 | 17.310 | 17.310 | 8.655 | 1.76 | 0.283 | 15.26 |
Residual Error | 4 | 19.694 | 19.694 | 4.924 | - | - | - |
Total | 17 | 113.443 | - | - | - | - |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tran, T.-H.; Nguyen, M.-C.; Luu, A.-T.; Do, T.-V.; Le, T.-Q.; Vu, T.-T.; Tran, N.-G.; Do, T.-T.; Vu, N.-P. Electrical Discharge Machining with SiC Powder-Mixed Dielectric: An Effective Application in the Machining Process of Hardened 90CrSi Steel. Machines 2020, 8, 36. https://doi.org/10.3390/machines8030036
Tran T-H, Nguyen M-C, Luu A-T, Do T-V, Le T-Q, Vu T-T, Tran N-G, Do T-T, Vu N-P. Electrical Discharge Machining with SiC Powder-Mixed Dielectric: An Effective Application in the Machining Process of Hardened 90CrSi Steel. Machines. 2020; 8(3):36. https://doi.org/10.3390/machines8030036
Chicago/Turabian StyleTran, Thi-Hong, Manh-Cuong Nguyen, Anh-Tung Luu, The-Vinh Do, Thu-Quy Le, Trung-Tuyen Vu, Ngoc-Giang Tran, Thi-Tam Do, and Ngoc-Pi Vu. 2020. "Electrical Discharge Machining with SiC Powder-Mixed Dielectric: An Effective Application in the Machining Process of Hardened 90CrSi Steel" Machines 8, no. 3: 36. https://doi.org/10.3390/machines8030036
APA StyleTran, T. -H., Nguyen, M. -C., Luu, A. -T., Do, T. -V., Le, T. -Q., Vu, T. -T., Tran, N. -G., Do, T. -T., & Vu, N. -P. (2020). Electrical Discharge Machining with SiC Powder-Mixed Dielectric: An Effective Application in the Machining Process of Hardened 90CrSi Steel. Machines, 8(3), 36. https://doi.org/10.3390/machines8030036